
Situational Awareness for Manufacturing Applications

Olivier St-Martin Cormier, Andrew Phan and Frank P. Ferrie
Dept. Electrical and Computer Engineering &

McGill Centre for Intelligent Machines
Montreal, CANADA

Email: {olivier,aphan2,ferrie}@cim.mcgill.ca

Abstract—Collaboration between human workers and
robotic assistants is seen as one way to increase both flexibility
and efficiency in a production line environment. In this setup,
human workers can be assigned tasks that require high
perceptual ability, dexterity and judgement, supplemented by
robotic assistants that can perform work of low (skill) value,
such as fetching and delivering parts and tools. Key to such
a strategy is the ability of the automated system to maintain
total awareness of the states of all key players (humans, robots,
machinery, parts) and take the necessary action to carry out
the manufacturing while maintaining the safety of the human
workers. We refer to this attribute as Situational Awareness,
and in this paper present both an implementation and a case
study in the form of a system that tracks the articulated 3D
pose of a group of human workers in an enclosed area.

Keywords-sensors, networks, databases, real-time

I. INTRODUCTION

Robotic systems have long played an important role in
modern manufacturing with even predictions of workerless
factories dating back to Diebold in the 1950’s [1]. Although
automation has had a profound impact, human workers
still play important roles, especially in an environment
where flexibility is a key factor, e.g. automotive assembly
line. An emerging strategy in recent years has been to
augment human workers with assistive devices or even
robot assistants [2], [3]. This has the advantage of retaining
high skill level and flexibility, while off-loading work of
lesser value to automation. There are a number of important
considerations here. A robot assistant must take direction as
well as communicate/coordinate with its human counterpart
in performing a task, a problem that has been receiving
a lot of attention in the human-robot interaction (HRI)
community [4], [2], [5]. Further, the safety of the human
worker and the surrounding plant must be accounted for,
e.g., by incorporating force limits into the design of robotic
systems (safe robots) [6], and/or identification of potential
hazards [7], [8].

Underpinning these considerations is the need for a robot
assistant to be aware of its own state, that of its human
co-worker, the state of the task being performed, as well
as the state of the larger environment in which it operates.
States of different entities are determined through processes
of inference, operating at the lowest levels on data provided
by sensors that encode different properties of the environ-
ment, and at higher levels on inferences generated by other
entities operating within the robotic assistant’s enviromnent.

Collectively we refer to the information provided by these
processes of inference as Situational Awareness (SA). Al-
though particular details can vary, one can abstract SA as
a common, unified representation of the environment that
makes explicit what needs to be known to perform the
required tasks.

Implementation of SA in the form of a system raises a
number of constraints that arise from the requirements of
SA consumers in the human robot collaboration.

1) Unified Representation: Information should be avail-
able from a single source, in real-time without explicit
knowledge of where that information is located (e.g.
publish-subscribe architecture).

2) Asynchronous Access: Information should be avail-
able on an anytime basis, with timescale and latency
requirements imposed by the client process.

3) Sensor/Data Fusion: Information from sensor/data
sources operating at different locations and timescales
should be integrated by the system and be presented
as a whole (retaining access to all source data).

4) Consistency Across Representations: Where possible,
ambiguous or incorrect results due to sensor noise,
ambiguity in the scene, or incorrect assumptions in a
particular algorithm, should be handled as part of the
SA system.

The case study presented here is that of a system that
monitors the precise body pose of one or more human work-
ers collaborating with a robot assistant in a production line
environment. A sensor network composed of 4 Kinect 2.5D
cameras continuously samples the workspace (Figure 1) at a
rate of approximately 14Hz. This information is fused into
a single representation, from which any process, such as
the 3D Human Pose Tracker (Section III), can subscribe1.
From this information the tracker computes an articulated,
3D skeletal model with 32 degrees of freedom (dof), and
updates the current description in a globally accessible, real-
time database - Situational Awareness Database (SADB)
(Section II). The monitoring process can access the SADB,
asynchronously and obtain a best estimate of each occupant
in the workspace.

1Transmitting the raw RGB-D images from 4 Kinects over the network
maxed out a gigabit port with a max frame rate of 12.5Hz. As a result,
for the live system, the raw Kinect RGB-D data are read directly from the
cameras instead of going through the SADB because it allows us to exceed
12.5Hz limit while minimizing overhead/latencies. We only pushed the raw
RGB-D images into the SADB for the purpose of recording the validation
data.



Figure 1. Workspace with 4 Kinects

The constraints described above are enforced as follows.
Unified representation is provided by the SADB, operating
at video frame rates and implementing a blackboard archi-
tecture in which all entities can share information. Sensor
information can be written by one process and accessed
by another with minimal latency. Consumers of sensor
information operate on this data and write back results which
in can turn be accessed by other processes. Asynchronous
access is handled by SADB, but anytime access is handled
by processes responsible for maitaining the representations.
Another process operates on the 4 Kinect datastreams and
maps each into a common frame of reference. The resulting
voxel space is continually updated at sensor frame rates.
Consistency enforcement is implemented at the level of the
3D skeletal model, where optical flow and soon range flow
are used to resolve errors in limb identification caused by
contact problems.

The remainder of the paper elaborates further on SADB in
Section II and the 3D Human Pose Tracker in Section III. A
case study of the resulting system is presented next in Sec-
tion IV with experimental results describing the performance
of the system. Finally, the paper concludes in Section V with
a summary of the paper and lessons learned.

II. THE SITUATIONAL AWARENESS DATABASE

The SADB system has been designed from the ground
up to fulfill the requirements stated earlier. This section
will focus on various aspects of SADB related to these
requirements.

While designing the database, we looked at the original
blackboard implementation by Erman et.al. [9] and other
classic descriptions of blackboard architectures [10], [11].
Modern database systems were also studied to refine the
requirements and were also compared to determine whether
to use a Structure Query Language (SQL) [12], [13] or
a NoSQL [14], [15], [16] interface to the database. The
intent of SADB is to be as flexible as traditional blackboard
systems while presenting a modern interface to clients.

A. System Organization

The primary goal of SADB is to provide a centralized
location to store and organize contextual knowledge related
to an observed system. The client-server topology was

adopted so that the only required prior knowledge to connect
to the database is the IP address or hostname of the server.2

To simplify interactions with the database, SADB was
built as NoSQL database. This means that most database
functions are presented to clients as a convenient object
oriented Application Programming Interface (API). This
removes the need to format request strings for most database
operations. Implementation-wise, the SADB system was
written in C++ and has been successfully tested and used on
Linux and Windows platforms. The API currently provides
the functions for the 37 distinct commands supported by
the SADB server shown in Table I. The description of each
command is omitted because of space constraints, but most
of the functions names should be self explanatory.

Table I
LIST OF SUPPORTED COMMANDS

0x01: Ping 0x02: Create Object

0x03: Delete Object 0x04: Set Object Name

0x05: Get Object Name 0x06: Set Object Description

0x07: Get Object Description 0x08: Get Object by Name

0x09: Send Object 0x0A: Get Latest Object Value

0x0B: Get Object Value at Nearest
Timestamp

0x0C: Get Object Value at Times-
tamp

0x0D: Reset Blackboard 0x0E: Create Category

0x0F: Delete Category 0x10: Set Category Name

0x11: Get Category Name 0x12: Set Category Description

0x13: Get Category Description 0x14: Get Category by Name

0x15: Add Object to Category 0x16: Remove Object from Cate-
gory

0x17: Find Object 0x18: Remove Object’s Oldest
Value

0x19: Keep n Latest Object Values 0x1A: Get Latest Object Times-
tamp

0x1B: Get Object Value at Next
Timestamp

0x1C: Get Object Value at Previ-
ous Timestamp

0x1D: Get Number of Objects 0x1E: Get Number of Categories

0x20: Is Object ID Valid? 0x21: Is Category ID Valid?

0x22: Get Next Timestamp 0x23: Get Previous Timestamp

0x24: Get Nearest Timestamp 0x25: Create Trigger Program

The data on the database is structured in chunks called
objects. Each object is defined as a container to store multi-
ple measurements of a single piece of information about the
environment. Each measurement is composed of a discrete
timestamp and data of arbitrary length and dimensions. No
restriction is imposed on the type of data. Objects also store
some metadata such as the name, description, and a unique
identification code.

For most database operations, objects are indexed by their
unique ID code, which can be transparently obtained from
the name of the object. To further organize the data stored
on the blackboard, objects can be classified into categories.
The categorization of the data is similar to the organization
of Redis [15] and the file system presented by De Chiara

2In the initial implementation reported here, a side process was also used
to retrieve source data which required access to named network sockets.



et.al.[17]
When classified properly, objects stored in the database

can be found by emitting object queries. These queries use
mathematical set operations to locate objects that match any
desired conditions. Currently, the union, intersection and
complement functions are implemented. By combining these
three operations, arbitrarily complex query operations can be
constructed.

The rationale behind the categorized data organization is
that any client connecting to the system can interact with the
data without knowing in advance the names or number of
objects present. This organization also helps in making the
database more flexible by allowing a classification of data
based on a semantic structure.

B. Real-time operation

To ensure real-time operation of the database system, the
transfer protocol was designed as a representational state
transfer (REST) protocol, conceptually very similar to the
hyper text transfer protocol (HTTP). Each request from
clients is sent as a series of packets beginning with a header
followed by a payload. The header includes the opcode of
the requested operation, the ID of the object that is targetted
and other command-related parameters. The entire network-
related aspect of SADB is handled by the API and is thus
invisible to users of the system.

To further minimize data access time, the entire database
is kept in system memory. This alleviates disk read and write
latencies. While this design decision obviously imposes a
hardware requirement on the amount of system memory,
multiple features have been implemented to reduce this prob-
lem. The client API includes functions to discard historical
data based on a threshold or to keep only a given number
of values. Clients are thus partly responsible for managing
their usage of memory. To prevent the risk of data losses
associated with system restarts, the possibility of saving and
restoring the entire content of the database to disk has been
implemented.

As with most database systems, the performance is tightly
coupled to the speed of the network it operates on. After
careful experiments, it was determined that the transfer
frequency decreases linearly with the network speed, as
expected. Both read and write performance have been shown
through experiments to be real-time, given appropriate net-
work infrastructure.

C. Asynchronous Access

As mentioned earlier, each object value stored on the
database includes a timestamp. These timestamps are used
to index data within an object based on measurement time.
Each timestamp is defined as an integer amount of seconds
since the unix epoch and the number of milliseconds since
the previous integer second.

As the sensors and clients measuring and generating data
do not all run at the same rate and do not necessarily have
the same latency characteristics, the task of timestamping
the data was left to the clients. This allows a client to set
the timestamp of a value closer to the measurement time

and thus negates the effect of processing and network trans-
mission delays on the stored timestamps. A local network
time protocol (NTP) server is used to synchronize the SADB
server and all clients to the same clock.

The SADB protocol includes five different functions to
access object values. Clients can choose to request data using
any of the five methods independently for each request.

• Get Latest Value: This function fetches the latest value
stored for an object from the database. This is the fastest
and simplest method.

• Get Nearest Value: This function returns the value
at the stored timestamp closest to a target time. This
method allows the query of historical values.

• Get Next/Previous Value: These two functions are
used to step through the stored values in chronological
order by returning the value at the timestamp after or
before a target time.

• Get Value: This function also allows access to histor-
ical value, but will compute an approximation of the
value at the requested timestamp by using interpola-
tion. Extrapolation can also be used to generate future
values. Linear and polynomial interpolation algorithms
are available. Parameters such as the degree of the
polynomial and the number of values to be considered
for interpolation are configured by the request parame-
ters and can vary between requests. Implementing the
interpolation functions on the server greatly reduces
the amount of data transferred over the network that
would be required for clients to generate their own
approximations. The only requirement of the interpola-
tion methods is that the dimensions of the object values
being used for the approximation need to be the same.

This asynchroneous access to data removes the needs for
process synchronization between the clients, thus making the
overall system more flexible. Clients can request the values
at whichever time they require, regardless of the source of
the data.

D. Database Management
To simplify the task of managing the database, a web-

based interface through an integrated HTTP server was
added to present a human-friendly way to interact with
SADB. The web interface includes the ability to view
properties and contents of the objects stored on the database
as well as explore the categories and view their members.
An administration page is also present to allow direct control
of the database backup and restore procedure. The database
system can also be reset from the web interface.

This ability for humans to interact with the system and
view information related to the current state of the world
representation can help in increasing the trust between the
users and the system.

E. Comparative Results
The read and write performance of SADB was compared

to the performance of the Redis database system [15] and the
MongoDB system [16]. Those two database systems were
chosen for comparison because both are NoSQL systems



and both are widely used projects. Redis has also been
chosen because it is a RAM-based database system. Table
II provides the average read and write times measured for
the three tested systems. To simulate a plausible system,
16 objects of 1 kilobyte were transfered to and from the
server a thousand times to measure the average. To test
different network configurations, the test was executed in
two different scenarios. First the measures were taken when
the client and the server resided on the same machine, then
the same test was executed with the server on a different
computer.

Table II
AVERAGE READ AND WRITE TIMES FOR 3 DATABASE SYSTEMS

DB Local (µs) Network (µs)
System Read Write Read Write
SADB 1321 942 10095 11668
Redis 932 1073 10118 11967

MongoDB 348812 2927 3742027 11375

The results support the idea that RAM based databases
have better read performance as no disk access is required.
The similary in write performance can most likely be at-
tributed to caching prior to writing to the hard drive. It can
be seen that the addition of purpose-specific components has
no performance impact with respect to other state of the art
general purpose database systems.

III. 3D HUMAN POSE TRACKER

From a high level, the 3D human pose tracker can be
seen as a SA process that abstracts independent, low-level
Kinect RGB-D data and produces one or more skeletons
that it makes available to all other SA processes or entities
such as the robotic assistant. In the proposed collaborative
manufacturing application, the 3D human pose tracker is
designed to meet two requirements. First, it must provide
reliable and fast 3D human pose in the form of a 32-dof
skeleton so that the robotic assistant can safely operate
alongside one or more human workers. Second, it must
adapt to the varying conditions typically encountered on an
assembly line such as the variability in worker shapes and
size, equipment layout, appearance of all entities and events
(i.e. the unpredictable comings and goings of all entities).

To meet these requirements, we used a camera network
composed of 4 calibrated Kinect 2.5D cameras placed in
an approximately orthogonal configuration. Each Kinect
provides RGB and depth images at approximately 14Hz that
can be fused to produced a single point cloud for 3D-based
algorithms or processed independently using conventional
image-based algorithms. We use a camera network designed
to maximize observability and minimize occlusions in order
to compensate for the minimal amount of priors required
by the system. We assume that workers are not missing
any limbs and that they adopt an unambiguous T-pose to
initialize the tracking.

Estimating reliable 3D human pose is complicated by
three types of contacts, referred to collectively as the contact
problem: subject-subject contacts (e.g. handshake), subject-
object contacts (e.g. part manipulation) and self-contacts

(e.g. hand on thigh). These contacts hinder the localization
of extremities such as the hands and feet which impact the
final skeleton estimate.

In a previous work [18], we proposed a data-driven
pipeline that specifically addresses the self-contact prob-
lem. The pipeline, implemented in C++ and making use
of the GPU for the computationally intensive optical flow
image processing algorithm, fused the available RGB and
depth data and was optimized to maximize performance
while minimizing latencies. Unfortunately, it had two major
limitations. First, it did not address the other two types of
contacts and, second, errors in the estimated skeleton tended
to accumulate because of the always active feedback loop
introduced to resolve the self-contact problem. In this work,
we propose a revised pipeline (Figure 2) that addresses these
two limitations by handling all three types of contacts with
the addition of a second corrective feedback loop and by
switching to a detection-based approach to determine if it is
necessary to branch into either feedback loop.

As a pre-requisite, we first calibrate the camera network
using a checkerboard pattern and standard camera calibration
techniques [19], [20]. Specifically, for each Kinect, we
compute first the intrinsic calibration parameters of each IR
and RGB camera while blocking the IR emitter. Then we
unblock the IR emitter and compute the stereo calibration
parameters between the IR and RGB cameras of each Kinect
and between the RGB cameras of Kinect pairs. Finally,
we place a large checkerboard at the workspace origin and
compute the extrinsic calibration parameters.

A. The pipeline
When the system is first powered on, we start by mod-

elling each depth image background using the Minimum
Background algorithm [21] and segmenting the foreground
to reduce the number of unnecessary points to project
into the workspace reference frame. Using the calibration
parameters computed previously, each camera produces an
individual foreground point cloud which we merge into a
single registered foreground point cloud. Then we downsam-
ple the data using a voxel grid, cluster the foreground into
blobs using Euclidean clustering [22] and compute features
for each blob such as the three inertial principal axis lengths
and the convex hull volume [23]. Although the principal axes
of inertia are more suited for rigid 3D bodies, we found them
to be well suited for distinguishing between human blobs
and other blobs in the scene, especially during initialization
of the tracker when subjects adopt the T-pose.

Next, we convert each human blob’s point cloud to a
graphical model called a geodesic distance graph (GDG),
where each point corresponds to a node and neighbouring
nodes are connected by edges whose weights represent
the Euclidean distance between the two neighbours. Then
we apply the AGEX geodesic extrema extraction algorithm
in [24] to locate the five extrema corresponding to the head,
hands and feet. If no previous pose estimate is available,
then the labelling of primary landmarks is accomplished
by having the subject adopt an unambiguous T-pose with
arms straight out to the side and slightly offset towards the
front facing direction for reliable left-right disambiguation.



Figure 2. Human tracker data flow diagram

If successful, then we also store the subject’s personal
characteristics such as the geodesic distance between any
two limbs. If a previous pose estimate is available, then
we need to check for undesired contacts and take corrective
actions, if applicable.

The geodesic distance (GD) is a useful metric because
it is pose invariant. Assuming no significant occlusion that
would cause the worker to be poorly sampled by the camera
network, the GD between two limb ends only changes sig-
nificantly if there are invalid edges in the geodesic distance
graph due to the contact problem. In our revised pipeline,
we propose a two-level detection-based consistency check
and corrective feedback loop to deal with the problem.

In the first level, we check for human blobs that have
suddenly merged with other subjects or objects producing
hybrid subject-subject or subject-object blobs that need to
be split. Depending on the size of the other subject or
object, such blobs will exhibit abrupt changes in convex

Figure 3. Example geodesic distance graph with an invalid edge high-
lighted near the feet due to the self-contact problem

hull volume, centroid position, number of point samples,
inertial principal axes lengths and orientation, mesh shape
or geodesic extrema positions. In addition, changes in the
number of blobs from one frame to the next frame, such as
a missing blob, also suggests that a hybrid blob may have
formed due to the contact problem, provided that no blobs
were located near the observation boundary of the camera
network in the previous frame. As such, we must split the
hybrid subject-subject or subject-object blobs.

In the second level, we use the pose-invariance property
of the GD metric and check for self-contacts by verifying the
constancy of geodesic distances between all extrema pairs.
If a limb fails this check, then there are invalid edges in the
GDG that connect two non-adjacent segments (Figure 3).
In this case, we must remove the invalid edges in the GDG
and re-run the AGEX algorithm in order to locate the desired
primary landmarks.

In both cases, we start with the same initial step and use
the skeleton estimated in the previous frame to label each
point of the blob in the current frame with a most likely blob
ID (first level) or body part label (second level). Inspired by
the optical flow based 2.5D GDG edge trimming algorithm
in [25], we use a 3D blob point labelling algorithm [18]
that uses optical flow with a multi-view voting scheme
to resolve ambiguities and compensate for the latency of
the human tracking system. Specifically, the optical flow
images from each camera view serve to estimate the current
location of the each previous blob’s points. As such, each
view contributes up to one vote in determining the label
of a given point. We are currently working on enhancing
the voting scheme further by incorporating depth data and
computing the range flow alongside the optical flow. The
main difference after the initial labelling step is that in the
first level the labels are used to split hybrid blobs while in
the second level they are used to trim edges that connect
non-adjacent segments.

At this point, we have located the five primary landmarks
corresponding to the head, hands and feet. Next, we ob-



tain additional secondary landmarks, corresponding to the
wrists, elbows, shoulders, neck, ankles, knees and hips, by
computing the centroid of the locus of points at a preset
(or predetermined during the T-pose initialization) geodesic
distance offset from the primary landmarks. Finally, the
skeleton is fitted to both primary and secondary landmarks
using the Levenberg-Marquart non-linear least squared mini-
mization algorithm as in [25] with additional cost terms such
as penalizing segment intersections. The estimated pose is
then stored in the SADB to be retrieved by other entities
in the scene, namely the robotic assistant. Additionally, to
ensure that the tracker performs online at interactive rates,
the pipeline is implemented in C++ and multi-threaded such
that computationally expensive processing modules (e.g. the
GDG construction and the skeleton fitting) are computed in
parallel in separate threads for each human blob.

B. Comparison to the Vicon motion capture system

To validate the human tracking component quantita-
tively, we compare the estimated skeleton to the com-
mercial marker-based Vicon motion capture system (Fig-
ures 4 and 5). As the work described in this paper is still
in development, we present preliminary results that show
a median error of 0.149 ± 0.082 m for when the worker
adopts an ideal pose, a mostly static unambiguous T-pose.
Note that this error also includes a constant per-segment bias
error corresponding to approximately half the width of body
part at the joint because the skeleton provided by the Vicon
Nexus software currently only produces a skeleton that is on
the surface of the body rather inside the body, at the center
of each segment.

The results are promising because they indicate that we
are able to approximate the accuracy and performance of an
expensive and intrusive marker-based motion capture system
using commodity hardware. Furthermore, the Vicon is not
immune to the contact problem and exhibits difficulty track-
ing when markers from other subjects, objects or segments
get too close and interfere with each other. Using both
intensity and depth data, we are optimistic that the proposed
pipeline and feedback loops will address the contact problem
and advance the state of the art in markerless, multi-view
and multi-subject pose estimation and tracking.

IV. CASE STUDY: TRACKING ARTICULATED 3D POSE

The current section will show how the proposed system
has been successfully applied to the problem of collaborative
work between human workers and robotic assistant in a
factory environment.

The robotic assistant operates based on an internal finite
state machine, which determines what the current task of the
robot is and what conditions must be met before transition-
ing to the next task. The conditions can either be internal
to the robot or measured by external sensors and accessible
through SADB. Internal conditions may include the position
of the robot or whether a part is still in the robot gripper.
The external conditions defined in the project were mostly
dependent on the state of the human worker.

Some of the values commonly accessed by the robot were:

Figure 4. 3D human tracking skeleton estimate (green) compared to Vicon
ground truth (orange) for two workers

Figure 5. 3D human tracking skeleton median error compared to the Vicon

• Worker Position: The position of the worker was often
used to determine what the worker was currently doing.
If the worker resides within a given distance of the
work piece, work is most likely currently being done
on that piece. When the worker steps away, the robot
may assume that the worker has completed a task.

• Worker Pose: To prevent collisions between the robot
and the worker, the robot would verify the pose of the
human to plan motions.

• Worker Gesture: The worker may indicate certain
conditions directly to the robot by body gestures such
as raising an arm to signal a potential problem or
extending an arm toward the robot to request a new
part or a tool.

• Handover Location: This position was used to deter-
mine the best position to place a part so that it could
be easily accessible to the worker. This was usually
computed as an offset from the hand of the worker.

• Task State: The worker’s pose was used to infer
the state of the task according to the position of the
hands. Flags such as Worker Working on Workpiece,
Worker Done Working on Workpiece, or Part Disposed
provided key input to the finite state machine.



Figure 6. Median cumulative latencies of the 3D human pose tracking
pipeline

Some other general task variables were also stored on
SADB and accessible, if and when required. As can be seen
from the list of variables stated previously, knowledge of
the worker’s pose is the most important piece of information
required to ensure that the system functions efficiently and
safely. Both the situational awareness and the human pose
tracker thus need to be capable of providing adequately
precise values to the robot controller at interactive rates. On
an AMD 860K 3.7Ghz quad core processor, we obtained a
median performance of 10.2± 3.3 Hz and a median latency
of 526.7± 142.5 ms (Figure 6). The tracking system writes
the worker’s pose to SADB after every estimate. The pose
is stored as a collection of 8 blackboard objects representing
the different components of the pose. Approximately 4.61
ms are required to transfer a pose to the blackboard over
a gigabit network. The same amount of time (4.70 ms) is
required to read a pose back from the blackboard.

For the human workers to feel safe in any collaborative
manufacturing environment, the control system needs to
provide sufficient feedback to reassure workers that the
system functions properly. While providing the numerical
value of the tracked pose may be helpful for development
and debugging purposes, it may not be adequate to earn
trust from the users. For this reason, the tracking system
provides a visual renderer capable of depicting how the
system perceives the world (Figures 7 and 8). This also
allows the workers to re-initialize the tracking as needed and
learn the limitations of the system such as how the skeleton
estimate is affected by the contact problem.

Figure 7. Renderer displays two workers with skeleton and segment shapes

Figure 8. Renderer displays the estimated skeleton to the worker

A. Discussion

We observed that failures of the system, as reflected
by errors in the skeleton fitting, are largely a result of
unresolved contacts. In minor cases, where the fit incorrectly
delineates the contacting limb from an object or background,
the tracker is able to recover and re-establish correspondence
in subsequent views. Although less frequent, there are cases
where figure/ground separation can be lost entirely, e.g.
multiple objects being tracked in a cluttered environment.
The workaround here is for the worker to re-adopt the
unambiguous T-pose and re-initialize the tracker. In future
work, we hope to address the problem of arbitrary pose
initialization.

In our simulated assembly line environment, we have
used a 4-Kinect setup to minimize occlusions and maximize
worker sampling. Although we believe this is a feasible
approach for actual assembly lines, one primary concern
is that the size and configuration of the workspace are
constrained by the limited sensing range of the cameras
and the orthogonal configuration of the sensor network. To
alleviate such constraints, in future work, we hope to place
additional Kinects at the periphery, overhead or inside the
workspace, and it will be interesting to evaluate how the
performance of the system scales with increasing cameras.

V. CONCLUSION

The framework presented here is sufficiently general to
accomodate a fairly broad range of systems involving sen-
sors, decision making and actuators. The SADB architecture



enables arbitrary dataflow among components with a min-
imum of contextual information needed to establish links.
Sensor networks can easily be established and processes
that act upon this data can subsequently build and maintain
data structures from which other actors can make decisions.
Implementation is platform and language agnostic, and can
easily fit into popular substrates such as ROS. Performance,
as exemplified by the case study, is quite good using
standard commodity hardware, and is scalable up to the
speed and latency limits imposed by the underlying network
hardware. What we did not fully appreciate at first is that
a trust relationship between person and machine must be
established for a collaboration to work. The ability to query
system states and visualize structures in real-time turns out
to be essential in convincing the human co-worker that the
robot assistant is sufficiently aware to be trusted.

ACKNOWLEDGMENT

We acknowledge REPARTI, NSERC, GM and NVIDIA
for their financial and hardware support.

REFERENCES

[1] K. N. Mckay, “Computers in industry: Diebold’s view from
mid-century,” International Journal of Computer Integrated
Manufacturing, vol. 13, no. 5, pp. 467–471, 2000.

[2] E. Helms, R. D. Schraft, and M. Hagele, “rob@ work: Robot
assistant in industrial environments,” in Robot and Human
Interactive Communication, 2002. Proceedings. 11th IEEE
International Workshop on. IEEE, 2002, pp. 399–404.

[3] J. Krüger, T. Lien, and A. Verl, “Cooperation of human and
machines in assembly lines,” CIRP Annals-Manufacturing
Technology, vol. 58, no. 2, pp. 628–646, 2009.

[4] M. A. Goodrich and A. C. Schultz, “Human-robot interaction:
A survey,” Found. Trends Hum.-Comput. Interact., vol. 1,
no. 3, pp. 203–275, Jan. 2007. [Online]. Available:
http://dx.doi.org/10.1561/1100000005

[5] J. T. C. Tan, F. Duan, Y. Zhang, K. Watanabe, R. Kato, and
T. Arai, “Human-robot collaboration in cellular manufactur-
ing: design and development,” in Intelligent Robots and Sys-
tems, 2009. IROS 2009. IEEE/RSJ International Conference
on. IEEE, 2009, pp. 29–34.

[6] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-
Schäffer, A. Beyer, O. Eiberger, S. Haddadin, A. Stemmer,
G. Grunwald et al., “The kuka-dlr lightweight robot arm-a
new reference platform for robotics research and manufactur-
ing,” in Robotics (ISR), 2010 41st international symposium
on and 2010 6th German conference on robotics (ROBOTIK).
VDE, 2010, pp. 1–8.

[7] A. Bicchi, M. A. Peshkin, and J. E. Colgate, “Safety for
physical human–robot interaction,” in Springer handbook of
robotics. Springer, 2008, pp. 1335–1348.

[8] J. Fryman and B. Matthias, “Safety of industrial robots:
From conventional to collaborative applications,” in Robotics;
Proceedings of ROBOTIK 2012; 7th German Conference on.
VDE, 2012, pp. 1–5.

[9] L. Erman, F. Hayes-Roth, V. Lesser, and D. Reddy, “The
hearsay-ii speech-understanding system: Integrating knowl-
edge to resolve uncertainty,” ACM Computing Surveys
(CSUR), vol. 12, no. 2, pp. 213–253, 1980.

[10] D. Corkill, K. Gallagher, and P. Johnson, “Achieving flexi-
bility, efficiency and generality in blackboard architectures,”
in In Proc. 6th Nat. Conference on Art. Intelligence (AAAI),
1987, pp. 18–23.

[11] H. P. Nii, Blackboard systems. Knowledge Systems Lab-
oratory, Depts. of Medical and Computer Science, Stanford
University, 1986.

[12] M. Widenius, “Mariadb,” http://mariadb.org/, 2009.

[13] Oracle Corporation, “Mysql,” http://www.mysql.com/, 1995.

[14] Apache Software Foundation, “Couchdb,”
http://couchdb.apache.org/, 2005.

[15] S. Sanfilippo and P. Noordhuis, “Redis,” http://redis.io, 2009.

[16] “Mongodb,” http://www.mongodb.org/, 2009.

[17] R. De Chiara, U. Erra, and V. Scarano, “Vennfs: A venn-
diagram file manager,” in Proceedings of the Seventh Inter-
national Conference on Information Visualization. IEEE,
2003, pp. 120–125.

[18] A. Phan and F. P. Ferrie, “3d human posture estimation
using multiple rgb-d cameras,” in 15th IAPR International
Conference on Machine Vision Applications, 2015, in press.

[19] E. Trucco and A. Verri, Introductory techniques for 3-D
computer vision. Prentice Hall Englewood Cliffs, 1998, vol.
201.

[20] Opencv camera calibration and 3d recon-
struction. Retrieved 2014-04-19. [Online]. Avail-
able: http://docs.opencv.org/modules/calib3d/doc/camera
calibration and 3d reconstruction.html

[21] K. Greff, A. Brandão, S. Krauß, D. Stricker, and E. Clua,
“A comparison between background subtraction algorithms
using a consumer depth camera.” in VISAPP (1), 2012, pp.
431–436.

[22] Pcl euclidean cluster extraction. Retrieved 2014-
05-20. [Online]. Available: http://www.pointclouds.org/
documentation/tutorials/cluster extraction.php

[23] Pcl convexhull class template reference. Retrieved 2014-
05-20. [Online]. Available: http://docs.pointclouds.org/1.7.0/
classpcl 1 1 convex hull.html

[24] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun, “Real-
time identification and localization of body parts from depth
images,” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on. IEEE, 2010, pp. 3108–3113.

[25] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab,
“Human skeleton tracking from depth data using geodesic
distances and optical flow,” Image and Vision Computing,
vol. 30, no. 3, pp. 217–226, 2012.


