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Abstract 

Articulated objects can be found in many living beings. Tracking is essential if we 

want to interpret the behavior of such objects. This thesis describes a framework for 

learning the relationship between the state and the appearance of the object.  It will also 

show how to use this representation to track the state of the articulated object. 

The learning phase of the method results in populations of models that describe 

the appearance of small regions of the object for small regions of the state space. To 

efficiently train off-line, it is necessary to model the appearance of the object as function 

of the state. The local models use Principal Component Analysis (PCA) on windowed 

regions of the projected object. Manifolds in PCA subspace represent the appearance of 

the small local regions as they undergo deformations. 

The tracking algorithm recursively matches the link appearances while searching 

in the state space of the articulated object. To match the object appearance to the model, a 

coarse search finds the models that are active. The error of the projected object image is 

then minimized (at the new unknown state) in model subspace by fine-tuning the state. 

 Algorithm performance is evaluated on real and synthetic data of a 4 d.o.f. finger 

following arbitrary 3-D paths. The results show that the local PCA models capture the 

deformations successfully even after discarding some of the bases.  These deformations 

account for key features that are essential to the matching process. Also, the way in 

which the appearance data is partitioned allows for a fast and efficient caching strategy, 

thus allowing the algorithm to meet real-time constraints.  Finally the merging of 

predictions and observations makes the algorithm very robust to outliers. 
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Résumé 

Un grand nombre de formes de vies comportent des articulations.  Si l'on cherche 

à interpréter le comportement de ces êtres, il est essentiel que l'on puisse suivre leur 

position et leur pose (configuration de l’objet).  Cette thèse présente une méthode pour 

apprendre la relation entre la pose d'un objet et l'apparence de ce même objet.  Cette 

relation entre la pose et l’apparence nous sert ensuite dans le développement d’un 

algorithme pour suivre la pose de l’objet. 

Grâce à la phase d’apprentissage de l’algorithme on obtient des populations de 

modèles qui décrivent l’apparence de petites régions sur la surface de l’objet. Chacun de 

ces modèles sont définis pour de petites portions de l’espace qui contient les 

configurations possibles de l’objet.   Un modèle précis est initialement construit. Ce 

modèle nous premettra d’apprendre l’apparence de l’objet de manière automatisée.  

Chaque modèle est obtenu par une Analyse en Composantes Principales (ACP) des 

différentes régions de l’objet projeté.  Des courbes dans l’espace défini par l’ACP nous 

permet de décrire les déformations de régions distinctes de l’objet projeté. 

 Pour déteterminer la pose de l’objet, l’algorithme trouve récursivement les angles 

associés avec chaque articulation.  Pour faire ceci l’algorithme commence par trouver les 

modèles qui seront utilisés.  Puis il s’agit de chercher dans l’espace même de ces modèles 

(en projetant l’image percue dans l’espace de l’ACP) pour trouver l’apparence apprise 

qui ressemble le plus à l’observation faite par le biais de la caméra. 

 L’algorithme est évalué sur des images réels et synthétiques d’un doigt avec 4 

degrés de liberté éffectuant des mouvements alléatoires. 
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CHAPTER 1 Introduction 

Introduction 

Articulated objects can be found in many living beings. Tracking is essential in the 

interpretation of the behavior of such objects. This paper describes a framework for 

learning the relationship between the state and the appearance of the object.  This 

representation will be used in the tracking of the articulated object state.   

The articulated object chosen to illustrate the algorithm is a finger with 4 degrees of 

freedom (d.o.f.). Figure 1 shows an example of the two views of the user’s finger that are 

input to the tracking algorithm. 

 

Figure 1 Input Stereo Images of Object 

The solution we are seeking is the angle of the finger’s joints. The four joint angles 

corresponding to the four d.o.f. of the finger define the state of the finger.  Figure 2 

shows the pose solution of the stereo pair in Figure 1.  The stick figures superimposed on 

the images, corresponding to the skeleton of the finger, represent the state estimated by 

the algorithm. 
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Figure 2 Input Images with Overlay of Solution 

Although the kinematic properties of the object in Figure 1 are well defined, many 

variables remain and make the tracking task difficult.  For example when solving for the 

first link, which has 2 d.o.f., a single view would not be enough to solve for the angles. 

This is because motions in the view direction look similar.  Another difficulty is the non-

rigid properties of the object. As the object is being tracked the appearance of the object 

is perpetually changing.  This prevents simplifications such as approximating the fingers 

by fixed geometrical shapes.  The scene lighting is also an important factor as it changes 

the object’s appearance. 

The generative model presented in this thesis simultaneously accounts for the 

deformations, the lighting, the object’s texture and the perspective projection of the 

cameras. A realistic environment is first created, simulating the object as well as the 

lighting conditions. This environment is then used to train and construct the generative 

model of the object appearance. The generative model represents each link 

independently.  Essentially the problem is to invert the generative model, i.e., to recover 

the model parameters from local measurements of its appearance in an image.  This is 

accomplished by partitioning the state space of the model into regions.  Each region is 

such that local changes in appearance can be unambiguously tied to local variations of the 
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model parameters.  In other words, for each partition of the parameter space there exists a 

corresponding appearance model that provides a one to one mapping to a local region of 

the image.  If the approximate state of the model is known, then it is straightforward to 

localize the image regions for each link and determine the corresponding model 

parameters.  This scheme is completely general in that it can recover arbitrary states 

(poses) of the model. This is essential for our tracking purposes.  Meeting real-time 

requirements is another important aspect for tracking.  The generative model is very well 

suited for this since it requires a minimal amount of data to represent a given state. 

In the following Section our approach will be compared to work previously done 

in the field.  Some of the approaches presented are very common, however our approach 

distinguishes itself on a number of key points. 

1. Previous Work 

Tracking articulated objects using image sequences poses many challenging 

problems. Some of these problems are specific to tracking; others are common to all 

computer vision problems. 

One inherent characteristic of articulated objects is the high dimensionality of 

their configuration space.  This makes real-time requirements difficult to meet. However 

there are ways to reduce the amount of computation required. Very often knowledge 

about object structure is embedded in the algorithm. In [4] Deutscher and Blake perform 

tracking of a human body pose. They propose an iterative particle-filtering algorithm that 

uses a segmented image as well as an edge-detected image to fit a body-model to the 

observed data. In the method the human body shape is built with a kinematic chain 
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holding together different conic sections. This model is used to find which image pixels 

to test while fitting. De la Torre and Black [3] go a step further by constructing a 

generative model of the object’s appearance. They use this model to track the state of an 

articulated body.  This appearance model is constructed by approximating each limb by a 

cylinder; these are connected according to the kinematic structure of the human body. To 

take into account the appearance of the body, the appearance of each limb is mapped to 

its corresponding cylinder. Different views of the limb must be merged to have a 

complete representation of the limb appearance.  In [15] Wu and Shah design a system 

that allows the user to input a 3-D motion to the computer. Their algorithm involves 

tracking the user’s fingertip in 2-D. The 2-D motion is used to define a 3-D motion 

thanks to the spherical inverse kinematics of the user’s arm. Delamarre and Faugeras [2] 

attempt to determine hand pose using stereo. Their technique first computes depth data 

from the stereo views, followed by the fitting of a 3-D hand model to the data. The 3-D 

hand model is composed of truncated cones (phalanges) and spheres (joints). In the 

proposed approach the exact structure of the articulated object is used. The appearance of 

the object is modeled in two parts: the texture of the object and the deformations of the 

object. 

In [7] Hauck and Lanser propose to recognize rigid articulated objects. Their 

method consists of matching an object model to an edge-detected image. This matching is 

performed by hierarchically determining the position of the different parts of the object. 

For example in the simple case of a door, their algorithm would first find the door frame, 

followed by the door position with respect to the door frame and finally the door handle 

position with respect to the door. Kwon and Zhang in [10] exploit the hierarchical 



 5

structure of the human hand to track its state. Their method first determines the pose of 

the hand palm, which in turn allows them to find the joint angles of the fingers. The main 

appeal of recursive structures is that the problem becomes linear in the number of degrees 

of freedom of the object. To use this recursive formulation in the work presented in this 

thesis, the appearance of each model link is trained for separately. 

Another commonly used method to reduce the search space is to learn or 

predefine possible or probable behaviors. Alberola and Juan’s [1] goal in their gesture 

recognition system was to recognize gestures specific to the Spanish alphabet of the 

hearing impaired. They use a Finite State Machine to recognize key hand gestures. They 

also detect intermediate states between gestures. This allows them to efficiently track the 

hand between gestures. In [14] Sato and Kobayashi use the silhouette (obtained by an IR 

camera) of the hand to track the palm and the fingertips. Their system determines the 2-D 

position of the hand and the visible fingertips reducing the range of possible hand poses. 

Min and Yoon [13] use Hidden Markov Models to recognize similar static gestures. 

However instead of determining the absolute 2-D location of the users hand, they 

predefine a set of dynamic gestures from which solutions are drawn. The problem then 

becomes one of estimating how close the hand trajectory is from one of the predefined 

paths.  In [6] Gonclaves and Di Bernardo propose a similar but more fine-grained 

approach. In their method they define a low-level motion that can be successively used to 

estimate the actual hand motion of the user.  One drawback in this approach is that 

motion discontinuities could be observed when switching from one motion model to 

another.  A continuous solution space allows for a broader class of applications.  The 
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method presented in this thesis does not constrain the problem using any application 

specific information. 

Visual markers worn by the person or tracked object can provide very robust 

information regarding different key positions on the body. In [6] the authors are able to 

track the complete pose of the user’s body in 2-D by having fluorescent ping-pong balls 

placed at joint locations. In [1] color-coded rings are placed around the user’s fingertips 

and hand joints to determine the pose of the hand in 3-D. Kwon and Zhang [10] are able 

to determine the 3-D position of the palm and the position of the fingers with a single 

camera. They achieve this by having the user wear a cardboard glove painted with circles. 

These markers can sometimes be a little invasive but they offer a reliable estimate of joint 

locations. 

Implicit in all these approaches is the problem of recovering 3-D information 

from 2-D images.  Some authors [6, 13, 14, 9] choose to determine and interpret the 2-D 

motion of the tracked objects.  However we can regularize this ill-posed problem to 

extract 3-D motion. Information about the world constrains what we can possibly see. 

Kwon and Zhang [10] use a glove with a well-determined shape and features. Other 

authors [7, 15, 16, 3, 4] directly integrate kinematic constrains into their algorithm.  

The use of more then one camera can also help regularize the problem. Delamarre 

and Faugeras [2] attempt to find the pose of a hand using stereo views. First they use the 

stereo pair to reconstruct a dense 3-D scene. In a second phase they fit a hand model to 

the 3-D data from which they can extract joint angles. The solution presented in this 

thesis is formulated for multiple arbitrary viewpoints. 
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Modeling non-rigidity can make tracking algorithms more robust. Heap and Hogg 

[8] address the non-rigidity aspect of the human hand for tracking purposes. Their 

method relies on a Point Distribution Model. This deformable model is trained with edge-

detected images of the hand in different configurations. Tracking is performed by finding 

which pose and model parameters best align the model to the observed image. Same as in 

the training phase, the observed image is edge-detected and only model points that lie on 

the boundary of the projected model are used in the comparison. The appearance model 

presented in this thesis uses PCA to learn the non-rigid behavior of the object. 

Occlusion is a problem common to all tracking algorithms. It occurs when the 

tracked object completely or partly disappears behind another object. Since feature 

matching is at the core of object tracking, most algorithms will not work if too many 

features are hidden. In the case of articulated objects we also have to deal with self-

occlusions where the object itself obstructs the view to other parts of the object. Hauck 

and Lanser [7] handle occlusions by predicting which features are potentially occluded. If 

enough features are guaranteed to be visible they proceed with their estimation. In theory 

self-occlusions should be easier to handle since we are tracking not only the occluded 

object but also the object that is causing the occlusion. In other words we know when and 

where occlusions and disocclusions will occur. In [11] Lathilière and Hervé designed a 

system to track hand pose. They handle occlusions by defining a visibility table. This 

table ranks the fingertips by order of visibility to the camera. It also indicates which 

fingers might be occluded. Our appearance model inherently handles self-occlusions.  It 

is also designed with occlusion handling in mind when tracking multiple fingers. 
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Arbitrary backgrounds behind the tracked object being can sometimes give us 

false positives in the feature matching process. Very often authors constrain the 

background color so that it is easily ignored. Sato And Kobayashi [14] allow for an 

arbitrary background in their hand tracking application through the use of an infrared 

camera. This camera can only see the hand since the background does not have the same 

temperature. This allowed them to project images on top on the background in their 

Augmented Desk Interface. 

Most methods presented here assume detailed a priori information regarding the 

object.  Incorporating too much information can sometimes significantly slow down the 

algorithm.  In our approach the non-rigidity and the appearance are integrated while at 

the same time upholding real-time constraints. 

2. Outline of Thesis 

The remainder of the thesis is organized as follows. Chapter 2 shows how a 

generative model of the articulated object’s appearance can be designed. This generative 

model is trained using a precise finger model rendered using parametric surfaces, texture 

mapping and perspective projection. Chapter 3 explains how this appearance model is 

incorporated in the tracking framework.  The mechanisms involved in the tracking 

scheme, such as the predictive model, and the Kalman filtering, are also presented.  In 

Chapter 4 the tracking results are presented and discussed.  The results include image 

sequences obtained by simulation and from real camera images. Here the strong points 

and the limitations of the algorithm are discussed.  Chapter 5 concludes by reiterating the 

contributions of this method and proposes future research directions. 
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3. Contributions 

The contributions claimed in this thesis are the following: 

• A novel framework for learning a generative model of non-rigid articulated 

object’s appearance.  The model is formulated for any number of arbitrary 

viewpoints and any type or articulated object. 

• The appearance model is designed to have a continuous response.  Appearances 

can be generated for any state chosen from the real numbered state space.  This 

allows for tracking general motions. 

• A caching strategy adapted for the generative model.  This allows the model to be 

drawn very quickly for a given object state while tracking. 
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CHAPTER 2 Modeling Object Appearance 

Modeling Object Appearance 

An important component of the tracking algorithm presented here is the 

observation model.  Modeling the appearance of the object is essential to the observation 

model.  The following sections will show how a realistic non-rigid finger was modeled. 

This realistic model is used in to generate another appearance model that is more suited 

for tracking purposes.  The intuition behind the appearance model will also be presented. 

1. Non-Rigid Articulated Objects 

The underlying structure of the object is simple. It consists in a 4 degree of freedom 

(d.o.f.) 3 link kinematic chain. Figure 3 illustrates the degrees of freedom of the links. 

The first link has 2 d.o.f. and the two others have 1 d.o.f. The 4 parameters α, β, γ and 

omega ω completely define the state of the finger.  

 

 

 

 

 

Figure 3 Kinematic Chain 

 

α
γ ω

β
FW 



 11

Figure 4 shows the locations of the reference frames associated with each link. 

 

 

 

 

 

 

Figure 4 Link Reference Frames 

Explicit form of the 3 frames is given in Equations 1 to 3 using homogeneous 

transformation matrices. Equation 1 shows the Link 1 frame to the world frame 

transformation, Equation 2 shows Link 2 frame to Link 1 frame transformation and 

Equation 3 Link 3 frame to Link 2 frame transformation. 
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Using these matrices point coordinates can be projected from one frame to another. For 

example if 
ω

p=[px py pz 1]T  is defined in the 
γ
Fω  frame it can also be expressed it in the 

FW frame. The expression of Wp in the FW frame is shown in Equation 4. 

 pFFFp WW ω
ω

γ
γ

αβ
αβ ⋅⋅⋅=  (4) 

These matrices can be used to project non-rigid object control points from link frames to 

the world frame FW. 

 

1.1 Non-Rigid Object Model  

Parametric bicubic surfaces are chosen to model the deformable parts of the 

object. Hermite curves will be used to illustrate the properties of bicubic surfaces.  To 

draw a Hermite curve two control points and two control vectors must be specified in 3-

D.  Figure 5 shows different curves that are drawn in 2-D ignoring the z component of the 

curve and the control vectors and points. To generate these different curves only the 

magnitude of one of the control vectors (R1) was changed. 

 

 

 

 

 

Figure 5 Family of Hermite parametric cubic curves 

This illustrates the appeal of this type of mathematical construct where changing a small 

number of parameter affects the overall shape of the object.  Bicubic surfaces can be 

P1 
P2 

R1 

R2 

x 

y 
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deformed in a similar way as cubic curves.  However they require a greater number of 

control points, as surfaces are more complex then curves. 

The Hermite cubic curve Equation will now be derived. This will help in 

understanding the bicubic surface formulation.  

1.1.1 Parametric Cubic Curves 

In the following Equations only the x component of the 3-D curve will be 

considered. The expression for the x component of the curve is shown in Equation 5, 

 
.)(
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 (5) 

Cx contains the polynomial coefficients that define the curve.  The 3-D curves must verify 

certain boundary conditions given by the Hermite geometry vector.  These conditions 

allow us to find the polynomial coefficients.  These conditions permit determination of 

the polynomial coefficients and are shown in Equation 6.  The vector in Equation 6 

contains the x component of the start and end points of the curve (P1 and P2) as well as 

the start and end tangent vectors (R1 and R2). 
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 The expression for the time derivative of Equation 5 is given in Equation 7. The 

boundary condition equations are shown in Equation 8. 
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Using Equations 5, 7 and 8 Cx can be solved for. This is shown in Equation 9. 
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Solving for the polynomial coefficients the Hermite Basis matrix MH is found. As shown 

in Equation 10 the polynomial coefficients can be obtained from the geometry vector GH. 

Using Equation 5 the x component of the Hermite cubic curve can be plotted. 
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The same expression holds for the y and z components of the curve given the y and z 

counterparts of the geometry vector. 

 



 15

1.1.2 Parametric Bicubic Surfaces 

As previously mentioned, bicubic surfaces can be used to model deformable 

objects. The main appeal is that it allows a small numbers of parameters to modify an 

entire surface.  

Bézier surfaces can be used to render a surface using 16 control points. For the 

derivation of the formulas we refer the reader to [5]. Equation 11 states the Bézier bicubic 

formulation, t and s are both defined over the [0, 1] interval, 
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 (11) 

The matrix GBx contains the x component of the control points.  An example Bésier 

bicubic surface is shown in Figure 6. The 16 control points defining this surface are also 

labeled. 

 

Figure 6 Bicubic Surface Control Points 

In the previous section the Hermite Basis matrix MH was defined. In Equation 11 MB 

plays a similar role as MH, however it is called the Bésier Basis matrix.  MB maps the 

s 
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control points to the polynomial coefficients.  The polynomial in the bicubic case is a 

little more complex then in the cubic case. In fact it is a linear combination of the terms 

in matrix A of Equation 12.  Again such a polynomial would have to be defined for each 

coordinate.   
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In the following section bicubic surfaces will be used to construct the non-rigid 

finger. 

 

1.1.3 Control Point Computation 

As mentioned previously changing the location of the control points will deform 

the surfaces and hence the object shape.  To model the finger six bicubic surfaces are 

used, two per link. Each control point location in the link frame depends on the pose of 

the kinematic chain.  

 

 

 

 

 

Figure 7 Bicubic Surface Control Points 
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For example Figure 7 shows a possible control point configuration of one of the two 

surfaces belonging to Link 1.  In the case of Link 1 some of the control points will change 

location as α, β and γ vary, Link 3 control points would not be modified.  

Control points require special attention to avoid gaps and discontinuities between 

surfaces. To achieve this G1 geometric continuity was respected. G1 continuity is 

maintained if the unit tangent vectors are identical at surface junctions 

The resulting finger shape is shown in Figure 8.  The bicubic surfaces have been 

rendered using the OpenGL graphic library. OpenGL’s routine simply requires 16 control 

points to render each of the six surfaces. 

 

Figure 8 Finger Model Using 6 Bézier Bicubic Surfaces 

Now that the shape of the object is defined with respect to the state, the 

appearance of the finger must also be taken into account. 

 

1.2 Texture Mapping 

Texture mapping will give a realistic appearance to the bicubic surfaces (S and T).  

Additionally to providing an image, texture mapping requires a set of image coordinates 

that will be used in the mapping. 
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Figure 9 shows two pictures of a real finger used as textures, a front view and a 

back view. 

 

 

Figure 9 Different Views of Real Finger 

The texture mapped model should have the same appearance as the Figure 9 

pictures for identical views (top and bottom). To achieve this the previously defined x 

and y Bézier surface coordinates are used.  The x and y texture coordinates for the top of 

Link 1 can be seen in Figure 10 (line intersections) where they have been overlaid on the 

texture image for the top of Link 1.  These coordinates will achieve the desired warping 

effect during the mapping. 

 

Figure 10 Texture Coordinates for Texture Mapping 
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The final results of the finger with the textured Bézier surfaces are shown in Figure 11. 

 

Figure 11 Different Views of OpenGL generated Finger 

Figure 11 clearly illustrates the non-rigid behavior of the finger.  Note that the top finger 

cusps are more visible then the bottom finger cusps.  The texture mapping was generated 

using the OpenGL library. 

 

1.3 Perspective Projection 

To render the above model in 3-D, the camera is modeled as a pinhole camera 

with focal length f.  Assuming that the camera and the object reference frame are as 

shown in Figure 12, the perspective projection consists of applying the transformation in 

Equation 13.  
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Figure 12 Perspective Projection 
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The px and py components of the 3-D point are scaled proportionally to the depth pz. The 

coordinates p’x and p’y will fall on the window drawn in Figure 12.  The images seen in 

Figure 11 are generated by OpenGL using the perspective projection. 

 

2. Learning The Appearance Model 

Now that a realistic finger can be generated for arbitrary states a more compressed 

representation will be formulated.  This new representation will not require perspective 

projection, texture mapping or rendering bicubic surfaces.  These requirements will speed 

up the rendering speed considerably.  This new appearance model will also attempt to 

learn the shading effect caused by a fixed light source.  The appearance model can be 

formulated for many cameras. Here it will be explained for one. 
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 The appearance model encapsulates the where and the what of the articulated 

object. Simply stated: where we see what.  The intuition behind this idea will now be 

presented. 

 

2.1 Where 

Figure 13 illustrates the concept of where. Each link has an associated cylinder 

and spherical end caps. The cylinder has roughly the same diameter as the finger link.  As 

shown in Figure 13, these shapes are used to define 3-D points uniformly distributed 

around the finger model. These points are projected onto the viewing plane if they are 

visible.  Small windows are then defined on the viewing plane centered about the 

projected points and aligned with the projected link segment. One of these windows is 

labeled winj in Figure 13 (c). 

 

 

 

 

 

Figure 13 Window Locations 

The location of these windows is determined by the state of the articulated object and the 

camera position in the world frame FW. The main appeal of these windows is that they 

each focus on a local region of the object. 

 

Link 1 

α 
β 

γ 
ω  winj 

(a) (b) (c) 
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2.2 What 

Principal Component Analysis (PCA) is used to learn the behavior of the regions 

seen through the windows (what). To train with PCA a set of training images must be 

provided.  PCA extracts a mean and a basis from these training images.  Ideally this mean 

and basis can be combined to reconstruct any image in the training set. Points in the basis 

subspace represent images in the training set.  Furthermore each vector in the PCA basis 

will not necessarily account for a lot of information. Even if some eigenvectors are 

discarded (the ones with small eigenvalues) the original images can still be reliably 

reconstructed with those remaining. 

This greatly reduces the amount of information required to represent all the 

training images. 

 

2.2.1 Principal Component Analysis 

The windows defined in the previous section allow us to collect the training 

images.  First a cluster of nearby object states is chosen. This cluster is centered around a 

mean state, and points are uniformly chosen around this mean. Then for each point in this 

cluster, images are collected from each window.  

Figure 14 illustrates how the object configuration space is partitioned. Note that 

for the first link (with 2 d.o.f.) the space can be represented in 2-D. The dimensionality is 

equal to the number of d.o.f. of the parent links added to the number of d.o.f. of the link 

being trained.  For Link 2 the space will be 3-D and for Link 3 4-D. 

The gray area represents a region in space from which the cluster of space points 

is drawn. Later on, when reconstructing the appearance, the correct local models will be 



 23

found by determining which one of these regions the object state belongs to. Clusters 

corresponding to different µα and µβ values are chosen as to overlap each other to better 

cover the configuration space. The advantage of choosing nearby points is that the finger 

region seen from winj will have similar deformations. This similarity will make the PCA 

technique more susceptible to learning during the training. 

 

 

 

 

 

 

Figure 14 Configuration Space Partition 

It is preferable that winj stay visible for each sample in the cluster.  As mentioned 

before, for a given object pose some windows will be behind the object and thus ignored. 

Therefore for a given cluster of points all windows that are not visible for all the cluster 

points are discarded.  This insures that the PCA model associated with each window will 

be valid over the whole partition of interest.  To recapitulate, for each region in Figure 14 

and each valid window a PCA model is generated. 

Each PCA model consists of a mean and a basis (eigenvectors). The first step of 

performing PCA involves formatted the training data. Equation 14 shows how each 

image is represented by one vector xi.  

β
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As shown in Equation 15 the mean is a vector computed from the training image vectors. 
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The mean vector (representing the mean image of the training set) is then subtracted from 

each training image, resulting in the component of images that deviate from the mean.  

Equation 16 shows how the resulting images are arranged to form a single matrix X. 

 [ ])(...)()()( 321 xxxxxxxxX M −−−−=  (16) 

The N×M matrix X is used to compute a N×N symmetric covariance matrix from which 

the eigenvectors (and eigenvalues) are extracted. The covariance matrix is shown in 

Equation 17. 

 TXXC ⋅=  (17) 

The eigenvalues (λi) and corresponding eigenvectors (ei) are solutions to Equation 18.  

Solving eigenvalues and corresponding eigenvectors is a non-trivial task, and many 

methods exist. 

 NieeC iii ...1, ==⋅ λ  (18) 

The method used here first transforms the covariance matrix into Tridiagonal form.  The 

eigenvalues and eigenvectors are then extracted from the Tridiagonal matrix. Window 

images associated with cluster points can be represented by points in the PCA model 

subspace.  This subspace is formed by the eigenvectors. 
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The remaining task is to find a (continuous) function that maps the configuration 

space points to the subspace points.  

 

2.2.2 PCA Subspace Manifolds 

Figure 15 illustrates the PCA training process. PCA provides us with a new 

representation for the training images. However this representation is not complete unless 

a mapping between configuration space points and subpace representation points is 

defined. 

 

 

 

 

 

 

Figure 15 PCA Training Process 

 

The M-dimensional subspace points associated with the (αi, βi) points define M discrete 

distributions defined over α and β (α and β being constrained to a specific region).  

However a continuous distribution is preferable, allowing us to generate the objects 

appearance for any object state. To achieve this a polynomial function is fit to the discrete 

data using the Least-Squares method.  
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These M polynomial functions form a subspace point parameterized by α and β. 

In the following section these functions will be used to generate the learned object 

appearance. 

 

2.3 Rendering The Appearance Model 

This section will present the steps involved in the reconstruction of the objects 

appearance for a given state (α, β, γ and ω). The reconstruction will be illustrated for the 

first link.   The reconstruction of the others links is analogous.  

The first step involves determining which partition of the configuration space the 

state belongs to.  This partition allows us to know which windows are going to be used 

with their associated PCA models and polynomial functions.  This information was saved 

during the training.  Information about the where is essentially the window positions. The 

what information is contained in the PCA models with the polynomial functions. 

Equation 19 shows how to reconstruct the appearance of a single window.  The 

polynomial function fi(α, β) is a scalar that weights Basisi according to its contribution to 

the image. The M weighted basis vectors are then summed up with the mean vector µ. 

 i

M

i
ij Basisfwin ⋅+= ∑

=1
),( βαµ  (19) 

The process in Equation 19 is repeated for all windows that are visible during training for 

the partition of interest. The final step requires us to simply draw the windows according 

to the method illustrated in section 2.1. 
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Figure 16 Appearance Model Drawn for Different States 

Figure 16 shows us the appearance model drawn for three different states.  Two 

distinct views of the object can be generated since the training was done with two views.  

These two views help in regularizing the tracking problem. 
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CHAPTER 3 Tracking Articulated Objects 

Tracking Articulated Objects 

 In this section the tracking algorithm will be described.  The various tracking 

components will be discussed including the appearance model and how it interacts with 

the other components.  Important real-time considerations will also be addressed. 

1. System View 

The system view of the tracking algorithm can be seen in Figure 17.  The 

algorithm starts by computing a predicted state (Xdt+1) according to the system dynamics. 

This Predicted state is then refined by testing configurations near this predicted state thus 

obtaining an observation measure (Xwt+1).  These two quantities are then combined to 

form our new state estimate (Xst+1).  Finally the dynamic states of the system are updated.   

 

 

 

 

 

 

 

Figure 17 Diagram of System 
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The system variables are represented by gaussian random variables.  This system can be 

qualified as a Kalman Filter since it contains a prediction model a measurement model 

and an update model. 

 

1.1 Predictive Model Of Object State 

The predictive model assumes constant acceleration between frames. Equation 20 shows 

the basic formulae for a constant acceleration model. 
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This Equation will be modified and formulated for gaussian random variables.  Two rules 

pertaining to normal random variables are used. These rules are described below: 

Rule 1: 

If Y = aX, where X is normal with mean µ and standard deviation σ, 

then Y will be normal with mean aµ and standard deviation |a|σ. 

Rule 2: 

If S = ΣXi, where the Xi  are normal with mean µi and standard deviation σi, 

 then S will be normal with mean Σµi and standard deviation (Σσi
2)½. 

Combining Equation 20 with the above rules we obtain a formulae for Xdt+1 in Equation 

21.  Note that the state Xst and its first and second derivatives are distinct normal random 

variables with their own mean and standard deviation, 
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The equations describing the system variables will refer to the mean by µ and to the 

variance by σ.  Equation 21 independently predicts future values for each dimension of 

the articulated object.  

 This prediction will prove to be useful in generating candidate samples as well as 

constraining the observation. 

 

1.2 Hypothesis Validation Scheme 

Once the predicted state of the model has been predicted, the input images (with 

the object at the new pose) must be tested.  The search space can be restricted using 

information provided from the prediction.  

 

1.2.1 Generating Candidate Space Point 

The goal here is to chose hypothesis points in the α-β plane (Link 1).  Since the 

solution will be close to the predicted state mean µdt+1 for α and β, it makes sense to 

choose the candidate points nearby this prediction.  

Of course the size of the region around this predicted mean will be dictated by the 

variance of the predicted state σdt+1.  Ideally test points around the mean should be chosen 

with a density that dies off according to the variance. This involves solving the 

nonuniform quantization problem which is illustrated in Equation 22 for the one 

dimensional case.  When choosing N samples the actual sample values would correspond 

to the xi’s . 
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However to simplify the matter we choose to uniformly sample inside a radius 

centered about the mean. This radius is a function of the variance. The smaller the 

variance the closer the samples will be to the mean. 

 

1.2.2 Testing Candidate Space Point 

Once the candidate points are chosen a confidence measure must be associated 

with each of them.  This is achieved by using the appearance model described in Chapter 

2.  The idea is to generate the object appearance for each of the candidate samples and 

compare the generated image against the new observed image (one link at a time).  The 

Sum of the Squared Differences (SSD) was chosen as a measure of similarity.  The 

algorithm performs SSD on the RGB channels as well as all the available views (these 

views must correspond to the ones used in training). 

The sample with the smallest associated SSD value would be the best choice.  

However it is also desirable to have a confidence associated with the measurement. 

 

1.2.3 Measurement Confidence 

Figure 18 shows us a possible response of our appearance model when it is 

compared to input images containing the object in some novel pose.  In the case of Link 1 

(which has 2 d.o.f.) the response would be represented by a surface. 
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Figure 18 SSD Response 

In [12] Matthies et al. choose to use the curvature of the SSD response as a measure of 

confidence.  The sharpness of the SSD response provides a good measure of dissimilarity 

between the minimum and its neighbors.  

The curvature can be extracted from the 1-D response of Figure 18 by fitting a second 

order polynomial to the data.  The coefficients of the second order term are inversely 

proportional to the confidence on the minimum.  In the case where the SSD response is a 

surface, a paraboloid can be fit to the data. Since the two d.o.f. of the link are independent 

the paraboloid can take the form of Equation 23. In this case a and b would be inversely 

proportional to the variance of α and β. 

 edcbassd ++++= βαβα 22  (23) 

Assigning a confidence value to the observed state will prove to be very useful in 

the following section. 

 

1.3 Merging Of Measurement and Prediction 

The merging procedure for predicted state (Xdt+1) and the measured state (Xwt+1) 

is explained in Equation 24. 

SSD 
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In Equation 24 the term k is called the Kalman Gain. The Kalman Gain weights the 

relative contribution of the new measurement to the prior expectation. This combination 

yields the new state Xst+1.  

 

1.4 Update of System Dynamics 

The Equations for the update of the state speed and acceleration are derived from 

the same fundamental rules stated in section 1.1.  Equations 25 and 26 show the update 

formulas for the speed and the acceleration. 
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These quantities are used by the first stage of the system in Figure 17. 

2. Real-Time Considerations 

Real-time constraints are inherent to tracking problems.  Some algorithms require 

many iterations to finally converge on the right solution. This is not desirable since little 

time should be spent on each frame. 
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Tracking already reduces the amount of computation required since it is assumed 

that the object will undergo small changes between frames. The solution for a given 

frame can be used to bootstrap the search in next frame. 

 Articulated objects have the added difficulty of a large configuration space.  In the 

next section a method will be presented to reduce the complexity caused by this type of 

objects. 

2.1 Recursive Nature of Tracking 

The example tracked object has four d.o.f..  The first link has two d.o.f., links 2 

and 3 have one d.o.f..  Since Link 1 is independent from links 2 and 3, the angles defining 

the position of Link 1 can be solved for ignoring the angles defining the position of Link 2 

and Link 3.  In the same way Link 2 is independent of Link 3, therefore the Link 2 angle 

can be solved for while ignoring Link 3. This sums up the recursive structure of the 

algorithm.  This type of structure makes the algorithm of order O(N) where N is the 

number of links.  

 

2.2 Memory Management Scheme 

The appearance model generated by the training phase requires a lot of memory 

when stored.  At any given time the tracking algorithm needs to access only a small 

portion of the data.  Consequently the whole appearance model never needs to be loaded 

in memory, PCA models can be loaded on demand. A caching strategy is used to 

minimize the overhead of disk accesses, using predictions to retain the appropriate 

models in memory. This approach greatly speeds up the tracking algorithm since the 

same PCA models are often reused in consecutive frames. 
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CHAPTER 4 Experimental Results 

Experimental Results 

The performance of the non-rigid articulated object-tracking algorithm will now 

be evaluated.  Tests were conducted using computer-generated images as well as real 

images captured with color cameras.  Although the algorithm allows the use of multiple 

cameras, in the experiment two viewpoints proved to be sufficient. 

In the following sections the experimental setup will be described as well as the 

tracking results. 

 

1. Real Image Acquisition 

Images of a moving finger are obtained using two 3COM BigPicture color 

cameras.  The OpenGl perspective projection was matched to the camera optics and also 

to the disposition of the cameras.  The camera positions and calibration procedure will 

now be described. 

 

1.1 Experimental Setup 

Figure 19 shows a top view of the camera positions as well as the subject’s hand 

position.  The camera view vectors coincide with a straight angle, this is chosen as to 

maximize the independence of information provided by the two cameras.  The subject’s 
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hand rests on the horizontal bar. This immobilizes it and keeps the camera centered on 

the base of the index finger, identical to the training configuration in the OpenGL 

environment. 

 

 

 

 

 

 

 

Figure 19 Experimental Setup 

 

1.2 Camera Calibration 

The calibration task involves finding the OpenGL perspective projection focal 

length that corresponds to the real camera focal length.  The OpenGL units should 

correspond to the real world units (centimeters). 

This was achieved by devising the following procedure.  The picture of a square 

shape was used. The square had a 3.8 cm side and was viewed from a distance of 26.5 

cm. Thus obtaining the picture in Figure 20.  The width in pixels of the square was then 

determined. The square was found to have a width of 96 pixels.   
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z 
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Figure 20 Calibration Picture 

Finally a square shape was rendered in the OpenGL environment.  The square had a 

width of 3.8 OpenGL units and was placed at a distance of 26.5 OpenGL units from the 

focal point.  The perspective projection focal length in OpenGL was then adjusted until 

the OpenGL generated picture of the square shape had 96 pixels for its width. 

 This insures that dimensions in the OpenGL environment are the same as 

dimensions the real environment.  This was done assuming the pinhole model for the 

cameras. 

 

2. Tracking Results 

In this section the results of our tracking algorithm will be presented.  Tracking was 

performed on synthetic images as well as on real images.  Tracking on synthetic images 

gives us great insight on the behavior of the algorithm.  When generating synthetic 

images knowledge about the real state of the articulated object is available. However with 

real images there is no ground truth information readily available.  Therefore the 
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synthetic sequences allow for comparison between the computed solution and the actual 

solution.  For real sequences the algorithm performance estimation can be done visually. 

 

2.1 Synthetic Images 

As mentioned before, ground truth data is available for the synthetic images.  In 

Figures 21 and 22 the real state, the state velocity and acceleration can be compared to 

their estimated counterparts.  Since ground truth information is available the system state, 

speed and acceleration are initialized with the actual values.  

 

 

Figure 21 Object State 

Figure 21 shows the response of the tracking system for sine shape inputs for the 

two degrees of freedom of the first link.  Four quantities are plotted: the actual solution, 
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the constant acceleration prediction mean, the observed state mean and the final solution 

mean.  Observe that these quantities follow each other reasonably well.  The top response 

of Figure 21 (state α) has an untrue observation component at time steps 23 and 53. 

However this does not affect the tracking solution. The confidence measures insure that 

there will be more contribution from the predictive component and less from the 

observation at those times. 

 

 

Figure 22 Object State Dynamics 

Figure 22 reveals additional insight in the behavior of the algorithm.  In the top 

and bottom plots the α state speed and acceleration are the waveform with smaller 

amplitude.  The disturbances in Figure 22 are reflected in Figure 21, however the overall 

estimations reliably follow the real speed and acceleration. 
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2.2 Real Images 

As mentioned before ground truth information is not available for the real image 

sequences.  Visual verification is the only means available to evaluate the algorithm.  To 

allow for visual verification a stick Figure representing the structure of the object was 

overlaid on the actual images. This overlaid shape is separated in three parts drawn with 

different shades, one representing each link. 

The analysis of the first frame cannot be concluded as fast as for the subsequent 

frames; a large part of the state space has to be tested since no prior positional 

information exist.  During this phase the users finger is assumed to be still until the 

algorithm is in lock. 

Figures 23 to 32 show stereo views as well as estimated configuration of the 

object.  Observe that the solution accurately depicts the pose of the finger. In the bottom 

pair of each image the appearance model that was obtained from the training is also 

overlaid on the real images.  The appearance model is drawn for the estimated solution.  

Note that it represents well the actual appearance of the finger.  The algorithm performs 

well even when the object is not well lit.  Figures 25 to 30 illustrate this for Link 3.  

Because of the recursive structure of the algorithm the accuracy of the results for one link 

affect the accuracy of the subsequent link solutions.  For example in Figure 31 the first 

link has some error which causes Link 2 and especially Link 3 to be misaligned with the 

actual structure of the finger.  
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Figure 23 Frame 1 

 

 
Figure 24 Frame 6 
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Figure 25 Frame 11 

 

 
Figure 26 Frame 16 
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Figure 27 Frame 21 

 

 
Figure 28 Frame 26 
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Figure 29 Frame 31 

 

 
Figure 30 Frame 36 
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Figure 31 Frame 41 

 

 

Figure 32 Frame 46 
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CHAPTER 5 Conclusions 

Conclusions 

 A framework for tracking non-rigid articulated objects moving in a 3-D space has 

been presented.  The algorithm uses a relatively precise model of the object’s appearance 

to learn an appearance model. This appearance model does not account for the exact 

images from the training but it was shown that it reliably generates the overall appearance 

of the object. This appearance includes textures, deformations, lighting and perspective 

projection effects. The learnt appearance model is then used within the tracking system to 

test hypothesis states with the observed images.  The tracking algorithm also used a 

predictive model to reduce the search space.  To reduce the complexity associated with 

the dimensionality of the object, the tracking algorithm was designed with a recursive 

structure. As shown by the results this learnt model can be rendered efficiently enough to 

meet the real-time constraints imposed by the tracking. Measurement error will impact 

higher levels of processing in different ways. In the case of pose classification and 

dynamic gesture recognition these errors appear to be negligible. It was assumed that 

other objects would not occlude the articulated object since it was the only finger being 

tracked.  However our tracking algorithm can handle self-occlusions that occur when one 

link hides another. This characteristic is again embedded in the generative model. 
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This thesis raises many important issues that require some attention. Some of 

these concern the overall tracking system; others are more specific to the observation 

model used in the tracking. 

In the case of hand pose tracking the fingers can be tracked independently, it is 

therefore inevitable that some fingers occlude others.  However even in this case the 

occlusions can be reliably predicted.  Since the object’s state is being tracked the 

approximate state of the object is always known.  By using a simple object model 

occlusion regions can be determined for a given state.  Using this information these 

occluded regions can be ignored by not testing the appearance model against them. The 

structure of our appearance model allows us to do this efficiently because it is separated 

in small parts (see Figure 13).  The parts that are occluded can be ignored altogether 

saving time and excluding responses that are doomed in advance. 

In our approach the initial model rendered by OpenGL was created manually.  

The shape and the texture are taken from the same subject as for the real sequences.  

Ideally each subject should have its own OpenGL model on which the training is 

performed.  However this would require us to tune a model for each user. An automated 

OpenGL model construction would be extremely useful here.  This model could have 

some characteristics that remain unchanged like the number of d.o.f. of each joint and the 

number of links.  The model would also have some parameters that would be 

automatically tuned for each user like the length of the links and the width of the fingers.  

The parameters could be learned from images of the users hand at key poses.  The 

OpenGL model texture could also be extracted during this phase.  This would improve 

algorithm performance since the generative model would be tailored to the user’s hand. 
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 In the current setup the models accounting for the appearance (windows) are 

uniformly distributed so as to cover the finger in any given state.  However when testing 

hypothesis solutions, some of these models might not account for any important features.  

It would be desirable to discard such windows.  In fact during the training, window 

locations could be chosen automatically so as to cover as many features as possible.  This 

would reduce the size of the appearance model since featureless locations are not 

represented. Furthermore the low-level mechanism used in our approach was PCA.  This 

is well suited for representing the object’s appearance.  However while tracking it is more 

important to recognize the object then to represent actual appearance.  Therefore it would 

be interesting to further compress the PCA representation to simply discriminate wrong 

hypothesis states without going through the whole reconstruction of the appearance.  

Following the same framework, it would be interesting to exchange the PCA model for 

some other type of learnt model that is better suited to detect finger edges and cusps. 

There are many challenges in tracking systems.  One of the important aspects of 

this thesis is that it accounts for non-rigid objects.  Providing a solution from a 

continuous space also very important, as it allows for tracking arbitrary motions.  The 

work presented here does not attempt to interpret the data.  It is intended as a layer that 

extracts useful information that can be further interpreted according to the application’s 

requirements.
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