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Abstract 

An emerging application for computer vision systems is satellite servicing, 

involving pose estimation and tracking. Trackers are available but they often require 

initialization, considerably reducing autonomy. This thesis presents a new hierarchical 

pose estimation technique based on view-based analysis. The method can handle very 

sparse range data, is computationally efficient, is robust to noise, and can handle virtually 

any type of range data. It partitions the problem into two halves, one dealing with 

estimation of the translation and the other with the orientation. This greatly reduces the 

complexity of the overall problem without compromising the accuracy of the solution. 

The resulting algorithm is able to determine pose to within a prescribed accuracy, and 

from any vantage point within the sensor field of view, at minimal computational 

complexity for large variations in image noise. Results showing the performance of the 

system on a prototype space vision system are presented. 
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Résumé 

L’entretien de satellites est une application des plus prometteuses pour les 

systèmes de vision artificielle. Plusieurs traceurs sont disponibles mais requièrent 

toutefois une initialisation, ce qui réduit considérablement l’autonomie. Une nouvelle 

méthode hiérarchique d’estimation de pose basée sur une analyse visuelle est présentée 

dans cette thèse. Cette méthode peut traiter des données télémétriques très éparses, est 

efficace au niveau des calculs, robuste au bruit et peut traiter des données télémétriques 

de tout genre. Elle partitionne le problème en deux étapes, soit l’estimation de la 

composante de translation et l’estimation de la composante de rotation. La complexité du 

problème se voit ainsi grandement réduite tout en conservant la précision sur la solution 

finale. L’algorithme engendré est capable de déterminer la pose à la précision requise à 

partir de tout point faisant parti du champ de vision du senseur et ce, dans une complexité 

minimale des calculs et pour de larges variations en bruit. Des résultats démontrant la 

performance du système sur un prototype de système de vision spatial sont présentés. 
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CHAPTER 1 INTRODUCTION 

Introduction 

With the advent of fast, reliable 3-D imaging systems capable of acquiring scenes 

at video rates, the application of range imagery to space robotics has become a viable 

technology, particularly in satellite servicing. The principal task of a vision system in the 

latter context is tracking the 6 degree-of-freedom (d.o.f.) pose of an object at rates 

sufficient for robotic control, generally on the order of 10 Hz or greater. Modern tracking 

algorithms generally have little difficulty, per se, in achieving such rates as frame-to-

frame coherency limits the computational complexity of determining correspondence. 

However, the situation can become difficult when the coherence assumption is violated, 

e.g., occlusions by other objects in the scene, acquisition failures by the sensor system, or 

sudden accelerations beyond the sampling rate of the system. Furthermore, initial 

correspondence needs to be established in the first place, which often requires the 

intervention of a human operator (e.g. [13]). All of these are typical of space 

environments and must be dealt within an operational system. 

1. Overview of the Problem 

The main issue with most methods used by space tracking systems is that an initial 

estimate of rotation and translation is required, meaning that they cannot re-establish 
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tracking upon loss nor initiate automatically. An example is the iterative closest point 

algorithm (ICP) [3] which consists of aligning a model of an object with the acquired data 

so as to minimize the distance between the two data sets. While ICP is computationally 

intensive and usually limits its applications to non-real-time tasks, Jasiobedzki et al. [14] 

have developed an extension which makes it a suitable method for space operations. But 

while it provides speed and robustness to occlusion, it still requires an initial guess. 

As part of its space robotics program, the Canadian Space Agency (CSA) has 

funded the development of a number of rangefinding technologies, varying from high 

speed, small volume (12 frames/sec in a 1 m3 field of view) to relatively large volumes at 

low sampling rates (1 frame/sec in a 1000 m3 field of view). For the purposes of the 

research reported here, the characteristics of this ensemble of devices were approximated 

in a laboratory setup comprised of a stereo vision system with a field of view of 45° x 30° 

(1000 m3) sampled at 720 x 480 pixels. Acquisition speed was limited to 0.9 frame/sec, 

but compensated for by limiting object velocity accordingly. Conditions were controlled 

to provide a reasonable facsimile of the expected operating environment. The ICP-based 

algorithm described above is capable of tracking pose at frame rates using stereo edge 

features as input [13]. The system is fairly robust, tolerating error in pose of up to 15° in 

orientation and 150 mm in displacement. Hence, the algorithm used to determine initial 

pose or to re-establish tracking lock upon loss must do so within this prescribed bound1 

and must be capable of dealing with sparse range data. 

                                                 

1 With the advantage that a more precise determination of parameters can result in faster convergence of the 
tracking algorithm. 
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2. Previous Work  

Object recognition generally addresses two problems [20]: 

1. Identification: Find the identity of the 3-D object. 

2. Localization: Find the pose (position and orientation) of the 3-D object. 

While the literature generally groups these two problems together, the focus here 

is on location rather than identification. Indeed, in space operations, the identification 

problem is usually avoided as the identity of the object of interest is already known. 

Furthermore, CAD models of space structures are generally available as all objects are 

man-made. Only the problem of pose estimation thus remains. 

Formally, the problem of pose estimation is defined as determining the set of 

rotations and translations that map the data acquired in a given view into an object-

centered frame of reference defined by a corresponding CAD model, 

 ( ) ( ), , , , ,x y zα β γΩ = Τ = , (1) 

where Ω  is the set of 3 Euler angles defining rotations about the x, y, and z axes 

respectively, and Τ is the translation vector from the view-centered frame to the object-

centered frame (Figure 1.1). 
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Figure 1.1 - Rotation Ω and translation T from the view-centered 

frame to the object-centered frame 

Although the problem of estimating (Ω,T) is well-studied in the literature, the 

solution to a particular problem is often operationally constrained. Specifically, the work 

reported here concerns a satellite tracking system being developed by the CSA. The 

subject is thus restricted to tracking of range sequences in general, and space applications 

in particular. 

The literature contains many references to pose estimation in space. An example 

is the work proposed by Cropp et al. [9]. They suggest a method of estimating the relative 

position and orientation of a known target satellite using only passive imagery. Their 

technique consists of detecting lines in an input image and then matching them to a 

model. The rotation and the translation that minimize the least-squares line-matching 

error are then computed. The process is repeated iteratively until convergence. Since this 

method makes use of intensity images, it is not suitable for the problem considered in this 

thesis. Indeed, the algorithm should make use of range sequences. 

Why use range sequences, especially with the success of intensity-based methods 

z
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such as Lowe’s work using features based on the SIFT [16]? The answer is two-fold. 

First, rangefinding systems based on active illumination sources can be made largely 

invariant to the kinds of wide shifts in lighting conditions that typify a space environment 

(from sunlight to shadow). This variation in lighting has been cited consistently as one of 

the major difficulties in the design of space vision systems [14,15]. Second, perhaps the 

most significant advantage of using range data is a calibrated field of view, greatly 

facilitating figure/ground separation (via depth windowing) and minimizing the 

complexity of estimating pose parameters (position can be localized from a single 

viewpoint). 

There exist two basic approaches to determine the pose of an object from range 

data: the feature-based approach and the appearance-based (or view-based) approach. 

Feature-based methods represent 3-D objects through the type of features and their spatial 

relations. Several kinds of features can be used [4,12], including corners and edges. 

Locating an object using this approach then means matching image features with model 

features, plugging their positions in the projection equations, and solving for the position 

and orientation of the object. The advantage of these approaches is that they generate 

compact object descriptors, offer some robustness against occlusion, and some invariance 

against illumination and pose variations. However, it has long been known that the 

localization of such features is a non-trivial problem (e.g. [2]), especially when dealing 

with sparse range data. Furthermore, such techniques assume knowledge of 

corresponding pairs of model and data features. The applicability is thus limited to objects 

comprised of geometric features that are easy to both model and extract. These 
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assumptions are therefore far too restrictive for the kinds of applications considered here. 

Appearance-based methods, on the other hand, are attractive to these applications 

since they can take advantage of a potentially large ensemble of data samples, yielding 

better stability of pose estimates relative to landmark features. Indeed, in appearance-

based systems, an object is represented as a set of its possible appearances. In other 

words, intensity images of the object are acquired under different poses and illumination 

directions. To facilitate comparison during matching, the system encodes individual 

images as points in a multidimensional space. Techniques such as principle components 

analysis (PCA) can be used to compress this space into a lower dimensionality based on a 

statistical analysis of the set of training images. Acquired images are then projected onto 

the resulting subspace and are matched to the closest point. Basically, the Euclidean 

distance in this space is equivalent to image correlation [20]. Appearance-based methods 

can be applied to range images as well. Campbell and Flynn proposed in [8] the use of 

2½D data to capture the shape appearance of a view, which makes this method suitable 

for the problem considered here. 

However, the major drawback of appearance-based methods is their lack of ability 

to handle more than one object in the scene with the possibility of occlusion. 

Furthermore, they require the object to be segmented from its background [7]. While 

these problems have been extensively studied for intensity images, less has been done 

with respect to range images. Although the proposed methods do indeed perform pose 

estimation (in addition to recognition), the object pose is parameterized by only one or 
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two d.o.f.. The work reported here addresses the full 6 d.o.f. pose estimation problem. 

Consideration of how to solve this problem given the constraints outlined thus far, 

leads to the principal contribution of this paper, a novel pose estimation technique using a 

view-based method. As will be demonstrated, the resulting algorithm is reasonably robust 

and capable of dealing with sparse range data. Since real-time issues are also considered, 

a novel hierarchical method is proposed to avoid the time-consuming process of 

matching. 

3. Contributions 

The contributions of this thesis consist of the following: 

•  The development of a new pose estimation technique which offers 

- A partitioning of the problem into two halves (translation and 

orientation) 

- A hierarchical determination of the orientation 

- Robustness to sparse range data 

- Real-time execution 

- Sensor independence 
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•  The implementation and evaluation of the algorithm, including testing on 

synthetic and real data 

•  The development of a complete system, part of a deliverable to the 

Canadian Space Agency 

•  The integration of the system to an actual space vision system. 

4. Outline of Thesis 

Chapter 2 is concerned with an analysis of the constraints that can be exploited to 

partition the problem into two halves, one dealing with estimation of T and the other with 

Ω . This greatly reduces the complexity of the overall problem without compromising the 

accuracy of the solution. Section 3 describes a hierarchical view-based method for 

estimating Ω  given T by extending the technique initially proposed by Skočaj and 

Leonardis [19] using the robust norm of Black and Jepson in [6]. In Chapter 4, it is shown 

that the resulting algorithm is able to determine pose to within a prescribed accuracy, and 

from any vantage point within the sensor field of view, at minimal computational 

complexity for large variations in image noise. Finally, Chapter 5 comprises observations 

on the current method and intended future work. 
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CHAPTER 2 REDUCING COMPLEXITY BY PARTITION  

Reducing Complexity by Partition 

As mentioned in Chapter 1, view-based methods are attractive for space 

applications since they can take advantage of a potentially large ensemble of data 

samples, yielding better stability of pose estimates relative to landmark features. 

However, the difficulty here is the rather large view space that can arise for a 6 d.o.f. 

parameterization. For example, a brute force approach to representing an object in a 

volume of 1000 m3 at a resolution of 150 mm in position and 15° in orientation would 

imply a view space of over 2 billion images ( 1000m3/0.153m3 x 360o/15o x 360o/15o x 

180o/15o ). Edwards presents in [11] an appearance-based technique that reduces the 

problem from six d.o.f. to three. However, the assumptions he makes about the scene are 

quite limiting. Indeed he assumes a non-occluded object set against a uniform background 

and ideal illumination conditions. 

Fortunately, complexity can be minimized by partitioning the estimation problem 

in terms of T and Ω  respectively. Knowledge of the approximate size and extent of an 

object is sufficient to achieve rudimentary figure/ground separation and a biased estimate 

of T, which is denoted by T̂. The view-based method used to estimate Ω  subsequently 

can account for this bias in the training process, making it possible to recover an accurate 

estimate of rotation despite having a biased estimate of T. From here, it is relatively 
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straightforward to recover the correct value of T. 

1. Figure/Ground Separation 

Figure/ground separation is the process in which object features are separated 

from background/noise features. A glance at the range map shown in Figure 2.1 

demonstrates the practical difficulty of figure/ground separation (the grapple fixture’s 

location is shown by the rectangular window superimposed on the image). Indeed, while 

it is generally assumed that an object in space should not be surrounded by other objects, 

a range map usually contains several background elements. Furthermore, real scenes are 

often corrupted by noise, and there is no guarantee that they will be uniformly sampled 

(e.g. data dropouts). 

 

Figure 2.1 - Sparse range data of a grapple fixture with background features 

In the literature, the problem of figure/ground separation is generally treated in the 

context of 2-D images. The goal is then to find which pixels belong to the foreground, 
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and which pixels belong to the background. Zhang et al. explain in [23] the reasons why 

this is a difficult problem. First, there are many types of feature that may be present in a 

scene. Second, in order to determine whether a feature is figure or ground, the 

spatial/temporal/phasic distribution of other related features must be determined. 

Some of these problems can be avoided when dealing with range data. In fact, 

intensity images are limited in their use as pixel values are related to surface geometry 

through the illumination conditions, the optical and geometrical properties of the surface, 

and the viewer position [20]. One of the advantages of a calibrated field of view, on the 

other hand, is that it is possible to create volumetric templates that are crafted to particular 

objects. The figure/ground separation then becomes a matter of template matching [20]. 

Various types of volumetric templates can be used. In the case of the grapple fixture 

shown in Figure 2.2, the spatial extent of the object is reasonably well approximated by 

its comprising sphere shown in Figure 2.3. 

 

Figure 2.2 - Grapple fixture 



 12

 

Figure 2.3 - Comprising sphere of the grapple fixture 

Figure/ground separation proceeds via template matching that first localizes point 

clusters with the appropriate shape and/or volume characteristics. One of the advantages 

of template matching is that it is possible to achieve speedup by judicious sub-sampling 

without seriously compromising accuracy of localization. Coarse to fine strategies are 

also possible using a location determined at a coarser scale to initiate a search at a finer 

one [20]. Since it is also possible that a given template might include data from nearby 

objects, a clustering algorithm is used to separate patches isolated by gaps, i.e. C0 

discontinuities. By construction, the dominant (largest) patch will always correspond to 

the surfaces comprising the object. 
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2. Estimation of T 

Direct estimation of T is complicated by the fact that only part of the object is 

visible from a given viewpoint, i.e. some surfaces are always self-occluded. At best a 

biased estimate, T̂, may be obtained, which is offset from T by some constant, ∆ . In 

general, the offset ∆  will depend on the particular viewpoint from which the data are 

acquired. Any metric can be used for T̂ provided that it is stable with respect to 

viewpoint. Two metrics were empirically investigated. The first one was the centroid of 

the dominant patch resulting from figure/ground separation. However, sparse range data 

do not necessarily provide an even distribution of the 3-D data points over the object. 

Important variations were thus observed with respect to the viewpoint. The second was 

the center of the minimum bounding box enclosing the dominant patch resulting from 

figure/ground separation. It was determined that it does indeed provide consistent, stable 

estimates. Formally then, T̂ is defined to be the location of the bounding box center in 

range image coordinates. 

To facilitate the matching of appearances, precisely the same metric is used to 

define the local origin of each of the training views. For each view Ω i, an associated 

translation iΩ

∆  to the canonical origin of the object is defined. Hence, given data acquired 

from an arbitrary viewpoint, it is straightforward to determine the local origin of the 

corresponding training view as well as to normalize coordinates2. What remains is to 

                                                 

2 And scale, implicitly. 
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solve the problem of matching appearances which ultimately determines T through iΩ

∆ , 

and Ω  implicitly by the corresponding view which is indexed by rotation. 

 

 

 

 

 

 



 15

CHAPTER 3 ORIENTATION ESTIMATION 

Orientation Estimation 

The success of appearance-based schemes [21,18] is largely dependent on the 

degree to which the input can be normalized so that it falls within the manifold of similar 

appearances. Campbell and Flynn [8] were among the first to recognize that range data 

could be exploited nicely in this context, e.g., using eigensurfaces to capture the rough 

shape of an object. These eigensurfaces are used in much the same way as eigenpictures 

to form an eigenspace. A similar approach is taken here using a CAD model to generate a 

sequence of views in normalized position, indexed by the 3 rotation parameters 

comprising Ω . This process can include an explicit model of the particular sensor used to 

acquire the data on-line, so that the appearance manifold more closely resembles the data. 

An example of simulated data of a stereo vision system is shown in Figure 3.1a. 

 
a) 

 
b) 

Figure 3.1 - a) Simulated data of a stereo vision system and b) full range data 
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Unfortunately this approach fails to account for the kinds of sensor variations that 

can occur in practice, and which often confound standard methods. Examples include so 

called “missing data” arising from the sparse coverage of passive sensors (e.g. stereo) or 

return signal dropouts in active sensors (e.g. LIDAR). The effect is analogous to 

occlusions in intensity-based methods. Another problem typical of range data from active 

sensors is the presence of strong outliers in the vicinity of occluding contours. This is 

further exacerbated in space environments due to strong variations in surface reflectance 

(e.g. reflective blankets used to minimize thermal variation) and ambient illumination. 

The “missing data” problem can be handled by training on full range images 

synthesized from CAD models (an example is shown in Figure 3.1b), and using the 

approach of Skočaj and Leonardis [19] to find the best fit to the points projected on the 

eigenspace. Outliers are handled by incorporating a robust norm along the lines of Black 

and Jepson [6]. 

1. Training Phase 

The set of range images used for training are generated from a CAD model 

according to a tessellated viewsphere centered at the canonical origin of the object. 

Tessellations are determined according to the prescribed resolution of the rotation 

parameters Ω. Further, to account for how the range data are normalized with respect to 

position (Chapter 2), each image is translated to a new origin determined by the metric for 

T̂. Hence, for a particular training view i, the corresponding offset is simply, iΩ∆  = ˆ-Ti . 
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Standard PCA techniques [18] are used to compute an approximation of the 

training set to facilitate matching and thus implicitly determine the corresponding Ω for 

the acquired data. Let each range image correspond to an n-dimensional vector in an m-

dimensional set, 1{ ,..., }i i i
nx x∈x , where the index i = 1,…, m corresponds to a particular 

facet of the viewsphere. Each facet in turn corresponds to a unique triple of rotation 

parameters, Ωi. It is generally assumed that m << n. An approximation to xi, 

 ( ) 1,...,i i pΤ Τ
 = +  x x a e e� , (2) 

is obtained in standard fashion, where 1{ ,..., }n=x x x , such that 

 
1

1 n

i i
i

x
n =

= ∑x . (3) 

The basis vectors je  correspond to the p eigenvectors of the covariance matrix c = | cij | 

with the largest eigenvalues, where 

 ,
1

( ) ( )
n

i j
i j

i

Τ

=

= − −∑c x x x x . (4) 

Finally, the coefficients for a particular range image, xi, are given by the inner product 

 , ( ) , 1,...,j i
ja j p= − =e x x . (5) 
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2. Matching Phase 

The range images used in training are quite different from the output range images 

expected from the sensor (compare Figure 2.1 with Figure 3.1b). Thus, sensor range 

images cannot be simply projected onto the eigenspace using (5) since missing pixels 

would not be taken into account. Skočaj and Leonardis studied the impact of missing 

pixels in [19]. To overcome this problem, only the set of non-zero pixels should thus be 

considered. Let r be a vector such that 

 j0 if x 0
1 otherwisejr

= 
=  
 

. (6) 

Instead of determining ai as in (5), the process used is along the lines of Skočaj 

and Leonardis, and the computation of the projection coefficients r
ia  which account for 

the non-zero pixels is done by minimizing the following norm, 

 ( ) ( )  1,...,  i i i pE
Τ Τ  = − +    r ra r x x a e e . (7) 

Black and Jepson propose a similar approach in [6] with intensity images, but note 

that L2 norms are sensitive to outliers, which is precisely the case here. In a similar 

fashion, the quadratic norm in (7) is replaced by a robust error norm, yielding the 

following functional, 

 ( )
1

( ) ( , ),
n

i i i j
j j j

j
E r x xρ σ

=
= − +∑ ⌡r ra a e , (8) 



 19

where 

 ( )
2

2, uu
u

ρ σ
σ

=
+

, (9) 

and σ  is a scale parameter that determines where the influence of outliers begins to 

decrease. Minimizing this non-linear function in the absence of priors can be 

computationally expensive due to the presence of multiple local minima. 

For compact training sets, e.g., for i on the order of several hundred vectors, a 

reasonable approach is to minimize (8) by exhaustively searching the discrete space of 

coefficients, {ai}, determined by projecting each training image onto the eigenspace via 

(5). Doing this removes the need of finding a good seed point and the risk of falling into 

local minima, making the approach a global process. This is generally sufficient to 

localize the training view closest to the acquired data, which in turn is sufficient to re-

establish tracking lock if the viewsphere corresponding to Ω is tessellated finely enough. 

3. Reconstruction Errors 

Minimizing (8) ends up to be a minimization between an observed pixel value and 

a reconstruction of this pixel from the eigenspace. As explained in the previous section, 

the reconstructed pixel is obtained by using the coefficients {ai} determined by projecting 

each training image onto the eigenspace via (5). Doing this allows the reconstruction 

process to be performed offline, which of course has the advantage of accelerating the 

online process significantly. 
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Depending on the number of eigenvectors used, the quality of a reconstructed 

range image will vary. Indeed, the greater the number of eigenvectors, the better the 

quality of the reconstruction. But since only the first principal eigenvectors are required to 

represent the main features of the object, the quality of the reconstruction will be affected 

for some pixels of the range map. Since the reconstruction process is performed offline, 

statistics about the quality of the reconstruction can therefore be computed for each pixel 

over all training images. In other words, during the training phase, the extent to which 

each reconstructed range image can reliably represent each training range image is 

verified. An image representing the standard deviation for each reconstructed pixel is 

created. Then, during the matching process, if an observed pixel falls within the 

prescribed error bound, the inner difference of (8) is set to zero. This has the advantage of 

reflecting the importance of each feature. Doing so ensures that the impact of pixels for 

which the reconstruction error is large is reduced. 

As mentioned in the previous section, the method described here is appropriate for 

training sets on the order of several hundred vectors. However, for training sets exceeding 

a certain size (e.g. a few thousand vectors), a more judicious approach has to be taken. 

The following section presents a novel hierarchical approach that efficiently minimizes 

Equation 8. 
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4. Matching by Hierarchy 

Equation 8 is linear in the number of training images since the discrete space they 

form is exhaustively searched. In order to increase the efficiency while recovering the 

pose, it is suitable to reduce this solution space. A hierarchical approach using several 

viewsphere tessellations ranging from coarse-to-fine is thus taken. 

Cyr et al. adopt this kind of approach in [10] to determine the pose of a vertebrae 

spine bone. Given a 3-D model and a 2-D view, they hierarchically search the space of 

possible poses using a notion of similarity between the projected shape and the 2-D target 

shape in a fashion reminiscent of the aspect graph approach. Specifically, coarse samples 

of the viewsphere are matched against the target view, and the process is repeated for 

samples close to top matches. 

While hierarchical approaches are often used in appearance-based techniques to 

solve the problem of scaling (e.g. [5]), they can also be used to accelerate the time-

consuming matching process using coarse-to-fine strategies. The literature contains 

several examples of hierarchical approaches. Athitsos and Sclaroff exploit this concept in 

[1] in the context of 3D hand shape classification. Given an input image of a segmented 

hand, the most similar matches from a large database of synthetic images are retrieved. 

Database retrieval is done hierarchically, by first rejecting the majority of all database 

views and then ranking the remaining candidates in order of similarity to the input. 

However, considering that they make use of intensity images, their method cannot be 

directly applied. In fact, finding reliable similarity measures is not trivial when dealing 
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with sparse range data. Black and Jepson proposed in [6] the use of eigen-pyramids. For 

every image in the training set they construct a pyramid of images by sub-sampling and 

spatial filtering. Each level of the pyramid then corresponds to an eigenspace. However, 

their method is used in the context of tracking. An initial estimate is thus required to start 

the search. Moghaddam and Pentland present in [17] a different method in which the 

search is performed over scale by constructing multiple input images at various scales and 

searching over all of them simultaneously. In a similar fashion, Yoshimura and Kanade 

use hierarchical matching in [22] to determine the angle of rotation of a 2D template. Like 

the other methods, they build an image pyramid structure with respect to the image size. 

The approach described here is different from previous approaches in that the 

eigenspaces are built corresponding to different samplings of the viewsphere (not image 

size), from coarse to fine. In other words, blurring is achieved through the averaging 

provided by eigenspace compression. The process is illustrated in Figure 3.2 where three 

levels of hierarchy are shown. An eigenspace is associated with each level and the black 

dot represents the orientation to be found. The process goes as follows. In the first step, 

the orientation is determined by minimizing (8) over the discrete eigenspace formed by 

the coarsely sampled viewsphere of the first level. Once the corresponding tile is found 

(shown in light gray), the search over the second eigenspace is performed but this time, 

narrowed down to the finer tiles comprised by this tile. The same process is applied up to 

the third and finer level to determine the final orientation (shown in dark gray). Doing so 

ensures that an exhaustive search over the third viewsphere is avoided while keeping the 

same degree of precision. Note that the tessellation factor does not necessarily need to be 
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constant between levels, as shown in Figure 3.2. In this case, L1 = 2*L2, and L2 = 3*L3, 

where L1, L2, and L3 are the tessellation factors for each level. 

 
a) First level in the hierarchy  

b) Second level in the hierarchy 

 
c) Third level in the hierarchy 

Figure 3.2 - Hierarchical approach 

 

Attempting to further refine Ω by using the minimal ai as the seed point for 

subsequent minimization of (8) is unlikely to garner further improvement unless some 

care is taken to condition the underlying manifold. Specifically, this means sampling Ω 

so that the views corresponding to adjacent coordinates can largely be linearly 
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interpolated. As it turns out, for small angles the rotation matrix associated with Ω can be 

reasonably well approximated by a linear map. It is straightforward to determine 

analytically the range of Ω for a particular error bound. 
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CHAPTER 4 Methodology and Results 

Methodology and Results 

The performance of the algorithm was evaluated. Tests were conducted using 

synthetic range data as well as real range images. The following sections describe the 

experimental setup and the results. 

1. Implementation 

The technique was implemented in Visual C++ on a Pentium III 750 MHz with 

512 Mb of RAM running Windows XP. The graphics engine was an NVidia GeForce 256 

with OpenGL support. The Intel OpenCV library was used to implement the standard 

PCA techniques. 

The software, called Pose Estimator, was part of a deliverable to the Canadian 

Space Agency. Figure 4.1 shows a screenshot of the application. Two modes of operation 

are available: the training mode and the pose estimation mode. The training mode is used 

to generate range images of the model and to produce one or many eigenspaces 

(depending on whether the search method is hierarchical or not). The pose estimation 

mode is used to determine the pose of the object for which the system was trained for. 

The application consists of three views. The input view (top window) is used to 
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display the original data as well as to show the model where the system finds it. The 

model view (bottom-left window) is used to generate the training range data from the 

model of the object. Finally, the output view (bottom-right window) is used to generate 

range images from the input view or the model view. The location of range data 

corresponding to this view is normalized following the method described in Chapter 2, 

i.e., by using the center of the bounding box. Furthermore, since 2½D images are 

generated (i.e. each pixel corresponds to a depth value), the view is also used to down-

sample the data coming from the input view. It should be mentioned that the application 

can also determine the pose from synthetic data generated from the model. 

 

Figure 4.1 - Screenshot of Pose Estimator 

Other features are also available. For example, the application can communicate 
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via sockets with the stereo vision server, allowing remote operations. The user can thus 

take input data from the server and transmit the pose estimate back to it. Pose Estimator 

can also operate automatically by checking the confidence level provided by the server. If 

the level decreases (meaning that the tracking system is not sure anymore about the pose 

of the object), Pose Estimator will automatically transmit a new pose estimate. The user 

can also choose whether the search should be done in an exhaustive or hierarchical 

manner. 

2. Experimental Setup 

The stereo vision system described in Chapter 1 is shown in Figure 4.2. It was 

used to acquire data of a grapple fixture of size 510 x 560 x 530 mm shown in Figure 4.3. 

The convergence range of the model matching is on average 15° and 30% of the observed 

object size, corresponding to approximately 150 mm for this particular object. The 

illumination conditions were similar to what could be encountered in space, i.e. a dark 

environment with a strong point source illumination. 
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Figure 4.2 - Stereo vision system 

 

Figure 4.3 - A grapple fixture 
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3. Training 

The system was trained on a CAD-model of the grapple fixture shown in Figure 

4.3. Three hierarchy levels were used, such that three sets of training range images were 

required. The first level consisted of 108 range images (100x100 resolution), 

corresponding to a 60° increment in roll, pitch and yaw. The second level consisted in 

256 images, corresponding to a 45° increment. Finally, 6912 range images were 

generated for the third level, corresponding to a 15° increment. This particular 

discretization was chosen to match the maximum initialization error tolerable by the 

tracking system. A total of 8 eigenvectors were used to represent the first training set, 15 

eigenvectors for the second set, and 75 eigenvectors for the third one. 

As the spatial extent of the object is reasonably well approximated by its 

comprising sphere (see Figure 2.3), a sphere of radius 380 mm was used to perform 

figure/ground separation. Sigma (σ ) was set to 2000. 

 

Figure 4.4 - Grapple fixture in an arbitrary pose 
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Examples of reconstructed range images are shown in Figure 4.5. These 

correspond to the orientation shown in Figure 4.4. The reconstruction was done for the 

three hierarchy levels using (2). Observe that the quality of the reconstruction greatly 

varies through the different levels. Indeed, the generalization provided by the first level is 

much greater than the third level. This is due to the limited number of eigenvectors used 

for this level and the lower correlation between each training range image. 

The quality of the reconstruction also varies through the pixels of the range map. 

The maps shown in Figure 4.6 represent the standard reconstruction errors for each pixel 

for each hierarchy level. Dark regions represent pixels for which the error is high while 

bright regions represent pixels for which the error is small. Observe that errors are much 

smaller for higher levels. Indeed, this is due to the fact that the viewsphere is more finely 

sampled (leading to a higher correlation between range images) and that the number of 

eigenvectors is greater. As mentioned in the previous chapter, this greatly helps in 

highlighting the importance of each feature. 
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Level Front view Side view 

1 

 

 

2 

 
 

3 

 

 

Figure 4.5 – Reconstructed range images for each hierarchy level 
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a) First hierarchy level 

 
b) Second hierarchy level 

 
c) Third hierarchy level 

Figure 4.6 - Reconstruction error maps for each hierarchy level (dark regions representing 

pixels for which the error is high) 
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4. Results 

Tests were performed in a lab environment where many background features are 

present. Different poses of the object were used, with distances ranging from 1 to 6 

meters. A trial was considered successful when the estimate fit within the tracker 

tolerance (±15° for roll, pitch and yaw, and ±150 mm for x, y and z of the pose given by 

the system). 

4.1 Exhaustive Matching 

The first experiment consisted of retrieving the pose of the grapple fixture using 

exhaustive matching. In other words, every solution of the discrete space formed by the 

6912 training range images was tried. Experimental results are summarized in Table 4.1. 

Trials 60 
Success 57 
Success Rate 95% 
Average Time (s.) T: 0.1, Ω : 1.2 

Table 4.1 - Experimental results on a grapple fixture using exhaustive matching 

95% of the trials were successful with a total execution time (translation time T + 

orientation time Ω) of 1.3 seconds. An example of success is shown in Figure 4.7 where 

the acquired range data are shown in (a). The result of figure/ground separation is shown 

in (b). The model in its resulting pose is co-rendered with the original range data in (c). 

On average, 85% of pixels were missing in the range data map (with respect to the full 

training range image). 
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a) 
 

 
b) 
 

 
c) 

Figure 4.7 - Example of successful pose estimation 
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Other examples of success are shown in Figure 4.8 and Figure 4.9. The acquired 

range data are shown in (a). The model in its resulting pose is co-rendered with the 

original range data in (b). 

 
a) 
 

 
b) 

Figure 4.8 - Another example of successful pose estimation 
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a) 
 

 
b) 

Figure 4.9 - Another example of successful pose estimation 

 

Observe that while many background features are present, the system was able to 

localize the object within the prescribed accuracy. These examples also demonstrate that 

the technique is robust to sensor noise. While range data seem to provide sharp and 

straight edges, a closer look reveals that this is not necessarily the case. Figure 4.10 shows 

the same data as in Figure 4.8, but rendered from a different viewpoint (i.e. the data set is 

rotated). Observe that they are quite noisy (in depth). The error is in fact approximately 
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30 mm at a distance of 3 meters. This can be due to several factors such as stereo 

mismatches and edge localization errors. In spite of this, the algorithm is able to recover 

pose successfully.  

 
a) 
 

 
b) 

Figure 4.10 - Noise present in range data 

An example of failure is shown in Figure 4.11, and corresponds largely to a 180° 

rotation about the rod protruding from the base. Considering the symmetry of the object, 

this result is not surprising since the range data do not provide sufficient information 
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about a distinguishing feature. In this case the top plate, which is clearly visible in Figure 

4.7, is poorly sampled in Figure 4.11. In fact, all of the errors recorded corresponded to 

cases such as this one. 

 
a) 
 

 
b) 

Figure 4.11 - Sample of non-successful pose estimation 

4.2 Hierarchical Matching 

The second experiment consisted of retrieving the pose of the grapple fixture 

using hierarchical matching. Experimental results are summarized in Table 4.2. Results 
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from exhaustive matching are reported here to facilitate comparison. 

 Hierarchical Exhaustive 
Trials 60 60 
Success 55 57 
Success Rate 92% 95% 
Average Time (s.) T: 0.1, Ω: 0.1 T: 0.1, Ω : 1.2 

Table 4.2 - Experimental results on a grapple fixture using hierarchical matching 

92% of the trials were successful with a total execution time (translation time T + 

orientation time Ω) of 0.2 second. Using hierarchical matching is almost an order of 

magnitude faster than using exhaustive matching. In fact, as outlined in the previous 

chapter, using a hierarchical approach allows reduction of the solution space. Considering 

that the size of this space is dependent on the number of hierarchy levels that are used, 

this number can then be chosen in order to meet the requirements of the application. Since 

the execution time is also dependent on the figure/ground separation, the process can be 

accelerated by judiciously sub-sampling the data without seriously compromising 

accuracy of localization. 

 

Observe however in Table 4.2 that the success rate is slightly smaller when using 

hierarchical matching. An example of failure is shown in Figure 4.12. The acquired range 

data are shown in (a). The model in its correct pose from exhaustive matching is co-

rendered with the original range data in (b). The model in its erroneous pose from 

hierarchical matching is shown in (c). The error corresponds to a 180° rotation about the 

plate protruding from the base. This clearly indicates that the search was misled right at 

the first hierarchy level and underscores the primary weakness of the method. In cases 
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where objects are distinguished by features at finer scales, a hierarchical approach will 

return an arbitrary choice. The way around this problem is to permit multiple matches in 

cases where the best match is ambiguous relative to the distance metric. Multiple 

hypotheses would be carried forward until the ambiguities are resolved at a finer 

resolution. This approach would be an interesting extension to the algorithm described 

here. All of the errors recorded corresponded to cases such as this one and the cases 

explained in the previous section. 
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a) 

 
b) 

 
c) 

Figure 4.12 - Example of failure for hierarchical matching 



 42

4.3 Impact of Center Localization Error 

The impact of a center localization error on orientation estimation was also 

studied. Tests were performed on synthetic data (as shown in Figure 4.13) for 30 typical 

poses of the object. The experiment consisted of adding an error vector to the true view 

center and determining if the system was still able to correctly determine the pose. 

 

Figure 4.13 - Simulated data of a stereo vision system 

Results are shown in Figure 4.14, in which the x-axis is the induced translation 

error in cm and the y-axis the percentage of success. Three different non-coplanar error 

vectors were used, each having a length ranging from 0.0 to 12.0 cm. As can be seen, 

determination of Ω  is fairly robust, tolerating a translation error of up to 4 cm. In practice, 

experimental results on real data show that view-based determination of T̂, as outlined in 

Section 2.2, is less than 2.5 cm in error on average. 



 43

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Translation error (cm)

Pe
rc

en
ta

ge
 o

f s
uc

ce
ss

Error vector 1
Error vector 2
Error vector 3

 

Figure 4.14 - Impact of a center error on recognizing the orientation 

The most likely situation where an error in T̂ can occur is when only a partial 

view of the object is available. While the issue of occlusions has been briefly addressed in 

previous work utilizing view-based analysis, it can hardly be treated in this framework. 

To some extent, error detection is possible in cases where the measure indicated by 

Equation 8 exceeds a prescribed bound. This can be made more definitive by applying the 

requisite statistical analysis to determine an appropriate confidence interval. 

Unfortunately, this does not get around the problem of ambiguity as demonstrated earlier 

in Figure 4.11. Such problems can only be resolved using additional observations. 
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CHAPTER 5 CONCLUSIONS 

Conclusions 

A novel pose estimation technique has been presented. The view-based algorithm 

partitions the problem into two halves i.e. one dealing with estimation of the translation 

component and the other with the orientation. As demonstrated through the results, this 

greatly reduces the complexity of the overall problem without compromising the accuracy 

of the solution. Figure/ground separation via template matching is used to retrieve the 

translation component. A novel hierarchical view-based method is used to determine the 

orientation. 

As the preceding chapter demonstrates, the algorithm described in this thesis 

performs well at recovering pose from sparse, noisy range data. Results presented in this 

thesis show that the technique is able to determine the pose to within a prescribed 

accuracy, and from any vantage point within the sensor field of view, at minimal 

computational complexity for large variations in image noise. However, while the 

execution time was sufficient for the stereo vision system on which the experiment was 

conducted, it might not be enough for real-world operations. Aside from the usual 

speedups obtained by optimizing code and increasing processor speed, the number of 

hierarchy levels could be increased to reduce the solution space. While the experimental 

results showed that a hierarchical approach was viable, it was observed however that it 
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had some weaknesses. Future work could consist of permitting multiple matches at 

coarser levels such that ambiguities could be resolved at a finer resolution. Furthermore, 

in practice, even rudimentary knowledge about the object’s appearance, such as the 

object’s last known pose before occlusion, can be used to substantially prune the search. 

Other strategies are also possible. For example, the size of the bounding box could be 

used as a discriminating factor to reduce the solution space. 

From the perspective of machine vision, this thesis nicely demonstrates how 

appearance-based methods can be used in conjunction with range sensing to solve the 

pose estimation problem. The key benefit afforded by range sensors with calibrated fields 

of view is the ability to rapidly normalize views, thus facilitating appearance matching. 

Here this was used to collapse a 6 d.o.f. problem to 3 d.o.f. by means of view-based 

position estimates and augmentation of training data. Further, modern range sensors can 

be made largely invariant to ambient illumination. Although appearance-based techniques 

are still sensitive to occlusion and outliers, the work reported here shows a way to account 

for these situations at slight additional cost. 
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