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Abstract 

This thesis describes the design and implementation of an active surface 

reconstruction algorithm for two-frame image sequences.  The objective is to build a 

system that uses a passive sensor and an active viewer to accumulate information for 

disambiguating the depth sampling process involved in surface reconstruction.  The 

viewer is considered to be restricted to a short baseline.  Several ideas from the fields of 

optical flow, stereovision, and shape from motion will be drawn from and modified in the 

context of an active vision system. 

The thesis begins by examining the optical flow estimation problem.  Several 

algorithms are compared under the novel heading of maximal estimation theory.  Each 

algorithm is decomposed into three parts: pixel-estimation, sub-pixel estimation and 

confidence measurement.  The components are compared separately.  A flow algorithm is 

then obtained by combining different components. 

A Bayesian framework is adopted to provide a simple approach for propagating 

information in a bottom-up fashion in the system.  This will also be used for combining 

information both temporally and spatially in the context of a Kalman filtering scheme. 

The last part of this thesis examines how an active component can be integrated 

into the system to provide quicker convergence to the depth estimate.  This approach is 

based on statistical grouping of image gradient features. 

Synthetic and real experimental results are generated in each section.  These 

results support ideas presented in the thesis, and suggest a basis for further research. 
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Résumé 

Cette thèse décrit la conception d’un système actif de reconstruction de surface 

basé sur des paires d’images.  L’objectif est de construire un système qui utilise un 

senseur passif en tandem avec un observateur actif pour réduire l’ambiguité sur les 

mesures de profondeurs pour la reconstruction de surface.  Différents éléments des 

domaines du flot optique, de la vision en stéréo et de la reconstruction de surface seront 

abordés et modifiés dans le contexte du système actif désiré. 

Cette thèse débute en examinant le problème du flot optique.  Plusieurs 

algorithmes de ce domaine sont abordés et comparés.  Le critère de comparaison utilisé 

est basé sur la théorie de l’estimation, ce qui constitue une approach nouvelle dans le 

domaine du flot optique.  Chaque algorithme est décomposé en trois parties: la 

correspondance de pixels, la correspondance de sous-pixels et la mesure de confiance.  

Ces composantes sont examinées séparément.  Un algorithme est obtenu en combinant 

plusieurs composantes différentes. 

Une stratégie bayésienne est adoptée pour simplifier la propagation d’information 

dans le système.  Ceci profite, en plus, au processus de fusion dans le domaine spatial et 

temporel. Tout cela sera regroupé dans le contexte d’un filter de Kalman. 

La dernière étape de cette thèse discutera d’une stratégie active pour accélérer la 

convergence du système d’accumulation.  Cette approche sera basée sur le regroupement 

de caractéristiques statistiques de l’image. 

Des résultats expérimentaux sont présentés pour des données synthétiques et 

réelles dans chaque section. Ceux-ci supportent les idées présentées dans cette thèse. 
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CHAPTER 1  

Introduction 

 

The field of computer vision continues to play an important role in the 

development of autonomous robotic agents.  Autonomous navigating robots should 

ideally be able to move through an unknown environment unaided.  This involves path 

planning, obstacle detection, and scene recognition/interpretation [18].  Such tasks are all 

dependent on the robot’s ability to quickly build sufficiently complete models of its 

environment.  Thus, surface reconstruction remains an important motivator in the field of 

computer-vision. 

The human visual system provides consistent proof that 2-D image sensing is 

sufficient for interacting with a 3-D world.  Evolution has provided biological vision 

systems with a large set of tools for interacting with a 3-D world.  Stereoscopic vision 

provides detailed representation for nearer objects (one meter away in humans) [26].  In 

most cases however, when moving through the world, objects are outside the stereoscopic 

range.  Human experience in every day life demonstrates that, even under such 

conditions, it is possible to successfully perform many everyday tasks such as trajectory 

planning, obstacle detection and figure/ground separation.  A similar task in computer 

vision involves recovering 3-D structure from a set of 2-D images.  This problem requires 

the temporal accumulation of information through a monocular observer.  The 

relationship between subsequent still images in a video stream provides a wealth of 

information in the form of spatio-temporal change.  The temporal integration of such 
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velocity fields is essential for solving shape-from-motion [6, 16, 13, 42, 46, 54, 70], time-

of-collision [18], object tracking [51], object-recognition [4], and figure/ground 

separation problems. 

At first glance the problem of 3-D reconstruction from motion images seems 

trivial as it is intuitively sound to suggest that changes in intensity on an image plane are 

somewhat coupled with the projection of the apparent motion of the 3-D space 

surrounding the plane.  It is however incorrect to say that such projections are unique and 

complete.  The loss of a dimension, quantization of intensity, discrete sampling of 

infinitesimal spatial data and sensor noise make the problem of recovering 3-D structure 

from a set of 2-D intensity images ill-posed. 

This begs the question, how does the 2-D human visual system successfully 

interact with the 3-D world with such consistency?  Many suggest that the answer lies in 

considering the human observer not as a passive viewer, but rather as an active observer 

[2, 4, 7, 14, 68].  By interacting with the environment, a human can quickly and robustly 

achieve sufficiently stable representations of the world for navigation. 

Although the human observer is active, it is wrong to assume complete freedom 

of motion exists in all six degrees of freedom under most conditions [18, 25, 45, 51, 59, 

70].  For example, an individual driving a car is limited to very small lateral motions and 

a dominant forward motion. As such, a large baseline is not available to such an observer.  

Yet, people manage to navigate quite well without a wide baseline at their disposal. 

This thesis examines weakly active surface reconstruction in the case of an 

autonomous monocular viewer.  The term weakly active implies a severely constrained 

configuration space for the viewer.  Most active vision algorithms assume full motion 



 3

control is available to a viewer.  This is not often the case for a holonomically1 

constrained autonomous explorer, which must first see its world before moving through 

it.  Thus a more realistic active motion model is considered, which constrains the viewer 

to small displacements between observations. 

  

1. Overview of the Problem 

Surface reconstruction can be defined as the process of inferring a mesh of 

interconnected points representing a three-dimensional surface.  The surface is often 

assumed to be rigid and fixed.  Points can be acquired using many types of sensors (e.g. 

range-finder, stereo-head).  Computer vision systems generally wish to use image sensors 

to infer the state of the world.  As such, computer vision systems ideally would like to be 

able to reconstruct objects or environments from a sequence of pictures.  This 

measurement problem is inherently ill-posed as projected image intensity fails to provide 

an invertible encoding of surface characteristics under most conditions [10].  The 

conditioning of the system can be described by dividing it into parts.  In general, image-

based surface reconstruction system can be broken up into three elements (Figure 1.1): 

i) Image correspondence, 

ii) Depth estimation from triangulation or back-projection, and 

iii) Depth integration. 

Each of these three elements comprises an important part of computer vision literature 

and, as such, can incur significant complexity in the system. 

                                                 
1 The physical construction of the robot and/or obstacles in the enviornment may prohibit certain configuartions [18]. 
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Figure 1.1 – Depth Accumulation System 

 

It is well accepted that the greatest difficulty encountered by image-based vision 

systems is the correspondence problem, which for small motions is referred to as the 

optical flow estimation problem.  This involves measuring the motion of a projected point 

on the image plane.  As mentioned earlier, recovering motion from a pair of intensity 

images is, for many reasons, ill-posed.  It should also be noted that as the motion between 

images increases, correspondence becomes more difficult as image features will 

generally warp or fall outside the image-plane, and image intensity will change. 

The depth estimation process, under perspective, involves transforming disparity 

measurements taken from correspondence, and the associated viewer motion parameters 

into depth measurements.  This task is ill-posed in some cases (e.g. pixels about the field-

of-expansion when moving forward, or pure rotation about the viewer’s origin), and 

increasingly ill-conditioned as motions between views become smaller and the angle of 

disparity approaches zero. 

The depth integration process combines many depth measurements together to 

reduce the effects of noise and increase the size of the data set.  Depth measurements can 

be accumulated over time or joined in a batch process.  The inherent difficulty in this 
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process is in establishing correspondence between points on both surfaces. Much in the 

same spirit as intensity registration, as the motion between the two depth measurements 

increases, the correspondence becomes increasingly difficult and ill-posed.  As the 

surface representation is necessarily discrete, interpolation must be used to merge points 

that fall in between points on the previous surface.  As the depth samples become sparser, 

the interpolation process becomes increasingly ill-conditioned. 

In general, when considering the above elements, two forms of surface 

reconstruction emerge.  The first is feature based surface reconstruction [5, 9, 27, 28, 43, 

49, 56].  This approach chooses features in the image that are stable for large motions.  

Thus, a sparse set of very confident depth estimates is obtained.  Difficulties occur when 

trying to interpolate full surface representation.  Often planarity assumptions must be 

used, or some underlying knowledge of the surface must be known a priori.  This 

approach is in general not realistic for an autonomous robot that cannot afford to perform 

large motions without attending to the scene and thus running the risk of a critical 

collision. 

The second approach to depth estimation is the iconic depth estimator [30, 46, 60, 

70] in which all pixels contribute a depth estimate.  This approach is more suitable for a 

navigating robot as it lends itself to small motions between viewpoints.  Thus, the image 

and depth correspondence problems are locally constrained and facilitated, and a dense 

disparity field is obtained.  The difficulty in this approach is that the depth measurement 

process is very noisy.  However, as the depth integration process is simplified, noisy 

measurements can be filtered out given sufficient depth estimates. 
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The two previous mentioned approaches to surface reconstruction illustrate a clear 

and well-known dichotomy in baseline stereo: smaller motions aid with the 

correspondence problem, while greater baseline motion provide more stable depth 

estimates but sparser data.  Multi-baseline stereo [2, 37, 44, 53, 69] has sought to merge 

these two problems by tracking many points over many small motions.  Once a 

sufficiently large baseline has been achieved, depth values are computed with less 

ambiguity.  As mentioned earlier, this approach is not practical for an autonomous 

explorer that does not necessarily have a wide baseline at its disposition.  However, the 

multi-baseline approach does provide inspiration for the approach suggested in this 

thesis. 

 

2. The Approach 

Given that a wide baseline is not available as in the multi-baseline approach, the 

system proposed in this thesis will use repeated sampling to disambiguate the 

measurements.  If the measurement noise can be modeled as zero-mean, it is reasonable 

to assume that sufficient temporal integration can be used to make up for the 

shortcomings of a diminished baseline. 

Maximal estimation theory provides a framework for the efficient accumulation 

of information in the context of a noisy measurement process.  This methodology uses 

qualitative data to identify how much information is entering or is already in a system. 

Thus, measurements must have associated confidence values.  These confidence values 

are propagated in a bottom up fashion through the system.   If these confidence values are 
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equivalent to inverse variance on the error of the associated data, it can be shown that the 

system will provide a minimal solution (in the least-squares sense). 

The thesis will begin by examining the correspondence process in the context of 

maximal estimation theory.  Different optical flow methods in the literature will be 

considered.  Particular attention will be paid to the confidence measures identified for 

different optical flow algorithms.  A novel approach to comparing these confidence 

values in the context of data accumulation will be introduced.  A hybrid optical flow 

estimator will be constructed from the different flow-estimation algorithms considered. 

The second part of the thesis draws heavily from previous work by Szeliski [60] 

and Matthies et al. [46] who discuss a Bayesian formulation for weighted accumulation 

of information using a maximal estimation framework [48].  Szeliski has shown that 

Bayesian modeling can be used for low-level vision systems.  As such, measurements can 

successfully be represented as a mean and variance pair.  Work by Matthies et al. shows 

how such a Bayesian model can be used to temporally accumulate information using a 

Kalman filter framework.  This thesis will also improve on Matthies et al.’s framework 

by extending the maximal estimation framework to spatial data propagation. Mathur and 

Ferrie [47] provide the theory behind this improvement. 

The last part of this thesis will introduce a simple feedback mechanism for active 

view selection.  Work by Whaite and Ferrie [68], and Arbel and Ferrie [4] provide 

inspiration for the suggested approach.  Whaite and Ferrie discuss active fitting of super-

ellipsoids to range data.  Arbel and Ferrie develop a similar application for active object 

recognition using optical flow.  In this thesis, it will be shown that it is possible to predict 

the most informative motions based on the intensity in the prior image.  As such, the 
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temporal integration process for surface reconstruction will be shown to converge more 

consistently than a passive motion sequence. 

 

3. Outline of Thesis 

The rest of the thesis is organized as follows. Due to the importance of the 

correspondence problem and the particular need for a qualified measurement process for 

the application presented here, Chapter 2 will be dedicated to reviewing the problems and 

associated literature on optical flow, and molding a correspondence algorithm that suits 

the current purpose.  Chapter 3 will review reconstruction geometry for a weak 

perspective camera model as well as the Kalman filter framework presented by Matthies 

et al.  An improvement to the interpolation and regularization process will be introduced 

into the framework as well.  Chapter 4 will discuss the addition of the epipolar constraint 

as well as the suggested feedback mechanism in detail.  It will also provide results for a 

complete implementation of each previously described element of the system.  

As each component of the system draws from different areas of computer vision, 

the literature will be cited and results will be provided when necessary.  Chapter 5 will 

conclude with general review of the thesis content, and some general observations with 

respect to the results. 
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4. Contributions 

The contributions of this thesis consist of the following: 

•  A novel method for comparing the confidence measures of optical-flow 

estimation is introduced.  This approach provides a formal methodology and 

has the benefit of lending itself directly to maximal-estimation theory. 

•  An improved confidence measure for optical-flow is provided.  This method is 

a more general representation of previous approaches and is shown 

experimentally to provide more consistent results for a standard optical flow 

test set. 

•  The introduction of a maximal-estimation interpolator for iconic spatial depth 

accumulation.  This is shown, from an information theoretic point of view, to 

be more appropriate for providing spatial support than current interpolation 

methods. Experimental results are provided to support the suggested 

interpolator. 

•  The development of an active procedure for accumulating depth. It is shown 

that the gradient of the intensity in the image can successfully be used to drive 

the viewer’s motion.  This effectively increases the convergence rate of the 

depth estimator significantly (3 to 4 times) over that of a passive viewer. 

•  Design and implementation of a fully functional active surface reconstruction 

system using a gantry robot and an off-the-shelf NTSC camera setup. 
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CHAPTER 2  

Correspondence and Optical Flow 

 

An important first step in developing the desired active surface reconstruction 

system is to consider the correspondence problem.  As such, this chapter will be 

dedicated to first discussing where ambiguity arises in optical-flow estimation and how 

the measurement process can be used to qualify it.  The chapter will review key elements 

in the optical flow literature. 

1. Previous Work in Optical Flow Estimation 

Optical flow is defined by Horn [32] as: the problem of estimating the apparent 

motion of a brightness pattern.  Barron et al. [8] consider optical flow as the process of:  

computing the approximation to the 2-D motion field – a projection of the 3-D velocities 

of surface points onto the imaging surface – from spatio-temporal patterns.  These two 

definitions are not identical, as the first treats optical flow as being independent of scene 

structure, while the latter considers optical flow to be a consequence of scene structure 

and noise.  It is suggested later in this section that these two definitions can be reconciled 

under certain conditions for an active viewer. 

Horn formalizes a constraint for relating the projected 3-D motion in the scene 

and the image flow.  This is referred to as the image flow constraint.  Under specific 

conditions, it provides a relationship between the projected 3-D motion and the observed 
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change in intensity.  This constraint can be interpreted as the assumption that a point in 

the 3-D surface, when projected onto the 2-D image plain, maintains a constant intensity 

over time.  This assumption generally holds for small motions.  Mathematically it is 

formulated as 

( ) ( )0,,,, tyytxxItyxI ⋅∆−⋅∆−= ,     (2.1) 

where ),,( tyxI  is the intensity distribution of the image of a pixel at a point ( )yx,  at a 

time t and ( )yxf ∆∆= ,
�

 is the desired optical flow vector. 

The image flow constraint provides limited conditioning to the problem for 

recovering the 2-D velocity field from a sequence of intensity images.  The problem of 

projected motion recovery from images is ill-posed because local intensity alone fails to 

completely encode motion information.  Three different levels of ambiguity may occur. 

The first and most severe ambiguity involves reflective and transparent surfaces. 

Horn’s mirror ball problem is a good example of this.  Consider a mirrored sphere.  As 

the sphere rotates about its center, no change in intensity is observed, yet the sphere does 

possess a 3-D motion field and texture is present in the reflected image.  This is the most 

extreme case of ambiguity.  Even biological visual systems fail under such conditions.  In 

general, it is assumed that the surface is matt and that its texture is glued to it. 

The second and less extreme example of how intensity fails to encode projected 

3-D motion involves regions of constant intensity.  In such regions, motion cannot be 

detected and an infinite number of solutions exist.  Such cases rely on propagation of 

information from surrounding estimates to interpolate a measurement.  Thus 

regularization is necessary to guess a solution for such areas.  Ju. et al. provide an 

example of this in their Skin and Bones paper [36].  According to Bajcsy [7], 
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interpolation and regularization should be avoided whenever possible, as they impose a 

biased estimate that often resembles an educated guess. 

The last form of ambiguity in flow estimation occurs when the intensity is 

constant in a given direction u� .  This is referred to as the aperture problem [32].  In such 

cases the solution is only partially available as it is only possible to provide the 

component of the solution that is perpendicular to u� , called the normal velocity estimate. 

Under such conditions, an active viewer can effectively provide sufficient constraints to 

remove the ambiguity.  As the scene is assumed static and rigid and the motion of the 

viewer is controlled up to a given certainty, it is possible to constrain the direction of the 

flow measurement using geometric properties of the projection model [21].  In fact, if the 

direction of the optical flow vector is perpendicular to the image gradient, the normal 

velocity and the flow velocity become equivalent, as suggested by Verri and Poggio [66].  

Thus, the two definitions of optical flow mentioned earlier can be reconciled. 

These different levels of ambiguity provide an important result in the 

development of a motion strategy for the viewer.  The viewer should maximize the 

confidence in measurement by detecting when and what type of ambiguity occurs.  The 

first case cannot be detected and is removed by assumption.  The second and the third can 

in fact be detected. Different flow algorithms provide different approaches for resolving 

this problem. 

Two comprehensive papers on the subject of optical flow performance exist. 

Work by Liu et al. [39] has studied the efficiency/accuracy tradeoff of different 

algorithms.  The authors produce curves of accuracy versus efficiency for comparing 

different optical flow algorithms.  A curve is constructed for each algorithm by changing 
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its parameters.  Barron et al. have produced a paper that compares nine classic flow 

algorithms on the basis of accuracy and density.  They provide a clear test set of image 

sequences that can be used for quantitative and qualitative comparison of the different 

algorithms.  Most importantly, they discuss the different confidence measures used by 

different flow algorithms. 

Barron et al. [8] classify flow algorithms into four groups: differential techniques, 

energy-based methods, phase-based techniques and region-based matching.  Differential 

[41, 50, 52, 65], energy-based [29, 40] and phase-based [22] techniques can all be 

classified under the heading of gradient methods.  These all perform discrete temporal 

filtering and require strong temporal support to work well.  The energy and gradient- 

based methods, generally require families of velocity tuned filters to work well, which 

generally renders them much slower than differential or region matching methods.  Thus, 

gradient methods are unlikely candidates for the autonomous explorer implementation.  

Still there are aspects concerning the confidence measurements of these algorithms that 

can be of use.  This becomes apparent from the differential approaches.  Thus, 

differential techniques will be considered briefly below, after which region matching will 

be discussed. 

 

1.1 Differential Methods 

Differential techniques are characterized by gradient search performed on first 

and second order spatial derivatives and temporal derivatives extracted from the image 

sequence.  From the Taylor expansion of the flow constraint equation, the gradient 

constraint equation is obtained, 
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( ) ( ) ( ) 00 =+∆∆⋅∇ tyxIyxtyxI t ,,,,,, .    (2.2) 

Horn and Schunk [33] combine a global smoothness term with the gradient 

constraint equation to obtain a functional for estimating optical flow.  Their choice of 

smoothness term minimizes the absolute gradient of the velocity using 

( ) ( )∫ ∫ 



 ∆∇+∆∇++⋅∇ dxdyyxIfI t

2
2

2
2

22
λ

�

.   (2.3) 

This functional can be reduced to a pair of recursive equations that must be solved 

iteratively. It provides no confidence measure. 

Lucas and Kanade [41] also construct a flow estimation technique based on first-

order derivatives of the image flow constraint.  In contrast to Horn and Schunk’s 

approach of post-smoothing regularization, they choose to pre-smooth the data.  This is 

represented mathematically as,  

( ) ( ) ( )[ ]∑
Ω∈

+⋅∇
x

t txIftxIxW
�

�

�

�� 22 ,,min ,     (2.4) 

where )(xW �  is a window that gives more influence to constraints near the center of the 

neighborhood Ω .  A closed form least-squares fit is then used to provide an optical flow 

estimate,  

bWAAWAv TT
�

� 12 ][ −= ,      (2.5) 

where 

( ) ( )[ ]TnxIxIA
�

…

�

∇∇= ,,1 , 

( ) ( )[ ]nxWxWdiagW �

…

� ,,1= ,      (2.6) 

( ) ( )[ ]Tntt xIxIb �

…

�

�

,,1−= .       
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This approach can be described as a weighted minimization of normal constraints 

where the weights are the magnitude of the spatial gradient of the image. 

Barron et al. report in their survey [8] that Lucas and Kanade’s algorithm 

provides the second most accurate results.  Liu et al. [39] evaluate Lucas and Kanade as 

providing the third best efficiency-accuracy curve.  Thus, there is noted interest in this 

approach.  However, there is an important disadvantage to this algorithm.  As discrete 

temporal differentiation is necessary, strong temporal support is required.  The Barron et 

al. implementation required 15 frames of temporal support, and a 7-frame delay.   This 

may be unacceptable for a real-time autonomous explorer.  Aside from the noted phase 

delay, an autonomous observer should not be required to provide long continuous 

sequences in its path planning process [70]. 

There have been efforts to reduce the required temporal support.  Fleet and 

Langley [23] attempt a more efficient implementation of Lucas and Kanade’s work using 

infinite impulse response (IIR) temporal pre-filtering and temporal recursive estimation 

for regularization.  They reduced the temporal support to three frames while improving 

computational efficiency.  Unfortunately, the IIR filter mechanism comes at a price of 

decreased precision. Also, this approach does not lend itself well for non-smooth 

motions.  If, for example, the motion of the viewer were to change directions, the filters 

would have to be reset and returned to stability. 

One important contribution of these first order approaches is the suggested 

confidence measure, which is independent of the temporal component of the flow 

constraint.  The spatial component of the first order gradient constraint is often referred to 

as the Normal matrix, 
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The eigenvalues of the Normal matrix have important significance when 

considering the conditioning of the flow estimation problem.  Barron et al. suggest that 

when the smallest eigenvalue, 2λ , is less than 1.0, the aperture problem prevails.  Fleet 

and Langley provide additional support to this statement. 

There has been some interest in the second order image flow constraint for 

estimating optical flow [50, 65].  The second order constraint equation takes the 

following form, 

0
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Much in the same manner as Horn and Schunk, and Lucas and Kanade, different 

forms of regularization and minimization are used to solve the system of equations (2.8).  

Barron et al. confirm that a second order system requires increased constraint on the 

estimation process, as the higher order implies increased instability.  Thus sparser and 

less accurate results are obtained. 

The spatial component, ( )IH , of the system of equations (2.8), often referred to as 

the Hessian, can be used in this case to determine the conditioning of the system.  Thus, 

two confidence measures are suggested. Uras et al. [65] consider the smallest condition 
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number of the Hessian, ( )Hκ .  Barron et al. suggest using the determinant of the Hessian, 

( )Hdet .  The later is shown to provide better results by Barron et al. 

It is important to note that all the suggested confidence measures used by the 

differential methods do not require computing the actual flow.  They only require 

knowledge of the current image intensity.  Thus, these confidence measures provide an 

ideal mechanism for predicting ambiguity in the correspondence process for any flow 

algorithm.  This will prove to be very useful for developing a closed loop active viewer 

control paradigm. 

 

1.2  Region Matching Methods 

Region matching is set apart from gradient methods as it forms the temporal 

filters for features extracted from the previous image in the sequence.  Tiles from the 

previous image are matched with the next image using some metric.  The best match 

provides the most likely displacement.  This is equivalent to searching a spatially shifted 

and temporally differentiated space, where spatial shifts are in unit pixel distances. 

This approach is better suited for the autonomous explorer application as it 

provides robustness with respect to temporal differentiation. It is generally quicker since 

it constructs a highly quantized solution space.  The main disadvantage of region 

matching is that it only provides coarse depth unless extra interpolants or sub-pixel 

estimators are added. 

The distance measure used by more classical algorithms such as Anandan [3], and 

Singh and Allen’s [58] is referred to as the sum-of-square differences (SSD).  It is 

formulated as 
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           (2.10) 

 
where 1I  and 2I  are an image pair, W is a 2-D window function, and ( )dydx, denotes the 

suggested displacement vector. 

Anandan constructs a multi-scale method based on the Burt Laplacian pyramid 

[12].  A coarse-to-fine strategy is adopted such that larger displacements are first 

determined from less resolved versions of the images and then improved with more 

accurate higher resolution versions of the image.  This strategy is well suited for cases 

where the range of pixel motions is large. 

Confidence measures, maxc  and minc , which are based on the principle curvatures, 

minC and maxC , of the SSD surface, are used to steer the smoothing process.  These are 

represented mathematically as 

maxmin

max
max CkSSDkk

Cc
321 ++

= ,      (2.11) 

minmin

min
min CkSSDkk

Cc
321 ++

= .      (2.12) 

where 1k , 2k  and 3k are normalization constants.  The smoothness constraint is based on 

the directions, mine� and maxe� , of the principle axes of the SSD surface, the estimated 

displacements ( )dydxd ,=
�

, and the sought best-fit velocity estimate ( )yxf ∆∆= ,
�

.  Anandan 

also includes Horn and Schunk’s [33] formulation of the smoothness constraint.  

Mathematically, 
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           (2.13) 

where the x,y subscripts represent partial derivatives along x,y respectively. 
 

Anandan’s sub-pixel approach is equivalent to fitting a parabolic surface to the 

SSD distribution.  The 1-D parametrization is 

( ) cbxaxxSSD ++= 2 .       (2.14) 

The sub-pixel flow is obtained by solving for the minimum of this surface. 

Singh and Allen provide another approach to region matching based on SSD 

correlation.  They use a three-frame approach to the region matching method to average 

out temporal error in the SSD.  For a frame 0, they form an SSD distribution with respect 

to frame –1 and frame +1 as such 

( ) ( )dxSSDdxSSDSSD
�

�

�

�

−+= − ,, ,, 10100 .     (2.15) 
 
A two-frame method could also be implemented. 
 
From 0SSD , Singh and Allen build a probability distribution 
 

0)( SSDk
c edR −=
�

,       (2.16) 

where k is a normalization constant.  The sub-pixel flow estimates ( )ccc xyf ∆∆= ,
�

 are then 

obtained by considering the mean of the distribution with respect to ( )dydxd ,=
�

, 
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Singh and Allen employ a Laplacian pyramid strategy similar to that of Anandan.  

This provides a more symmetric distribution about displacement estimates in the SSD.  A 

covariance matrix is then constructed from these estimates as, 
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Singh suggests that the eigenvalues of the inverse of cC  provide a measure of confidence 

for cf
�

. 

For a given flow field ( )iii yxf ∆∆= ,
�

, the least-squares estimate in a 

)12()12( +×+ ww  neighborhood about ( )nnn yxf ∆∆= ,
�

can be obtained from 
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A covariance matrix nC can then be generated in the same manner as (2.18) from 

(2.17).  Flow regularization is then obtained by minimizing the sum of the Mahalanobis 

distances between the estimated flow field f
�

and the two distributions cf
�

and nf
�

, 

 
( ) ( ) ( ) ( )∫∫ −−+−− −− dxdyffCffffCff cccnnn

��������

11 .   (2.20) 

 
The eigenvalues of the covariance matrix [ ] 111 −−− + nc CC  serve as confidence measures for 

the regularization process.  
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An interesting region matching flow algorithm is Camus’ quantized flow [13].  

Liu et al. [39] report that Camus’ algorithm provides one of the two best accuracy-

efficiency ratio curves.  Camus notes the simple relationship between velocity, distance 

and time, 

t
dvelocity
∆
∆= .        (2.21) 

Classical region matching algorithms set t∆  to 1. The range of d∆  is defined by the 

extent of the correlation search area.  Camus proposes that the search be extended in 

time, S  frames deep, and reduced in space.  For example, Figure 2.1 shows a search two 

frames deep ( 2=S ).  The winning displacement is (2,2) in Image[2]. Thus, the velocity 

vector is (0,1/2). 

 
Figure 2.1 – Motion of pixel (2,3) in Image[0] to pixel (2,2) in Image[2], an optical 

flow of (0,1/2) pixels per frame. 

 

The advantage of this approach is that performing a search over time instead of 

over space is linear in nature rather than quadratic.  Another efficient element of this 

algorithm is its suitability for integer arithmetic by suggesting additional optimizations 

for the correlation process under this framework.  Camus proposes a box filter for ( )jiW ,  

in (2.10) and memory management methods that make this approach extremely efficient 
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and robust.  The price paid for this speed is that the algorithm only provides a quantized 

flow field containing 2)12( +nS different possible velocities. 

 

2. Constructing a Correspondence Mechanism 

It should be noted that the objective here is not to design a perfect optical flow 

estimator, as this is an impossible task.  Instead, a set of criteria is established to provide 

guidelines for selecting components of the different flow algorithms in the construction 

of a correspondence mechanism and the motion selection mechanism.  After considering 

the different optical flow algorithms in the literature, three elements must be chosen for 

constructing a suitable optical flow algorithm: a pixel motion estimator, a sub-pixel 

motion estimator and a confidence measurement process.  Smoothing of the flow field is 

neglected to thus provide the accumulation process with unbiased data. 

Under the current framework, the following criteria should be kept in mind when 

designing a flow estimator: 

i) The flow algorithm should require minimal temporal support. The 

correspondence algorithm should be robust even when motion sequences 

are not smooth.  This, ideally, implies a two-frame correspondence 

problem. 

ii) It is important to be able to associate a confidence value to the 

measurement.  As long as the relative confidence in flow measurements 

between images can be well estimated, the actual quality of the flow 
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measurement is left as a parameter to be decided on for the particular 

application. 

iii) The algorithm should lend itself well to real-time navigation system. In the 

extreme case, if an algorithm is too slow, the assumption of a rigid 

environment may not necessarily hold. 

 

Finally, the optical flow estimator results presented in this section are qualified 

using Barron et al.’s standard angular error metric.  This metric is described as follows. 

Let a motion vector, ( )Tyxf ∆∆= ,2

�

, be represented as a 3-D directional vector, 

( )
1

1
223
+∆+∆

∆∆≡
yx

yxf
T,,�

.       (2.22) 

For flow estimate, ef2

�

, and corresponding ground truth, cf2

�

, the angular error is defined 

as 

( )ceE ff 33
1

��

⋅=Ψ −cos .       (2.23) 

This metric is chosen, as it appears to be the standard used by optical flow evaluation 

literature. 

 

2.1 Pixel Correspondence 

The first key point in selecting an optical flow algorithm is condition i), which 

suggests that shorter temporal support is desired.  An important issue with differential 

algorithms is their stability under such conditions.  To investigate this stability, the Lucas 
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and Kanade algorithm was modified to use 2-pt and 3-pt 2 numerical temporal 

differentiation with equivalent temporal smoothing.  Fleet and Langley’s IIR filter 

approach was also implemented.  These were tested on the translating tree sequence 

Figure 2.2  [8].   This sequence is chosen as it contains both sharp and smooth intensity 

features while providing a uni-modal flow field. 

 

    

 

 

Figure 2.2 – Frame 4 from the translating tree sequence, and the ground truth optical-
flow field. 

 

The differential approach is compared to a region-matching algorithm.  Small 

pixel motions may be assumed as the viewer’s motion assumed small.  Thus, the multi-

scale pyramid implementation used by Anandan and Singh may be neglected. Camus’ 

optimized region matching algorithm is used.  This algorithm is extremely efficient while 

providing flexible and robust temporal support.  The implementation presented here uses 

two frames of temporal support.  Spatial support was set to match that of the differential 

algorithms (9 pixels). 

Results for Lucas and Kanade’s, and Fleet and Langley’s algorithms are 

compared to the traditional 5-pt temporal differentiation and Camus’ region-matching 

algorithm in Table 2.1.  Camus’ algorithm provides the best result for this sequence. 
                                                 

2 Two-point and three-point differential operators were implemented as (1,-1) and (1/2,0,-1/2). 
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Algorithm Angular Error (Deg) 

2-pt Lucas & Kanade 22.6343 
3-pt Lucas & Kanade 20.9849 
3-pt Fleet and Langley 18.5682 

5-pt Lucas & Kanade ( )00.=λ  3.7262 
 5-pt Lucas & Kanade ( )01.=λ 1.9250 

2-pt Camus 1.4649 

Table 2.1 – Flow error computation for translating tree sequence. 

 

When comparing Figure 2.3(a) and Figure 2.3(b) to Figure 2.3(c) and Figure 

2.3(d), it becomes apparent that, for the translating tree sequence, that the differential 

method is unreliable for two- and three-image sequences.  It is noted that the flow 

estimates are most unstable along strong intensity changes.  Normally, such features are 

band-limited through temporal smoothing.  From a signal processing point of view, this 

smoothing seems counter-intuitive, as features with higher frequency signatures should 

provide more information for the correspondence process. Region matching algorithms 

avoid the temporal smoothing process, and as such, provide a broadband approach for 

matching signals with higher-band frequencies. 

The disadvantage of Camus’ region matching algorithm is that it doesn’t provide 

a true sub-pixel estimate or a measure of confidence.  Thus, it becomes necessary to 

invent or borrow these components from other algorithms.  Sub-pixel estimation 

approaches and confidence measures are discussed in the next two sections. 
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(a) 2-pt Lucas & Kanade  (b) 3-pt Lucas & Kanade 
 

 

  

 
(c) 5-pt Lucas & Kanade  (d) 2-pt Camus 

Figure 2.3 – Optical Flow fields for Lucas & Kanade, and Camus. 

 

2.2 Sub-pixel Correspondence 

Four approaches to sub-pixel estimation are described.  Three approaches are first 

considered: a bilinear interpolation method, Singh’s method and Anandan’s method.  A 

fourth method, that combines Anandan and the bilinear approaches, is derived. Table 2.2 

provides results for each of these approaches for several standard synthetic image 

sequences for which the respective ground-truth is known.  Camus’ pixel estimation 

approach, as well as the percentage of pixel motion estimates that are within a single 
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pixel range of the ground truth optical flow, are provided to help identify how much room 

for improvement is available to the sub-pixel estimator. 

 

 Angular Error for Image Sequence (Deg) 
Sub-Pixel Type Sine-B Sine-C Trans. Tree Diver. Tree Yosemite

(no sky) 
Camus 

(% in pixel range) 
5.21324 
(100%) 

0 
(100%) 

1.46495 
(99.5%) 

16.2144 
(98.9%) 

13.0404 
(90.9%) 

Bilinear 2.80501 0 1.25434 7.41948 7.92528 
Singh 4.86211 0 2.66364 16.5368 13.1318 

Anandan 1.17886 2.3822 2.57259 6.95023 6.46842 
Bilinear & Anandan 0.0124328 0.525342 1.22560 5.68054 7.21033 

Table 2.2 – Sub-pixel estimation results. 
 

The first sub-pixel flow estimator uses a bilinear interpolator to up-sample the 

local patches of image around the SSD minimum by a factor of four.  A new refined sub-

SSD is obtained at this point. Results for this approach demonstrate that this method 

provides a robust estimate that is, however, still coarse.  This is noted in sequences where 

the distribution of phase of the flow-field is well spread such as the Diverging Tree and 

Yosemite sequences.  Singh’s approach provides poor results overall. It relies on 

statistical estimation of the sub-pixel displacement.  Thus large patches of the image must 

be used to obtain statistical correctness.  This is an undesirable property as the larger the 

image patch becomes, the less local information is represented.  Barron et al.’s comment 

concerning a bias for sub-pixel values that approach zero is noted as well, as Singh’s 

algorithm performs well for the Sine-C which has no sub-pixel component, and the 

translating tree which only has a sub-pixel component in it’s x- component.  Anandan’s 

method was computationally efficient and provided better results than the previous three 

mentioned. Conversely to Singh’s method, it is over ambitious in cases where no sub-
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pixel displacement exists.  This is observed for the Sine-C sequence.  A fourth flow 

estimation algorithm is implemented that takes advantage of the robustness of the linear 

method to constrain Anandan’s estimation.  Thus, a bilinear sub-SSD is first computed; 

Anandan’s quadric surface fit is then applied to the sub-SSD surface to refine the 

estimate.  This method provides the best sub-pixel flow estimate over all and is adopted.  

It is similar to Matthies et al.‘s approach of using a cubic interpolator on top of 

Anandan’s sub-pixel flow estimator to provide a sub-sub-pixel flow estimation. 

 

2.3 Measure of Confidence 

The last step in building a correspondence estimator involves developing a 

confidence measure.  This section provides a novel and formal mechanism for comparing 

different optical-flow confidence measures in the context of maximal estimation theory.  

From this, a more general and improved confidence measure is suggested and 

demonstrated experimentally. 

Three measures of confidence are proposed: the differential method, Singh’s 

approach, and a modified Anandan technique.  Barron et al. evaluate these confidence 

measures by applying thresholds to reject undesirable flow estimates and then re-

evaluating the sparser flow-field.  The evaluation approach taken here is to determine 

how well the confidence values represent the information contained in the estimate.  As 

such, flow estimates are never rejected.  Instead, emphasis is placed on using the 

confidence values as weights to maximally merge information.  Thus, a weighted least-

squares approach is used to determine how well error is attenuated by the confidence 

measures.  For a linear measurement model, 
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γ+= xHz ,        (2.24) 

where H is a linear operator relating the state vector x  to a measurement z , and γ  is 

White Gaussian measurement noise with an associated covariance matrix, 
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In the case of an ideal measurement process, the inverse confidences should be equivalent 

to the variances on the flow measurements.  In the flow-estimation framework, each of a 

confidence pair ( )yx cc ,  is provided for the x,y components of the flow estimate, 
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This framework requires modifying the original confidence formulations.  For the 

differential approach, the diagonal components of the Normal matrix (2.7), 2
xI  and 2

yI , 

are used.  For Singh’s approach the diagonals of (2.18) are used.  Similar to Anandan’s 

approach, Matthies et al. choose to use the curvature along the x,y directions of the SSD 

surface about its minimum as a confidence measurement.  This is reasonable as sharpness 

of the parabolic SSD provides a direct metric of dissimilarity between the minimum and 

its neighbors.  The attribute is fully described by the second order derivative of SSD(x) 

which is parameter a of (2.14), 
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where ( )yx aa ,  represent the curvatures along the x,y directions of the SSD.  Anandan’s 

original confidence measure can be expressed as, 

( )
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


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A more general and novel form for Anandan’s method is introduced here, 
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where K determines the weight of the SSDmin values. 

The maximal weighted least-squares estimator of (2.24) is [48], 

( ) ( )γ−= −−− zCHHCHx m
TT

m
111ˆ ,      (2.30) 

and the associated state variance, 2
x̂σ , is obtained from the following expression 

( ) 112 −−= HCH
m

T
x̂σ .       (2.31) 

For perfect confidence values, γ  should contribute minimally to x̂ .  As the error in the 

flow measurement is known for synthetic sequences, it is possible to determine how the 

confidence measure predicts the error in the measurement.  For simplicity, H , is chosen 

to be 
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and, γ , is chosen as 

( )22
ee yx ∆∆= ,γ ,        (2.33) 

where ( )ee yx ∆∆ ,  is the flow error for a pixel ( )ji, .  The weighted error is then 
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For an MxN flow field, the full weighted error, based on the state variance, 2

x̂σ , is 

provided by the following expression, 
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When yx cc = , no information about the how to combine the measurements is available.  

As such, jie , becomes the squared average of ( )ee yx ∆∆ , .  Thus, the average error over the 

flow-field is provided by the following expression, 
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 .      (2.36) 

To evaluate how effective the confidence values are for merging information over the full 

field, the following ratio of WE  and AE  is computed as 

A

wA
Gain E

EEE −
= .       (2.37) 

Table 2.4 shows a compilation of results for synthetic sequences and a pair of real 

zero-flow sequences.  Two values are provided in each cell.  The top value is the 

effective confidence ratio GainE , the second in parentheses indicates the percentage of 

flow estimates in the image that had 

2

22
ee

ji
yxe ∆+∆<, .       (2.38) 

Comparing these two values provides a measure of how effective the state variance, 2
x̂σ , 

is for weighing the errors of the MxN field. 
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The results presented in Table 2.3 show that the most consistent estimator is the 

generalized Anandan method for K=2, 3 and 4.  It is consistently positive for all 

sequences. It out-performs Singh’s method five times out of six.  It performs similarly or 

slightly better than the differential confidence measure five times out of six.  Also, the 

K=2, 3 and 4 results provide more consistent results than the K=0, 1 implementations, 

which return negative values for the translating and diverging tree sequences. 

 

 Effective Confidence Ratio (%) 
(Improved Estimate Ratio (%)) 

Confidence 
Type 

Sine-B Trans. 
Tree 

Diver. 
Tree 

Yosemite 
(no sky) 

Still 
Camera 

(Well lit) 

Still 
Camera 

(Somber) 
Differential 3.05444% 

(53.09%) 
10.3638%
(59.70%) 

-1.2124% 
(43.71%) 

72.2748%
(58.01%) 

67.0919% 
(8.69%) 

78.3251%
(55.93%) 

Singh 0.1851% 
(77.37%) 

61.7852%
(66.85%) 

-0.4616% 
(40.69%) 

11.6308%
(57.85%) 

61.9962% 
(9.01%) 

33.9959%
(56.45%) 

 Matthies et al. 
(K=0) 

5.8855% 
(60.73%) 

25.1118%
(65.11%) 

-4.1464% 
(46.01%) 

69.8526%
(61.68%) 

67.2141% 
(8.76%) 

81.9122%
(57.57%) 

Anandan 
(K=1) 

6.3547% 
(60.73%) 

42.5485%
(65.11%) 

-1.7531% 
(46.01%) 

64.4385%
(61.68%) 

66.0995% 
(8.76%) 

74.9688%
(58.52%) 

Mod. Anandan 
(K=2) 

6.6879% 
(60.73%) 

45.0589%
(65.11%) 

25.4441 
(46.01%) 

51.6768%
(61.68%) 

64.8500% 
(8.76%) 

45.7176%
(58.52%) 

Mod. Anandan 
(K=3) 

6.8727% 
(60.73%) 

43.0914%
(65.11%) 

64.4974%
(46.01%) 

47.4398%
(61.68%) 

63.4580% 
(8.76%) 

35.1616%
(58.52%) 

Mod. Anandan 
(K=4) 

6.8991% 
(60.73%) 

41.9948%
(65.11%) 

77.9971%
(46.01%) 

47.4786%
(61.68%) 

61.9814% 
(8.76%) 

35.0015%
(58.52%) 

Table 2.3 – Confidence Measurement. 
 

To determine how stable these confidence estimators are under noisy conditions, 

two real image sequences were tested.  These involved taking two pairs of still pictures 

under well and poorly lit conditions (Figure 2.4).  The ground truth flow is assumed to be 

a zero vector flow field.  Comparing these two sets of results indicates how sensitive the 

confidence measurement is to noise.  It is noted that the differential method is relatively 
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insensitive to noise.  This is due to the spatial smoothing process involved in computing 

Ix and Iy.  Both Singh and Anandan’s methods are sensitive to noise. Singh’s method 

performs much more poorly under the somber conditions.  It is noted that as K gets 

bigger, Anandan’s approach becomes more sensitive, as noise is accumulated in the SSD 

distribution, and the SSDmin value gets amplified.  For this reason K=2 is chosen over 

K=3 or 4. 

 

(a) Somber image (b) Well lit image 
Figure 2.4 – Real images for zero flow confidence tests. 
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CHAPTER 3  

 

Small Motion Surface Reconstruction 

 

The problem of shape-from-motion is defined in two parts: the recovery of viewer 

motion parameters, followed by 3-D shape reconstruction from a group of images [1, 31, 

54, 63].  This part of the thesis is mainly concerned with the second part of this problem -

- recovering structure given that the motion has already been determined up to a given 

certainty.  For a two-image approach, the literature sometimes groups this problem with 

stereovision.  An important discrepancy with stereovision problem resides in the fact that 

the motion is not known deterministically in the current problem.  As such, it is probably 

more appropriate to call this problem monocular motion-stereo.  Independently of the 

nomenclature, this problem clearly does draw strongly from the area of traditional 

stereovision. 

In this chapter different concepts of stereovision and shape-from-motion will be 

examined.  The projective geometry for estimating depth from a pair of images will be 

reviewed, methods for accumulating depth estimates will be examined and the Kalman 

filter framework of Matthies et al. will be described.  The latter will be modified to 

include maximal-estimation for spatial support in the depth interpolation process.  This is 

a novel improvement to the Kalman framework, and as such, results will be provided to 

support this claim. 
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1. Perspective Projection Stereo 

The notation used in this thesis refers to points in 3D space using capital letters.  

Points in the camera’s image plane are denoted using lower case characters.  Bold 

characters indicate homogeneous motion operators.  A subscript i is used to denote 

different iterations of the camera motion being considered.  

A pinhole camera of focal length f is assumed and a viewer-based coordinate 

system is adopted (Figure 3.1).  The origin is at the focal point of the camera.  The image 

plane is at fZ = .  The Z-axis runs along the optical axis, and the X- and Y-axes are 

parallel to the x- and y-axis of the image plane respectively.  This is a common right-

handed projection model for most shape-from-motion and stereovision problems.   

 

x 

y f
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 Figure 3.1 – Pin-hole camera model.  
 
Equation (3.1) provides mathematical representations for the pinhole camera, 

.









































=





















1000
000
000
000

i

i

i

i

i

i

i

i

i

i

Z
Y
X

Zf
Zf

Zf
Zf

Zf
f
y
x

    (3.1) 



 36

The ego-motion of the camera is decomposed into a rotation about an axis passing 

through the origin, and a translation.  Any three-dimensional motion can be represented 

as such [20]. This is denoted as ( )iiT Ω� , where ° indicates a composite operator. Given a 

point in three-dimensional space, ( )iii ZYX ,, , and a camera motion, ( ) ( )
izyxizyx TTT ΩΩΩ ,,,, � , 

the new location of the point, ( )111 +++ iii ZYX ,, , is given by (3.2).  This homogenous operator 

assumes a small rotation approximation, θθ ≈sin , 
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From expressions (3.1) and (3.2) an expression for the projected motion, ( )ii yx ∆∆ , , of a 

point on the image plane can be derived [54].  For clarity, the iteration subscript, i, is 

dropped from this point on.  Thus, 
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Matthies et al. derive a similar expression,  
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They use a differential formulation that assumes infinitesimal image sampling.  This 

assumption is correct as long as any motion in the Z-direction is much smaller than the 

depth of the point (i.e. ZTz << ).  If this condition is met, expression (3.3) and (3.6) can 

be considered equivalent.  Considering that a small motion constraint is imposed on the 

autonomous viewer system described here, this assumption is deemed valid, and (3.6) is 

adopted instead of (3.3). 

 

2. Multi-Image Depth Accumulation 

There are two general approaches to multi-image shape-from-motion.  The first 

involves simultaneously considering all data collected for computing a minimum 

solution.  This is referred to as the batch method [31, 54, 63].  This approach is elegant, 

and generally very robust, but it does not lend itself well to an active autonomous 

scenario in which real-time interaction is required.  The second approach is recursive and 

often takes the form of a Kalman filter.  This approach and related elements in the 

literature are described in the following section. 

 

2.1 The Kalman Filter 

The Kalman filter is a weighted sum mechanism derived from maximum-

estimation theory.  It is often used in robotics and shape-from-motion application for 

temporal integration of data [6, 9, 11, 16, 30, 35, 38, 46, 60, 70].  The different 
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components of a Kalman filter are: measurement model, state transition model and 

update phase [18]. 

The measurement model relates a current measurement to an estimated current 

belief about the state, ( )kx� , of the world.  The forward measurement process, where Λ 

represents the linear relationship between the expected measurements given a current 

state, and ( )kw�  is the noise function, is described as such, 

( ) ( ) ( )kwkxkz ���

+Λ= .       (3.7) 

This relationship is generally not invertible.  If ( )kw�  is zero-mean and Gaussian with 

covariance matrix wC , least-squares minimum solution can be estimated [48], 

( ) ( ) ( )kzCCkx w
T

w
T �111 −−− ΛΛΛ=ˆ ,      (3.8) 

as well as its associated covariance matrix, 

( ) 11 −− ΛΛ= w
T

k CP .       (3.9) 

The state transition model provides a prediction of the new state given a current 

action, ( )ku
� , is applied to the system.  For linear systems, a state transition matrix, Γ, 

models physical characteristics of the state-space and takes the form of a predictive 

element (interpolator or extrapolator).  This is represented as 

( ) ( ) ( )kkukkx γ��

+Γ=+ |ˆ 1 ,      (3.10) 

where ( )kγ�  is zero-mean Gaussian noise with covariance matrix γC  introduced into the 

system during state transitions.  The associated projected covariance matrix is obtained 

from 

γCPP T
kkk +ΓΓ=+ |1 .       (3.11) 
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The update phase is used for integrating the current measurement with the 

predicted state to provide a new current state estimate  

( ) ( ) ( ) ( )( )kkxkzKkkxkx k |ˆ|ˆˆ 1111 1 +Λ−+++=+ +
� ,   (3.12) 

with associated covariance matrix 

( ) kkkk PKIP |
ˆ

111 +++ Λ−= .      (3.13) 

The Kalman gain, 1+kK , is used to weigh the importance of the new state estimate, 

obtained from the measurement, with respect to the predicted estimate, obtained from the 

state-transition model.  Mathematically, 

( ) 1
111

−
+++ +ΛΛΛ= w

T
kk

T
kkk CPPK || .     (3.14) 

The Kalman filter framework has the important property of providing a provable 

least-squares solution to a state-space estimation problem.  An important component of 

this solution includes confidence measure in the form of a covariance matrix.  The 

following criteria are required of a state-space model for it to be optimal in the context of 

a Kalman filter: 

•  Zero mean system noise. 

•  Independent noise. 

•  A linear model for evolution over time. 

•  A linear relationship between the system state and the measurement made. 

 

It is often impossible to ensure that all the above requirements are met.  This does 

not, however, imply that the Kalman filter cannot be used.  Rather, it suggests that the 

estimator may not be optimal.  Despite non-optimal conditions, there is much work in the 
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areas of computer vision and robotics that supports the claim that the Kalman filter is a 

valid tool for accumulating noisy measurements [18, 48, 60].  Most often the Kalman 

filter is used for tracking and motion estimation problems.  There are however 

applications in which this mechanism is used for depth estimation. 

Beardsey et al. [9] demonstrate how an Iterated Extended Kalman Filter (IEKF) 

can be used for feature-based depth accumulation.  This work shows how corners can be 

used to reconstruct planar scenes in an autonomous navigation scenario.  The extended 

Kalman filter is used to approximate a non-linear projective measurement model by a 

first order Taylor expansion.  Several iterations (the authors suggest three) are used to 

improve the linearized approximation. 

Kumar et al. [38] also develop a feature based Kalman framework.  They use a 

two-step approach in which shallow structure is first estimated, and in the second step 

model refinement and extension are applied.  The first step is obtained from a pseudo-

batch approach, while the second involves a Kalman mechanism. 

Azarbayekjani et al. [6] use an Extended Kalman Filter (EKF) framework to 

extract 3-D motion parameters and point-wise depth for rigid objects in a scene.  They 

follow Tomasi and Kanade’s [63] approach for extracting image features.  Motion is 

described with respect to the camera frame, while depth is described with respect to the 

object’s coordinate frame. 

Although, the Kalman framework is generally used for feature tracking, it is also 

used for iconic depth estimation.  In such a framework it is standard practice to treat each 

depth element as being independent, despite the fact that these local estimates are not 

usually independent.  This is necessary to make the solution computationally tractable     
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[30, 35, 46, 70].  As such, the image becomes an array of scalar and independent Kalman 

filters to which spatial support is applied separately.  Several different approaches to 

iconic depth accumulation exist in the literature. 

A particularly interesting approach is Heel’s work [30].  The author shows how to 

integrate the image flow constraint (2.1) into the Kalman framework using the following 

direct depth measurement (3.15), thus avoiding the computation of the optical flow, 
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Hung and Ho [35] build on Heel’s approach.  They use the image gradient in the 

predictive phase of the filter.  They also integrate a local smoothness constraint into their 

framework.  Just as the gradient optical flow methods, this approach requires temporal 

derivation.  Thus, sufficient temporal support and smoothness must be supplied for 

proper temporal numerical differentiation. 

Xiong and Shafer [70] implement an iconic depth estimator using an Extended 

Kalman Filter.  They concentrate on augmenting the depth uncertainty with motion 

information.  They suggest mathematical techniques such as Sherman–Morrison-

Woodbury matrix inversion and a weighted principal component analysis framework for 

making the approach computationally tractable.   They use the current depth estimate to 

bootstrap the next motion estimate. 
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The Kalman framework used in this paper is very closely related to that of 

Matthies et al.  The small motion assumption makes the depth-estimation formulation 

expressed in (3.6) valid.  This approach is advantageous as it provides a linear 

measurement model using the inverse-depth (or disparity) instead of the true depth as the 

state variable.  The use of a correlation-based optical flow estimator provides temporal 

robustness for non-smooth image sequences and a scalable, efficient computational 

framework. 

The measurement model is described first.  As mentioned in the introduction, the 

correspondence problem and triangulation problem are ill-posed and ill-conditioned, 

respectively.  A qualified estimator of the projected motion should reflect and weight 

these issues.  In the same manner as (3.8), Matthies et al. provide a least-squares solution 

to this problem.  They begin by rectifying the image by removing the rotational 

component of the optical flow (which is independent of the depth), 
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The least-squares disparity estimate can then be obtained from the rectified optical flow 

as 
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where fC  represents the covariance of the measurement error of the optical flow vector, 
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The corresponding variance, 2
dσ , of the disparity estimate is obtained from 
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For baseline stereovision (Tz ≡ 0) expression (3.20) illustrates the advantage of a 

larger baseline motion mentioned in the Introduction of this thesis.  A larger baseline 

between views provides more robust triangulation of a 3-D point.  This becomes apparent 

from (3.20) as the magnitude of the baseline, ( )yx TT , , increases, 2
dσ  decreases.  As the 

autonomous system here has limited control over the magnitudes of xT and yT parameters, 

it is only natural to instead take advantage of an active strategy to maximize 2
x∆σ and 2

y∆σ .  

This will be the approach used for selecting the motion strategy described in the next 

chapter. 

For looming motions, where 0≠zT , a vanishing point is observed where the 

vector connecting the two centers-of-projection of the two images traverses the projection 

plane.  This point of contraction/expansion is referred to as the focus-of-expansion (FOE) 

and is computed from (3.20) as 
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The depth estimate becomes increasingly ill-conditioned around the FOE, while it is 

completely ill-posed at the FOE. 

Matthies et al. introduce spatial support into their system using interpolation and 

regularization stages [62].  They suggest that the state transition model can be treated 

equivalently to a polygonal mesh.  Thus, the iconic depths are transformed as if they were 

a polygonal mesh under homogenous transformation.  Heel [30], and Xiong and Shafer 

[70] use a similar approach to interpolation.  A bilinear interpolation scheme, similar to 
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Gouraud shading is used to predict the new variance values of the predicted depth 

estimates.  This can be expressed as such: given a triplet of connected disparity estimates 

on the surface, 0d , 1d and 2d , the new disparity value, id , is computed as 

221100 dwdwdwd iiii ++= ,      (3.22) 

where 0w , 1w  and 2w  represent the weighted distances to the interpolated disparity, id , 

for each point, 0d , 1d and 2d ,  respectively.  The associated variance for the inverse depth 

is computed by pre- and post-multiplying the Jacobian of (3.22) onto the covariance 

matrix constructed from 2
0dσ , 2

1dσ and 2
2dσ .  This effectively results in 
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The authors then suggest that a pure blend may be used to interpolate the new confidence 

values, 
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The interpolation method of Matthies et al. and Heel leads to an increase in 

uncertainty when interpolating.  Information theory suggests the opposite; on average, 

conditional entropy of a random variable should not increase as more measurements are 

combined into an estimate [15].  The entropy of a random variable measures its 

uncertainty.  As such, uncertainty should not increase.  Thus, 

( )2
2

2
1

2
0

2
ddddi σσσσ ,,min≤ .      (3.25) 

The upper bound for expressions (3.24) and (3.23) is 
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which implies that the approach used by Matthies et al. and Heel does not conform to 

basic information theory. 
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 In the implementation presented here, regularization is dropped and the 

maximum-estimation approach is extended to the prediction procedure.  It seems that, as 

the spatial and temporal estimation processes have already been decoupled, and that 

confidence information is available from the temporal estimator, a maximal estimation 

approach to the spatial interpolation of the surface is the natural extension to the current 

framework.  Work by Mathur and Ferrie explains how to do this for local curvature 

models such a Bezier frames [47].  The approach taken here will involve a simpler local 

surface model -- the triangle.  As such, the depth interpolator is described as follows 
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The variance associated to the new disparity value is 
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This approach conforms to the rules of information theory.  It performs well provided 

that the linear interpolation model is correct.  Computer graphics theory has shown that 

for dense depth fields this is an acceptable assumption [24]. 

The last step in the Kalman framework is the update phase.  The Kalman gain is 

computed as 
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where kp  represents the current depth estimate covariance.  The new measurement is 

integrated into the current disparity estimate as such 

( )iimiiii ddKdd ||
ˆˆ

1111 ++++ −+=       (3.30) 

and the updated confidence is obtained as 



 46

2
1

1
1

dkk

kk
k P

P
P

σ+
=

+

+
+

|

|
.       (3.31) 

3. Results 

This section presents results for the depth accumulation procedure described 

above.  Synthetic data is used to demonstrate that the maximum estimation approach to 

spatial interpolation outperforms the previous approach used by Matthies et al.  The 

synthetic environment is constructed from the rendering of a range image (an owl).  The 

object is placed 3 units away from the viewer.  A plane is placed perpendicular to the 

camera’s viewing axis 6 units away (Figure 3.2).  A horizontal texture is applied to 

reduce the aperture problem along the vertical direction.  The viewer performs fifteen up-

and-down iterations of T = (0,0.044,0) and T = (0,-0.044,0). 

 

 

 

(a) Object in space  (b) Textured object  (c) Ground truth depth 
Figure 3.2 – Sample images of synthetic experimental setup. 

 

The error in estimated depth is measured as the root-mean-square (RMS) of the 

difference between the estimate and the ground truth over the full MxN depth image, 

( ) ( )( )∑ −= 21 jidjid
MxN

Err Estgt ,,      (3.32) 
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Although this metric is not ideal for providing a global description of the reconstruction, 

it is certainly reasonable for comparing convergence rates for the depth estimation 

process. 

Figure 3.3 provides convergence plots for the three different interpolation 

methods suggested.  The square weighted sum provides the worst results.  The maximal 

estimation method provides the best results by converging to a lower RMS-Error.  Figure 

3.4, Figure 3.5 and Figure 3.6 depict confidence, depth and error maps associated to the 

fifteenth iteration of the estimation process.  Confidence is represented as 

( ) ( )( )jipjiI kc ,log, −= .  Thus brighter intensity indicates higher confidence.  For the error 

maps, ( ) ( ) ( )( )2jidjidjiI estgtErr ,,, −= , and as such darker intensity imply less error. 

 

 
Figure 3.3 – RMS-Error as a function of time for squared interpolation method, for 

blend method, and for maximal-estimation method. 
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Figure 3.4 and Figure 3.5 indicate that Matthies et al’s approach relies heavily 

on regularization to guess the surface where the measurement has low confidence.  When 

the regularization process is removed, less confident estimates have the upper hand and 

propagate.  This results in large holes in the confidence maps.  Even if the regularization 

process were included, no framework for generating new confidence values is provided 

for the interpolated depths elements.  As well, this method fails to take advantage of 

confidence measures already available.  The maximal estimation approach provides a 

complete, compact and robust method for simultaneously interpolation and propagating 

information to areas of low confidence, as can be seen when examining Figure 3.6 in 

contrast to results presented in Figure 3.4 and Figure 3.5.  

 

 

 

(a) Confidence map  (b) Error map 
   

  

(c) Depth map   
Figure 3.4 – Confidence, depth and error maps after 15 iterations of SQUARED 

interpolation method. 
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(a) Confidence map  (b) Error map 
  

(c) Depth map   
Figure 3.5 – Confidence, depth and error maps after 15 iterations of BLEND 

interpolation method. 
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(a) Confidence map  (b) Error map 
  

(c) Depth map   
Figure 3.6 – Confidence, depth and error maps after 15 iterations of MAXIMAL- 

ESTIMATION interpolation method. 
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CHAPTER 4  

Active Reconstruction 

 

1. Active Vision 

From earlier discussion on correspondence and depth estimation, it should be 

clear that both multi-image feature and iconic approaches to surface reconstruction can 

fail to recover depth for passive motion, even if the images are textured and the viewer 

motion is not ambiguous.  This occurs when the viewer’s motion fails to take advantage 

of image features that require a selective direction for correspondence.  Figure 4.1 shows 

an example of a horizontally textured scene and its associated depth maps after 10 

horizontal and vertical motions. Figure 4.2 shows the RMS-Error of the measured depth 

for several iterations of horizontal and vertical motions.  This result suggests that a 

passive viewer moving horizontally will fail to recover depth for this scene.  Thus, it is 

suggested in this thesis that an active control strategy should be adopted to attempt to 

maximally extract information for image features. 
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(a) Horizontally textured 
     scene 

 (b) Depth map after 10 
      horizontal motions 

 (c) Depth map after 10 
     vertical motions 

Figure 4.1 – Vertical and horizontal motions for reconstructing a horizontally textured 
scene. 

 

 

Figure 4.2 – RMS-Error plot of horizontal and vertical motions for the horizontally 
textured scene. 

 

Active vision generally provides two approaches for reducing the ambiguity that 

results in the measurement process: active sensing, and passive sensing from an active 

viewer.  The first approach involves controlling the lighting conditions in the scene such 

that ambiguity in the image formation process is removed. Active photometry and laser-

range finders are examples of such systems [14, 64, 68].  These methods provide good 
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results under the assumption that the lighting over the sampled surface is controllable and 

that the reflective properties of the surface are sufficient for correct image formation.  

Such methods, clearly, also assume that the projection of a laser or colored light will not 

impede the measurement or cause detriment to the environment.  These conditions do not 

necessarily lend themselves well to exploration of an unknown environment, as surface 

characteristics are generally unknown a priori. 

The second approach involves a passive sensor and an active viewer.  As such, the 

camera geometry is used to constrain the depth estimation process.  For this thesis, the 

camera is moved to provide multiple samples of the surface from different points of view.  

The relationship between the viewpoints is actively controlled to profit from geometrical 

properties of the sensory apparatus [2].  The active viewer introduces a known 

relationship (up to a given certainty) between the different views, thus providing some 

constraints for inverting the correspondence and depth measurement sub-problems.  This 

is often referred to as the epipolar constraint, and is discussed in section 2.  Second, the 

active viewer selects the next-step that is predicted to best reduce ambiguity or increase 

confidence in next measurement.  Figure 1.1 is updated with a new process block for 

selecting the next motion of the viewer to obtain Figure 4.3.  This strategy is developed 

in the section 3. 
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Figure 4.3 – Block diagram of active depth accumulation system. 
 

 

2. Epipolar Constraint 

An important element in the geometry of stereovision is the epipolar constraint 

[21].  Epipolar geometry constrains the angular components of an optical flow field.  

When the motion parameters between two views are fully known, the search space in the 

correspondence problem can be restricted to a line. 

 

 

1 

Figure 4.4 – Epipolar geometry. 
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As depicted in Figure 4.4, a ray can be constructed by connecting the centers of 

projection, iO  and a 3-D point, P .  This ray projects to a point ip  in the first image.  The 

ray, POi , projects to a line, ie� , in the second image.  This suggests that all 3-D points that 

project to ip  in the first image must project onto the line ie�  in the second image.  The 

essential matrix represents this structure mathematically [21, 64], 
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Thus, it is sufficient to search along this line to match the pixels in the two images.  This 

can be interpreted as an angular constraint on the flow measurement.  The epipolar line in 

the second frame, given that the image point in the prior frame is ( )fyx pp ,, , is computed 

as follows, 
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given the following form for the equation of a line, 

bx
m
m

y
x

y += .        (4.3) 

The offset term b  is ignored as it only contains information about the position of the 

epipolar line in the new image.  This information is available under the trivial condition 

where a null motion is applied and px  does not move.  When expanding (4.1) and (4.2), 

the terms xm and ym  are described as 

( ) ( ) ( ) fTTyTTxTTm xzypzxypyyzzx Ω++−Ω+Ω+Ω−= ,   (4.4) 

( ) ( ) ( ) fTTyTTxTTm xzypxxzzpyxzy −Ω+Ω+Ω−Ω+= .  (4.5) 
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Epipolar geometry can also be used when the motion parameters are not known 

deterministically.  More precisely, an additional constraint that takes into account the 

expected motion and respective covariance can be imbedded into the correspondence 

procedure by adding a bias to each cell of the SSD(i,j) surface, where i,j are the 

coordinated pixel distances from the center point of the SSD distribution.  The bias is 

derived from the square of the Mahanalobis distance, ( )2jiM ep , , of the i,jth cell from the 

expected epipolar line.  Thus a robust constraint is used to sway the minimum of the SSD 

surface in the direction of the epipolar line, and SSDmin becomes 

( ) ( )







 +=
2jiMepejiSSDSSD ,

min ,min .     (4.6) 

Uncertainty in the motion parameters and image point parameters can be 

projected into the epipolar parameter space, to obtain (4.7), by pre and post-multiplying 

the diagonal covariance matrix by the Jacobian of expressions (4.4) and (4.5),   
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Given that a normalized directional vector at each pixel in the SSD distribution is 

( ) ( )
22 ji

jijif
+

= ,,ˆ ,       (4.8) 

the squared Mahanalobis distance between the unit epipolar vector, ( )yx mmm ˆ,ˆˆ = , and the 

i,jth cell of the SSD is 
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which, after some manipulation, becomes 

( ) ( )( ) ( )( ) 
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2 1

yyxx
m
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σ ,   (4.10) 

where from the symmetry of expressions (4.4) and (4.5),  

222
mymxm σσσ == .       (4.11) 

The bias is added when searching the SSD for its minimum. It is removed again when 

computing the actual confidence in the flow measurement. 

 

(a) Sample field for vertical motion (b) Sample field for horizontal motion 
Figure 4.5 – Flow fields for vertical and horizontal motions in horizontally textured 

environment. 
 

Figure 4.5 shows sample flow fields for the horizontal and vertical motions when 

epipolar geometry is ignored.  When moving vertically, the y- components of the flow-

field are constrained, while the x- components are unstable.  In this case, one could say 

that the magnitude of the flow-field is constrained, while the phase is not.  When moving 

horizontally to the image gradient, the opposite condition occurs -- the image constrains 

the angle of the flow field, while leaving the magnitude unconstrained.  It is thus 

necessary to either reduce the ambiguity in the magnitude or the angle of the flow vectors 

respectively in Figure 4.5(a) and Figure 4.5(b).  Epipolar geometry offers a solution for 
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removing ambiguity in the flow angle.  Figure 4.6 shows the vertical motion when the 

epipolar constraint is applied to the correspondence process.  The epipolar constraint 

effectively reduces instability of the flow-field’s x-components. 

 
Figure 4.6 – Flow field for vertical motion with epipolar constraint applied. 

 

3. Defining a Motion Space 

The first step in building an active viewer is to define the space of all motions 

from which the next viewpoint must be selected.  The union of three different constraints 

must be considered:  

•  the holonomic constraints on the viewer,  

•  computational constraints for correspondence, triangulation and 

interpolation; and  

•  a minimal spanning search space from which the motion is selected. 

The full configuration space for a viewer can be defined for the six degrees of 

freedom, ( )zyxzyx TTT ΩΩΩ= ,,,,,M .  In an unconstrained motion space the vector elements 

live in unrestricted intervals, 
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( )
( ]ππ,,
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.      (4.12) 

The weakly active viewer is forcibly restricted to a subset of this space.  For the 

holonomically handicapped application described here, these intervals become 

( )SMALLSMALLTTT zyx ,,, −∈ ,     (4.13) 

( ]ππ,, −∈ΩΩΩ zyx and . 

The definition of SMALL is dependent on the physical parameters of the system at 

hand.  It is, however, desirable to make SMALL as large as possible as suggested by 

expression (3.20).  For this reason it will be assumed that the total baseline motion is 

fixed at KBmax.  The range of the rotations assumes a pan-tilt setup. 

Additional constraints must be applied to the zT , xΩ , yΩ and zΩ due to 

computational assumptions made in the previous chapter. As described in (3.6) zT  << Z .  

Thus, 

( )SMALLSMALLTz ,−∈       (4.14) 

and, to satisfy the small rotation constraint of (3.2), 
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Although the magnitudes are small, the motion space remains a six degree space 

and thus difficult to search quickly.  It turns out that the motion space from which the 

active viewer will select its next step can be further constrained.  Justification for further 

reducing the configuration space is provided by [19, 46, 61], who all demonstrate that 

forward motion provides very little information for depth estimation as the ill-posedness 

of the vanishing point dominates.  Thus, zT  will be zero when performing depth 
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accumulation.  Similarly, rotations about the focal point (Figure 3.1) provide no insight 

or additional information about the depth of the image, and are thus omitted.  It should be 

noted that this does not imply that the viewer cannot move forward or rotate, as the 

interpolation process can predict views for small forward and rotational motions.  It is 

just assumed here that the information introduced by such a motion is negligible.  As 

such, these motions are not included in the motion space.  This leaves short baseline 

motions with a fixed magnitude as the motion space available to the active viewer, 

maxByx KTT =+ 22  .       (4.16) 

This can be reduced to a single angular parameter, 














≡Θ −

x

y

T
T1tanT .       (4.17) 

This is a severely restricted 1-D motion space (hence the term weakly active), which has 

the computational advantage of providing a quick solution to the motion selection 

problem, yet offering a near maximal basis for matching gradient distributions in natural 

scenes.  As a final note concerning the motion of the viewer, each motion iT  is followed 

by a motion 1+iT  such that, 

( )01 ,,TT ii yx TT −−=−=+ .      (4.18) 

This ensures that the scene remains relatively centered in the image. 

 

4. Choosing the Next Motion 

This section examines how the viewer can be actively controlled to optimally 

extract depth information from the intensity projection of a scene.  It begins by reviewing 
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key elements in the active vision literature.  It then introduces a strategy for selecting a 

next-step based on statistical grouping of image gradient features. 

Aloimonos and Bandyopadhyan did early work on the active vision paradigm in 

their landmark paper [2].  In this work they examine the advantages of an active observer 

for several shape-from-X problems.  In particular, they discuss a multi-baseline approach 

for recovering Lambertian surfaces to which an adaptive image coordinate system, based 

on epipolar geometry and isophotes, is applied.  They demonstrate that controlled view 

selection can be used to reduce the ambiguity involved in the correspondence process, 

and yields a stable and robust framework for shape recovery. 

Bajcsy [7] provides a more general methodology for active perception.  She 

defines active vision as an intelligent data acquisition strategy for which measurement 

parameters, which reflect ambiguity in the scene, are used as a feedback mechanism to 

the acquisition process.  The author discourages regularization by suggesting that the 

computational effort should not be spent on processing and artificially improving 

imperfect data, but rather on accepting imperfect, noisy data as matter of fact and 

incorporating it into the overall processing stage. 

Whaite and Ferrie [68] suggest a formal mathematical framework in which 

ambiguity is equated to uncertainty.  The measurement model is defined as a general 

linear system, 

( )mxGd = ,        (4.19) 

where d is the observation, G is the forward sensor model for a given sensor 

configuration x (including location), and m is the set of model parameters, which can also 
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be considered as the state vector.  A least-squares solution is suggested for inverting ().  

The associated uncertainty to this solution is, 

( ) ( )( ) 1−
= xGxGCC T

wm ,       (4.20) 

where Cm is the model covariance that results from projecting the measurement noise into 

model space.  The active viewer chooses a sensor configuration x, such that  

( ) ( )xGxGH T= ,       (4.21) 

maximally reduces the uncertainty, Cm.  The authors apply their theory in the context of 

autonomous model fitting application.  The measurement consists of laser-range data, and 

the model space is defined as the set of super-ellipsoids. 

Arbel and Ferrie [4] develop similar work for selecting the most informative view 

for autonomous object recognition.  Training involves the acquisition of a cross section of 

short arc optical-flow measurements on a tessellated view sphere surrounding the object.  

The state space is the set of confidence values associated to each object.  A Bayesian 

inference is used to compute the confidence values associated to each object for each 

viewpoint.  Principle component analysis (PCA) is used to build a compact parametric 

space representing the flow sphere of each object.  A set of entropy maps, which provides 

a measure of distinctiveness for each object given a viewpoint and pose, is also 

constructed during the training phase.  The recognition process starts by placing the 

viewer at a random pose on the view sphere of an unknown object.  The optical-flow 

cross-section at this viewpoint is projected into the PCA space and a confidence value is 

returned for each object.  A Bayesian chaining process is used to accumulate evidence for 

each hypothesis object.  The winning hypothesis is defined as the object that has 

accumulates the greatest certainty.  Given the hypothesized object and its associated 
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entropy map, the viewer moves to what it estimates is the most informative new 

viewpoint. 

In the context of the image-based surface reconstruction problem, Huang and 

Aloimonos [34] have developed an approach for obtaining relative (purposive) depth 

using the normal components of the optical flow.  They suggest that when the local 

intensity has high gradient, the normal optical-flow approximates the component of the 

projected motion field parallel to the image gradient.  This agrees with the earlier 

mentioned analysis of Verri and Poggio [66].  This work fails to provide an accumulation 

strategy or respective confidence values, and does not suggest a strategy for actively 

choosing the viewer’s motion.  It only provides depth estimates where the optical flow 

happens to be parallel to the image gradient.  This results in a sparse depth image and 

fails to ensure that the full potential of image features is used. 

Sandini and Tistarelli [57] also propose a depth estimation system based on 

normal flow for computing scene depth.  They use a DOG operator to extract edges in the 

image.  They perform correspondence on the edges until a sufficient baseline is achieved 

and then triangulate.  As is the case for Huang and Aloimonos, no feedback is applied in 

the system and the measurements are not qualified.  Also, depth measurements are only 

available along distinguishable edges, and as such are sparse. 

The approach presented in this thesis draws inspiration from all the above-

mentioned active systems.  It attempts to improve the convergence rate of the system by 

using the image gradient to estimate the most informative camera motion angle, TΘ . 
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4.1 Predicting the Most Informative Motion 

Arbel and Ferrie, and Whaite and Ferrie’s definition of what is the best motion is 

borrowed here.  The objective of the active viewer is to select the most informative 

motion over the whole MxN array of Kalman filters.  In the context of the Kalman filter 

framework, the most informative view is the one that maximally reduces ( )jiPk , .  This is 

equivalent to minimizing (3.20) by maximally reducing the values of 2
x∆σ  and 2

y∆σ .  The 

strategy adopted to obtain this behaviour is described as follows: 

i) where the gradient information is unidirectional, the viewer should be 

directed to move parallel to the image gradient, thus providing the best 

measurement and maximal information; 

ii) in the opposite case where the aperture problem is negligible, the choice of 

the motion is less important, as, ideally, any motion should provide an 

equivalent increase in information; and 

iii) when no intensity information is available, the point should be ignored, as it 

provides no contribution to the solution and is completely dependent on the 

interpolation process. 

These characteristics are fully encompassed by the eigenvalues, 1λ  and 2λ , of the 

Normal matrix (2.7), where 21 λλ > .  Table 4.1 provides an intuitive association of 

eigenvalues to the three conditions mentioned above: 
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1λ  2λ  Condition 
Number 

LARGE LARGE (ii) 
LARGE SMALL (i) 
SMALL SMALL (iii) 

Table 4.1 – Interpretation of Normal matrix eigenvalues. 
 

Extending this idea to a full MxN array (image) of depth estimates, ( )jid , , 

involves developing some statistical tools.  The approach taken here strongly resembles 

that of the Hough transform.  Thus, a weighted histogram approach is adopted.  The 

histogram represents a voting function in which each patch votes according to its gradient 

angle.  The gradient angle with the most votes is adopted as the best motion angle, TΘ .  

The weight, ( )jiw , , of each depth element’s vote is set according to the system variance 

of the respective Kalman filter ( )jiPk ,  and the predicted conditioning of the patch 

according to ( )jiN , .  The weighting function should have the following characteristics: 

•  be strong for large system uncertainty when the aperture problem prevails, 

•  be weak for large system uncertainty where there is no aperture effect, and 

•  be weak when the system is very certain of its estimate. 

The suggested expression for the weighting function is 

( ) ( ) ( )
( )( ) ( )jiji

ji
jiPjiw k ,,

,
,,

21

1

1 λλ
λ

+
= .     (4.22) 

The choice of the inverted 2λ  term in (4.22) is based on the observation made by 

Barron et al. [8] and, Fleet and Langley [23] that the normal matrix predicts the aperture 

problem for the condition where 012 .<λ .  The 1λ  ratio is used to neglect votes of 

elements where no gradient information is available. 



 66

It is accepted that most natural and indoor scenes contain some form of structured 

gradient information.  The traditional feature-based stereovision approaches have fit 

parametric models (e.g. lines, corners, polygons) to image pairs, thus taking advantage of 

spatial relationships between these somewhat invariant features to provide robust 

correspondence.  Difficulties arise in the fitting process, which can be time consuming 

and ill-conditioned.  Additional difficulties arise in matching these high-level features 

which may be numerous, small and difficult to detect.  

In the context of the gradient-based weighted histogram, the spatial structure of 

the features is ignored.  However, there still remains a strong relationship between the 

gradient-structures in the image and the histogram’s distribution.  Generally, different 

features with common intensity orientations will result in a peak.  As there may be 

several dominant orientations in the image, several such peaks may occur.  To distinguish 

these features, some form of clustering is necessary for segmenting the gradient 

distribution histogram.  A slightly modified version of Puziacha et al.’s [55] unsupervised 

histogram clustering algorithm is used to group the votes into histogram clusters.  The 

original implementation of Puziacha et al.’s clustering algorithm was for image 

segmentation.  The algorithm uses annealed maximum a-posteriori estimation in a 

Bayesian framework to compute an optimal clustering solution.  The authors report that 

this algorithm performs better and more efficiently than standard K-mean and proximity-

based clustering approaches.  Slight modification was made as the context of this thesis.  

As the algorithm is used for angular values, which live on a ( )22 ππ �−  interval, the 

ends of the histogram were joined to provide correct clustering of angles near 2π−  and 

2π .   
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The direction of the camera motion, TΘ , is based on the mean value of the cluster 

with the most votes.  This ensures that a maximum number of optical flow estimates are 

agreeable to the expected direction of the flow field, and a maximum amount of depth 

information is thus extracted from the flow-field.  The histogram is recomputed after each 

motion pair, iT  and 1+iT .  Thus, an attention-like mechanism is obtained for driving the 

viewer’s motion and closing the next-step control loop. 

Figure 4.7 shows the histogram distribution and segmentation for several 

different textures.  The first two are synthetic horizontal and diagonal textures.  The last 

three are natural images of a window, a desert and the surface of the planet Mars.  Each 

of these textures is mapped onto the synthetic owl scene.  The segmented histograms 

show that the natural images do indeed contain gradient structure. 

 

 

 

(a) Horizontal texture 
    

 

 

 
(b) Diagonal texture 
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(c) Window image 
    

 

 

 
(d) Desert scene 
    

 

 

(e) Mars image 
    

Figure 4.7 – Real and synthetic textures with associated gradient and segmented 
gradient histograms. 

 

The histograms indicate that a dominant gradient direction is present in each 

texture.  The synthetic textures confirm the obvious dominant gradient directions of -90 

degrees and 45 degrees.  The window image results in a triplet of dominant directions in 

the horizontal and vertical directions.  The desert texture provides a dominant gradient 

around 42 degrees.  Most interesting is the Mars texture, which has no visually dominant 

gradient direction.  The histogram segmentation indicates a dominant gradient direction 
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of  –72 degrees.  Thus, the observer, in each case, chooses its first motion angle, 0TΘ , as: 

90 degrees, 45 degrees, 0 degrees, 42 degrees and –72 degrees, respectively for each of 

the textured scenes in Figure 4.7.  After each motion, the histogram is updated with the 

new confidence values and a new motion angle is selected. 

 

5. Generating a Passive Trajectory 

To provide a measure of effectiveness of the active algorithm over a passive 

approach, it is necessary to first define a paradigm for the passive viewer.  The passive 

viewer is approximated as a series of successive random angular motion pairs, for which 

depth values are accumulated, where no angular motion is repeated, 

[ ] ( )100 −∈∀Θ≠Θ=Θ ijRandom jii …TTT ,..π    (4.23) 

This approximation to the passive viewer is however somewhat inexact. In 

general, some form directed bias is observed for the passive viewer.  Thus, a random 

angular motion sequence does not truly represent the passive motion sequence.  When 

considering this, it is important to note that the random angular motion has the advantage 

of conditioning the noise in the measurement process to the desired zero-mean.  Thus, the 

random angular motion provides better depth estimation than a true passive observer.  

Still, it is used in the next section to draw some understanding as to how well the active 

algorithm works. 
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6. Results 

For each of texture in Figure 4.7 a series of thirty different passive motion 

sequences were tested.  The mean of the RMS-Error and respective standard deviation are 

provided for each step of the group of passive sequences.  These are compared to the 

RMS-Error for the active motion sequence.  Each sequence was constructed from five 

successive motion pairs.  The results are presented in Figure 4.8, Figure 4.9, Figure 

4.10, Figure 4.11 and Figure 4.12 below. 

 

 
Figure 4.8 – RMS-Error plot for vertical texture. 
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Figure 4.9 – RMS-Error plot for diagonal texture. 

 

 
Figure 4.10 – RMS-Error plot for window image. 
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Figure 4.11 – RMS-Error plot for desert image. 

 

 
Figure 4.12 – RMS-Error plot for Mars image. 
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These results show that the active algorithm is indeed capable of taking advantage 

of texture features of synthetic and natural scenes for improving the convergence rate of 

the depth estimation process.  In all cases, the active method falls below the mean RMS-

Error of the passive observer.  The active error is generally around a standard deviation 

better than the passive viewer RMS-Error for the earlier iterations in the sequence.  The 

noise conditioning caused by the random element of the passive viewer is observed in the 

later iterations, where the active viewer is usually well within the standard deviation 

range.  In general, the active method can be said to converge between 3 and 4 times faster 

than the passive viewer. 

 As a last addition to this thesis a pair of real surfaces were scanned using the 

active reconstruction system. A Panasonic GP-KS152 camera with a focal length of 

approximately 7mm was mounted on the end effecter of a gantry robot.  The robot 

provided a pose that was repeatable up to 1mm.  The camera was place 32cm away from 

a calibration grid (Figure 4.13), and permitted to explore two surfaces: a flat calibration 

grid and a step edge 10cm tall (Figure 4.14).  The baseline was fixed at 4mm.  Figures 

show the experimental setup and the camera’s view during the experiment.  The resulting 

surface reconstructions after 10 iterations are provided in Figure. 
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(a) Experimental setup for 
calibration grid. 

 (b) Camera view of calibration 
grid experiment. 

Figure 4.13 – Calibration grid experiment. 
 

 

(a) Experimental setup for step 
edge. 

 (b) Camera view of step edge 
experiment. 

Figure 4.14 – Step edge experiment. 
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Figure 4.15 – Reconstruction of calibration grid. 

 

 

Figure 4.16 – Reconstruction of step edge. 
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Results from these experiments (Figure 4.15 and Figure 4.16) show that the 

system is capable of estimating depths with an error of approximately 5mm.  The 

surfaces are surprisingly smooth given that no explicit regularization was performed, and 

that the scene was only partially textured.  The estimated step edge was nearly 

perpendicular and the height of the edge was successfully recovered. 
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CHAPTER 5  

Conclusion 

 

This thesis has described the design and implementation of an active surface 

reconstruction algorithm.  The system was designed in the context of an autonomous 

explorer and does not assume continuous image sampling is available. As such, it was 

constrained to two frames of temporal support and a short baseline. 

Surface reconstruction is known to be ill posed for several reasons.  Under a 

small-motion assumption, the reconstruction can be simplified, leaving correspondence 

as the main source of ambiguity in the system. The problem is thus formulated in a 

maximal-estimation theory framework.  Using this formulation, it is possible to recast 

previous work that uses a multi-baseline strategy and/or invariant image feature selection.  

New insight is provided by suggesting that it is not necessarily sufficient to select a wide 

enough baseline or invariant features.  It is shown that, to ensure maximal information is 

extracted from the image sequence, the epipolar angles of the flow field and the 

directional predisposition of image features must be considered.  This thesis shows that 

an adaptive active strategy can be used to improve the conditioning of the problem.   

The thesis begins by examining the optical flow estimation problem.  Different 

optical flow algorithms are examined at three levels: pixel correspondence, sub-pixel 

estimation and confidence measures.  For the last criterion, a formalized framework for 

evaluating confidence measures in the anticipated maximal estimation context is 
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introduced.   Results from this section of the thesis suggest that Camus’ optical flow 

algorithm is best suited for two-frame flow estimation due to its important computational 

advantages and its robustness for short temporal support.  Sub-pixel estimation was found 

to be most effective when combining a bilinear interpolation method with Anandan’s 

sub-pixel method. A generalized confidence measure was suggested and shown to be 

more consistent for attenuating error for the standard flow estimation test set and an 

additional pair of real image sequences.  This generalized confidence measure was shown 

to include previously suggested confidence measures by Anandan and Matthies et al.   

It is expected that the suggested formal approach for determining the 

effectiveness of confidence measures is an important contribution to the fields of optical 

flow estimation and dense depth estimation.  This methodology certainly offers a clear 

path for future work in the development of optical flow confidence measures as well as 

possible improvements to other confidence measures that were not considered in the 

context of this thesis. 

The next important theme discussed in this thesis involved the accumulation of 

depth information.  The Kalman filter was described and various elements of the 

literature were reviewed.  It was shown that the current polygonal mesh models for 

interpolating the surface measurements are inconsistent with information theory. As such, 

it was suggested that maximal estimation approach used for temporal accumulation 

should indeed be extended to the spatial interpolation step of the Kalman Filter.  

Experimental results were provided to support this.  It was shown that when 

regularization was removed from the current approaches, the algorithms actually 

regressed their surface estimation, thus creating large gaps in the surface estimates.  The 
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maximal-estimation approach successfully filled the gaps by implicitly 

interpolating/extrapolating the depth values. 

Although the current implementation of this approach works sufficiently well, it is 

felt that there is still room for improvement.  Future work in this area should attempt to 

develop a relationship between the size of the correlation windows and the current 

confidence of the surface estimate.  Thus more confident depth estimates should reduce 

image patch sizes to avoid smoothing out edges, while areas of low confidence should 

increase the patch sizes to include greater spatial support. 

The last part of this thesis demonstrated how a generalized statistical model for 

local image gradient features could be used for improving the estimation process.  As 

such, a statistical histogram-clustering algorithm was modified, and shown to 

successfully provide correct gaze guidance to the viewer.  Several synthetic and real 

textures were tested experimentally.  The active strategy was compared to a pseudo-

passive viewer that was composed of thirty random motion sequences.  Results show that 

the active approach was in general a full standard deviation bellow the mean RMS-Error 

of the passive walks for the first five iterations of the estimation process.  More generally, 

the active strategy improves the convergence rate of the accumulation process by a factor 

of 3 to 4.  This effectively demonstrates that the directional predisposition of the image 

features does in fact have an important impact on insuring that information in the image 

is maximally extracted. 

It should also be noted that the system should be tested under conditions where 

segmentation of image gradient results in a more evenly distributed histogram.  Under 

such conditions, the active strategy would probably fail to provide any advantage.  It can 
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even be anticipated that it might be better to use a motion sequence for which the motion 

angles are evenly distributed, thus conditioning the noise as zero-mean. 

 Thus, this thesis has provided a consistent approach to demonstrating that 

statistical grouping of local gradient direction can indeed be used for directing the motion 

of a viewer.  This effectively does significantly improve the depth estimation process.  

There is still much work to be done at all levels of the system described here, but it is felt 

that the contents of this thesis provide a clear basis for future work. 
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