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Abstract 

 
This paper presents a novel image-based approach for updating the geometry 
of 3D models.  The technique can cope with large-scale models, using a 
single imaging sensor to which an arbitrary motion is applied.  Current 
approaches usually do not fully take advantage of strong prior information, 
often available in the form of an initial model.  The approach is thus novel in 
that geometric anomalies are quickly detected, significantly reducing problem 
complexity.  Hence, given a geometric model and known camera motion, the 
image warping can be calculated and intensity patterns can be predicted.  If 
predictions do not match observations, the model is assumed to be incorrect.  
The updating is then cast as an optimization problem where differences 
between observations and predictions are minimized.  The algorithm is tested 
against both synthetic and real imaging data to update a terrain model.  
Results show that the algorithm can automatically detect and correct 
geometrical problems of different types and sizes.  

 

1  Introduction 
 
This paper considers the problem of updating the geometry of a model using imaging 
data.  A novel approach for both localizing and estimating geometric errors is proposed.  
Although the updating problem is very similar to classical shape-from-motion, it is very 
different in that strong a priori information about the scene is available initially.  Despite 
this fact, the problem remains ill-posed as many solutions may still explain the imaging 
data.  It is proposed that such prior information can be used to quickly localize 
geometric anomalies.  This greatly simplifies the updating process since only small 
regions of the model will actually require to be updated. 

Related work includes research on recursive surface reconstruction using multiple 
images [1,2,4,7].  Although such algorithms could be applied for model updating, they 
do not fully take advantage of prior information as they require reconstruction of the 
entire scene at each iteration.  Some techniques for doing coarse-to-fine motion stereo 
make better use of a model.  For example, Xu et al. [8] show how to use a coarse model 
to guide the searching (i.e. solving the correspondence problem) to get a finer model. 

Hung et al.’s method [3] differs from traditional approaches by not explicitly solving 
the correspondence problem.  Instead, it solves for the parameters that best account for 
the relationship between images.  Unfortunately, simple parametric shapes are used as 
prior information about the scene structure to minimize complexity.  Even though this 
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allows the problem to be made more tractable, it does not generalize very well for 
surfaces having more complex shapes. 

The approach proposed in this paper is related to their work but assumes much less 
constrained shapes.  Indeed, surfaces that can be modelled as a single-valued function 
(i.e. an elevation map) are specifically considered.  This is possible assuming that the 
error in the model is not only isolated, but that it can also be detected so as to reduce the 
number of parameters (i.e. elevation values) that require correction. 

The technique requires a single imaging device (of any type), as long as its projective 
geometry can be determined.  It is differential and as such, requires motion of the sensor 
which is assumed to be known.  It uses the geometric information of the model to predict 
the warping of sensor imagery.  Given that a motion is induced, image predictions can 
be generated.  If the predictions are different from the observations, the model is 
assumed to be inconsistent with reality and geometric errors can be localized.  The 
elevation values defining the surface are then corrected using an optimization procedure 
in which the difference between predictions and observations is minimized.  The 
minimization is performed using a gradient-descent strategy where the initial elevation 
values (provided by the model to be updated) are used as the initial starting point.  The 
prior model serves to reduce the dimensionality of the minimization space as well as to 
provide an initial point for initializing the steepest descent. 

The technique is thus useful for real-time applications and/or where large scale 
models are necessary.  A growing number of applications actually require models having 
highly accurate geometry.  Synthetic vision systems in aviation are a good example as 
they require a precise model for rendering artificial views of the world (using both the 
model and pose information).  Their goal is to support navigation and situational 
awareness in low visibility conditions.  Because the model reflects at best a nominal 
state of the environment, it needs to be periodically updated to ensure its consistency 
with reality.  A sample view of such a model is shown in Figure 1a along with a 
corresponding picture of the real world (Figure 1b).  Note that the overall geometry is 
quite accurate but that the mountain’s shape is slightly incorrect along the occluding 
contour.  A good model updating technique should be able to detect, localize and correct 
such a geometric inconsistency. 

 

 
(a) (b) 

Figure 1: (a) Sample view of the model, (b) Corresponding real world view 
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2  Theory 
 
2.1  Problem Setup 
 
The notation used in this paper (inspired from [3]) will denote column vectors in 
boldface and transpose vectors by the superscript t.  Suppose that a surface is being 
imaged from two different viewpoints, as shown in Figure 2.  A pinhole camera model 
having a camera reference frame CRFn attached to the nth position is assumed.  Let P be 
a point in 3D space belonging to the surface and let qn be its 2D image coordinates in 
image n.  Since only two images are considered, q1 and q2 will simply be denoted by s 
and u respectively.  Let also the coordinates of P in the world reference frame (WRF) be 
denoted by r = (x,y,z)t. 

 
Figure 2: A surface being imaged from two different viewpoints 

 
Given that the image of P is at coordinates s in image 1, its corresponding 

coordinates u in image 2 can be calculated with the following two steps: 
 
1. Back-projection from image 1: find the corresponding 3D point P by back-projecting 

a 3D ray from the image point s through the camera lens center to the 3D space and 
then intersecting the ray with the surface. 

2. Forward-projection to image 2: find the image point u by projecting the 3D point P 
along the ray from P, through the lens center, to the image plane of camera 2. 

 
These two steps can be combined to define the following relationship, 

 
 ),,,( rbsu h=  (1) 
 
where b specifies the camera parameters which include the camera positions and the 
focal length.  If the transformation of the image intensity is completely determined by 
the geometric transformation of the image points, the intensity of point P at s in image 1 
and at u in image 2 will be identical, 
 

x1 

y1 

z1 

CRF1 

y2 

x2 

z2 

CRF2 

P

y 

z 

x 

r 

Lens center 

Lens center 

s 

u 

WRF 

193195



 

 )).,,(()()( 221 rbsus hIII ==  (2) 
 
2.2  Error Localization 

 
In the context of this research, models correspond to digital elevation maps which are 
represented by single valued functions of the form, 
  
 ),,( yxfz =  (3) 
 
where z represents elevation above the (x,y) plane in the WRF.  Referring back to Figure 
1, the ultimate goal is to correct the elevation map corresponding to Figure 1a so that it 
is consistent with the scene shown in Figure 1b.  Since errors are isolated, such 
erroneous points can first be localized and then adjusted by a correction procedure so as 
to be consistent with scene measurements.  In this case, all points r that are inconsistent 
with the model (Equation 3) should be identified. 

Such points are easily localized given the setup in Figure 2, the nominal surface 
z = f(x,y) and the relative camera positions (e.g. the motion of a moving observer).  For 
each s in I1, the corresponding u in I2 is calculated via Equation 1.  Given the brightness 
constancy assumption (Equation 2), the intensity at s maps directly to the intensity at u.  
If the model is a correct representation of the scene geometry, then the predicted 
intensity value at u should be consistent with the intensity measured at the corresponding 
location in I2.  Consequently, if I1(s) is different from I2(u), then r is assumed to be 
incorrect.  In practice, a point is considered to be anomalous if the sum-of-absolute 
intensity differences in the neighborhood of s is smaller than a given threshold (Section 
2.4 discusses on how to determine its value).    
 
2.3  Iterative Correction 

 
Let R be the vector containing all ri corresponding to each position si in image 1 marked 
as anomalous.  Following from Equation 2, the problem of correcting these anomalies 
can be cast in terms of minimizing the following functional, 
 
 ,)),,(()()( 21∑ −≡

i
iii hIIe rbssR  (4) 

 
where i corresponds to the index set of R and | . | is the absolute value.  Furthermore, for 
the case of elevation maps, the error is assumed to be largely restricted to the z 
component of r.  Hence, the error function of Equation 4 becomes, 
 
 ,)),,(()()( 21∑ −≡

i
iii zhIIe bssZ  (5) 

 
where the vector Z consists of all anomalous elevations zi.  A gradient descent strategy is 
used to solve for Z according to the following iterative scheme, 
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where t is the iteration index and k a positive scaling factor minimizing 
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The starting point (i.e. Z0) is provided by the initial elevation values of the model.  

The gradient can be evaluated by systematically varying the components of Z.  
Unfortunately, there is no guarantee that the algorithm will converge to global minimum.  
In fact, the error function is not only dependent on how far off the initial model is from 
the actual scene, but also on the texture patterns present in the images.  
 
2.4  Deviations from the Brightness Constancy Assumption 
 
The brightness constancy assumption (Equation 2) is certainly useful for simplifying the 
problem.  However, it cannot be used in general since not all real world surfaces are 
Lambertian.  Other problems, such as sensor noise or sampling mismatches, will also 
limit the ability to predict the appearance of a given scene element.  A simple approach 
to the problem is to assume that these deviations can be bounded i.e. 
 
 ,)()( 21 tII <− us  (8) 
 
where t is a threshold.  The value of t may be determined by modelling all potential 
sources of faulty predictions and their relative contribution.  As the derivation of a 
realistic model may be a hard task, a statistical approach is used instead.  The basic idea 
is to choose a region of the model for which ground truth is available and where various 
typical surfaces are present.  In that case, prediction errors caused by deviations from the 
Lambertian assumption will be isolated. 

Computing t first requires that imaging data has to be acquired from different 
viewpoints and if possible, for different lighting conditions.  Predictions for the 
appearance of different surface elements then have to be generated and their deviations 
from their observed appearance have to be measured.  These deviations are finally 
averaged to produce a realistic threshold value. 

 
3  Experimental Results 
 
The application field examined in this paper is the one of synthetic vision in aviation.  
The particular system considered, called the Enhanced and Synthetic Vision System 
(ESVS), is to be used on helicopters for Search and Rescue operations [5].  It includes 
an on-board image generator to render a synthetic image of local terrain (determined 
from a model consisting of a digital elevation map and cultural data), registered through 
the aircraft navigation system.  A helmet mounted display enables the pilot to localize 
the position and attitude of the aircraft in the local environment.  Situational awareness 
is sufficient to allow the pilot to navigate en-route by recognizing landmarks that would 
otherwise be hidden by poor visibility. 

To achieve this goal, such a system requires geometrically correct models of the 
areas over which the aircraft will be flown.  As a consequence, models have to be 
updated regularly to make sure they correspond to reality.  Given this context, the 
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algorithm was used to update a model consisting of a digital elevation map (DEM) 
provided by the Canadian Government.  The DEM has grid posts every 93m in latitude 
and 65m in longitude and elevation errors of up to 25m. 
 
3.1  Artificial Images 
 
The algorithm was first tested against synthetically generated data to determine its 
general performance in addition of studying its convergence properties.  A checkerboard 
textured flat terrain (having the same resolution as the real DEM) was used in the 
experiments.  The resolution of the surface was kept constant for the experimentation 
(i.e. no extra elevation points were added when updating the model) and interpolation 
between adjacent points was done using triangles. 

Known elevation errors were introduced in two adjacent elevation points (of -25m 
and 25m respectively).  The surface was imaged from the top looking straight down at 
an altitude of 300m and a lateral displacement of 30m was induced.  Two checkerboard 
textures of different scale were used to see the performance of the algorithm subject to 
different imaging data (one having the same grid size as the DEM and the other using a 
grid size about 5 times smaller).  The algorithm was first used to verify the terrain 
geometry and the two erroneous elevation points (out of the 133 visible elevation points) 
were correctly identified.  The anomaly detection algorithm will indeed work given that 
the geometric error in the model generates a difference in intensity between the 
prediction and the observation.  A closest point approach was used to deal with the 
difference in resolution between the image and the terrain (the image resolution was 
much higher than that of the terrain) when marking invalid model points.   

In order to evaluate the shape of the error function (Equation 5), the values of the 
two elevation points were systematically varied from -100m to 100m.  The resulting 
plots for both textures in consideration are shown in Figure 3.  Observe that both 
functions have a global minimum corresponding to the required corrections (-25m for 
point #1 and 25m for point #2).  However, the error function displayed in Figure 3b 
contains many local minima.  A regular texture having a high frequency pattern (relative 
to the DEM grid size) causes many sets of parameter values to explain the observed 
data.  These results thus clearly demonstrate that the error function is mainly dependent 
on the texture patterns present in the imaging data.  They also reveal that the accuracy of 
the solution depends on where the gradient descent is started, or in other words, on how 
large the model errors are initially. 

  
(a) (b) 

Figure 3: Error function for (a) Coarse checkerboard textured terrain (b) Fine 
checkerboard textured terrain 
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Another test was performed by adding random errors to the flat terrain.   These 
ranged from -25m to 25m (uniformly distributed) over a 4x4 cluster of adjacent 
elevation points.  The gradient descent algorithm was run against ten different 
combinations of elevation errors for the two different checkerboard textures.  Figure 4 
uses solid lines to display the average elevation errors (and associated standard 
deviation) for the first ten iterations.  In addition, cross marks are used to show the 
individual error data points (16 points x 10 tests = 160 points total), providing a better 
overview of the distribution.  Observe that given the coarse checkerboard textured 
surface, the mean error was decreased from about 13m to 0.5m.  Also notice that, 
although the finer texture provides many local minima to the error function, the 
algorithm still managed to decrease the error to less than 3 meters for 90% of points. 
 

  
(a) (b) 

Figure 4: Elevation error versus iterations for (a) Coarse checkerboard textured terrain 
(b) Fine checkerboard textured terrain 

 
3.2  Real Images 
 
A standard digital video camera having a field-of-view of 45ox30o and a resolution of 
720x480 was mounted inside a Bell 205 helicopter (Figure 5).  The pilot flew at 
relatively low altitudes over a forested terrain in the Gatineau Hills region near Ottawa 
(Canada) according to a predetermined flight path.  A differential GPS and inertial 
sensors (with 0.5m accuracy and less than 0.5o rotation errors respectively) were used to 
log the position/attitude information of the aircraft. 
 

 
(a) 

 
(b) 

Figure 5: (a) Helicopter used for data collection, (b) Camera attached to window frame 
 
To register the model with the imaging data, the correspondence between the camera 

reference frame and the world reference frame (in which the model is expressed) had to 
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be established.  The intrinsic parameters of the camera were determined by a standard 
calibration procedure.  The location and orientation of the camera relative to the DGPS 
receiver and the attitude sensors were also measured.  As the position calculated by the 
GPS was expressed in the same coordinate system as the DEM (i.e. 
latitude/longitude/altitude), no additional processing was necessary to register them.  
Initial alignment in attitude was performed manually.  The yaw component was aligned 
by plotting the positional data given by the DGPS and by comparing the angle of the 
flight path with the measured yaw.  Alignment in roll and pitch was performed using the 
horizon (present in both the synthetic and sensor imagery) as a landmark.  Recent ESVS 
flight trials demonstrate that the use of such high precision navigation systems coupled 
with initial alignment procedures are sufficient to register the model with the imaging 
data [6].  Although the data was processed offline to update the model geometry, the 
required computations could be done in real-time onboard using a standard PC and 
optimized software. 

The algorithm was first tested against a flyby scenario near the Ottawa airport.  In 
that region, the model only consisted of a flat terrain (Figure 6a).  The camera images 
before and after a combination of a forward and right motion of about 100m in each 
direction are shown in Figure 6b and 6c respectively (note that the left portion of the 
image is obscured by the window mounting and that the white object in the lower/center 
region is the air data boom attached to the aircraft).  The corresponding predicted image 
(generated using Equation 1 and Equation 2) and difference map are shown in Figure 6d 
and Figure 6e.  Note that locations where the algorithm has detected intensity differences 
between predictions and observations are shown in light tones. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 6: (a) Model view (b) Camera image (c) Camera image after forward/right 
motion (d) Predicted image (e) Difference map (f) Incorrect model points (g) Updated 

prediction (h) Updated difference map (i) Updated model 
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Model locations identified as incorrect by the algorithm are shown in white tones in 
Figure 6f.  Notice that the building was indeed correctly identified as missing from the 
model.  The model was then updated and the resulting updated prediction, updated 
difference map and updated model are shown in Figure 6g, 6h and 6i respectively.  Note 
that a pyramid shaped structure is now present in the model, which roughly corresponds 
to the missing structure (in position and size).  Given the relatively low resolution of the 
model, the solution represents the best approximation to the missing cylindrical 
structure. 

A second test was performed during an approach to a mountain, which in the model 
(Figure 7a) has slightly incorrect geometry.  The camera image before and after a 
forward motion of 250m are shown in Figure 7b and 7c respectively.  The corresponding 
predicted image is presented in Figure 7d.  Observe that the general appearance of the 
scene is correct.  However, the difference map (Figure 7e) reveals that the mountain 
appearance is largely correct but that the right part of the ridge contains some errors 
(Figure 7e, 7f, 7h and 7i are close-up views of the region indicated by the dashed box in 
Figure 7c).  Model locations identified as erroneous are shown in dark tones in Figure 
7f.  The minimization algorithm was then used to update the model and the resulting 
updated prediction, updated difference map and corrected model are shown in Figure 7g, 
7h and 7i.  The improvement to the geometry can be observed by comparing Figure 7f 
and 7i.  In fact, this also shows up in the difference map since the number of detected 
anomalies has been reduced. 
 

(a) (b) 
 

(c) 

(d) (e) 
 

(f) 

(g) (h) 
 

(i) 
Figure 7: (a) Model view (b) Camera image (c) Camera after forward motion 

(d) Predicted image (e) Difference map (f) Incorrect model points (g) Updated 
prediction (h) Updated difference map (i) Updated model 
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4  Conclusions 
 
A differential approach was presented to update a 3D model using a single imaging 
device.  It differs from traditional approaches by quickly identifying geometric 
anomalies.  This significantly reduces the complexity of the problem, making the 
technique applicable to real-time applications and large scale models.  The approach was 
tested against synthetically generated data to update a surface having known errors.  The 
algorithm was shown to be quite robust to different imaging conditions in both detecting 
and correcting geometric anomalies.  In addition, a standard camera mounted on a 
helicopter was used to correct a model of a terrain.  Results demonstrated that errors can 
be automatically identified and fixed.  In particular, a missing man-made structure as 
well as terrain anomalies were correctly handled by the technique.  Future work involves 
the development of a statistical technique to better cope with deviations from the 
brightness constancy assumption. 
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