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Abstract

This paper presents an enhancement to current
image-based rendering methods. It suggests
that motion consistency can be used in a real-
time dynamic rendering system to increase
computational efficiency up to one order of
magnitude. Parameterization of the image
warping function with respect to the viewer’s
motion can be used to provide an efficient
method for extrapolating new viewpoints using
a single rendered image. The system is
successfully tested in the context of a flight
simulator using a first order parameterization.

1 Introduction

Traditional real-time, geometric-based
rendering techniques often require a pipeline of
dedicated hardware to quickly perform tasks
such as scan conversion and shading [6]. Such
conventional rendering systems are limited by
their ability to generate realistic scenes for two
reasons: computer models still fail to offer
photo-realistic representations, and even if
sufficiently detailed models were available,
rendering would be inherently slowed due to
the direct relationship between scene-
complexity and rendering rates.
Image-based rendering (IBR) offers an
alternative to geometric based rendering. IBR
algorithms achieve photo-realistic images while
reducing the complexity observed in traditional
geometric rendering.
Texture mapping was the earliest form of IBR.
This method allows detailed planar images to
be mapped to three-dimensional surfaces in the
model space, thus producing detailed scenes
while rendering a reduced set of polygons.

Texture mapped scenes can be described as
geometric models augmented with image
information. As such, this rendering process
has the same complexity as a raster scan
pipeline.
Later forms of IBR perform image interpolation
[3,9,17]. These methods assume that pixel
correspondence and the associated motion are
known for two or more views. These rendering
processes are bound by image resolution
instead of the model complexity. The main
disadvantage of image interpolation is that it is
not causal. For an interactive system, many
views need to be rendered a priori. Thus a
predictive strategy must be adopted to render
possible paths taken by the viewer.
More recent approaches to IBR extrapolate new
views by augmenting images with depth
information (using machine vision methods [4],
or geometrical models) [12,13,17]. As such,
novel points of view can be generated without
re-rendering the model. This is achieved by
projecting the 3D motion vectors of each depth
pixel onto the image plane to compute the pixel
translations commonly referred to as optical
flow [8,11]. The optical flow is used to warp
the original image into a new view.
There have been several additions to depth-
augmented image rendering algorithms that
take advantage of spatial consistency [10,17].
This paper is novel in suggesting that
consistency in the viewer’s motion can also be
used to improve the depth image
representation. As such, images are augmented
with a viewer centered parametric description
of the flow-field rather than just depth.
An increase in efficiency of up to one order of
magnitude is demonstrated. The suggested
primitive provides a versatile and causal
representation of both the image and the
desired motion. It requires a single rendered
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view of any desired geometric complexity to
render any number of novel views with image
resolution complexity.
The remainder of this paper is structured as
follows: Section 2 reviews key elements of
current literature in the areas of IBR. Section 3
derives and discusses the flow parameterization
model. Section 4 introduces a flight simulator
test environment and qualifies the model.
Finally, the paper concludes in Section 5.

2 Previous Work

Early work by Laveau and Faugeras [9]
interpolate images given pixel correspondence
between two known views. Using projective
geometry, a novel view can be constructed by
correctly computing the flow vectors along the
epipolar lines.
Chen and Williams [3] show that Laveau and
Faugeras’ work can be linearized. They use
linear scaling of the flow vectors between two
images to produce an intermediate view. This
work demonstrates that a linear approximation
of the perspective projection model works well
if the change in viewpoint is small. Similarly,
Seitz and Dyer [15,16] use principles of
projective geometry to constrain image
morphing.
McMillan [12, 13] describes the framework for
image extrapolation from depth-augmented
images. Much of this work considers
traditional graphics issues, such as occlusion
and interpolation, in the context of IBR.
Legyel and Snyder [10] introduce sprites in the
context of the Talisman warp engine. This
primitive takes advantage of spatial consistency
for parameterizing the depth images. This
consists of grouping smooth surfaces together
into planes. The planes can then be augmented
with depth values or simply texture mapped
with the original image.
Shade et al. [17] show that spatial consistency
can be used to provide a computationally
efficient framework. As such, an incremental
approach to rendering along scan-lines is
introduced.

3 Parametric Motion Flow

This section presents a framework for improved
computational efficiency in IBR by building on
the work of Chen and Williams, McMillan and
Shade et al. It introduces a representation that
avoids the motion prediction necessary in
image interpolation techniques while providing
improved efficiency for current extrapolating
IBR algorithms.
It is widely accepted that for real-time model
exploration there is much temporal consistency
as well as spatial consistency between frames.
Video coding techniques [1,7,18] take
advantage of this. As described earlier, Shade
et al. have shown how spatial consistency can
be used to speed up the rendering. This paper
provides a similar approach that capitalizes on
viewer motion consistency instead of just scene
consistency. Thus, a parametric model for
computing the flow field of the image with
respect to the viewer’s motion will be derived.
A linear parameterization is used in this paper
for two reasons: Chen and Williams have
already shown that a linear approximation
works well for interpolating images, and, as
this model is of the first order, it demonstrates
rigidity for the coarsest approximation.

3.1 Optical Flow

The notation used in this paper refers to points
in 3D space using capital letters. Points in the
camera’s image plane are denoted using lower
case characters. Bold characters indicate
homogeneous motion operators. A subscript i
is used to denote which iteration of the camera
motion is being considered.
A pinhole camera of focal length f is assumed
and a viewer-based coordinate system is
adopted (Figure 1). The origin is at the focal
point of the camera. The image plane is at Z=
f. The Z-axis runs along the optical axis, and
the X- and Y-axes are parallel to the x- and y-
axis of the image plane respectively.
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Figure 1: Viewer centered coordinate system

The ego-motion of the camera is decomposed
into a rotation about an axis passing through
the origin, and a translation. Any three-
dimensional motion can be represented as such
[5]. This is denoted as (Ti°Ri), where °
indicates a composite function.
Given a point in three-dimensional space,
(Xi,Yi,Zi), and a camera motion,
(Tx,Ty,Tz)i°(Rx,Ry,Rz)i, the new location of the
point, (Xi+1,Yi+1,Zi+1), is given by (1). This
homogenous operator assumes the small
rotation approximation, sinθ=θ,

.
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A second system of equations (2) provides a
perspective projection model for the pinhole
camera with focal length f,
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From (1) and (2), a system of equations for the
new location, (xi+1, yi+1, f), of a point in the
image, (xi, yi, f), after the viewpoint has moved
can be derived [2,12]:
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3.2 First Order Parameterization

A first order parameterization of the flow field
is used to highlight how temporal consistency
in the warping function can be used. The first
two terms in the Taylor expansions of (3) are,
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This can be re-expressed as,

( )

( ),02
0

0

0

2

02
0

0

02
0

0
2

00

2

0

0
1

yy
i

xx
i

zz
i

zi

i

x
i

C

xfA

C

f

C

yfA

TT
CZ

Af

C

yf

CZ

Tf

C

A
x

Ω−Ω













+−Ω−Ω−

−−Ω−+=+

)(

~

(6)

which can be written in the following form,
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Similarly,
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Equations (7) and (9) represent a linear
parametric description of the image-flow field,
(xi+1, yi+1, f). Twelve parameters are used: two
are constants and the ten others are scale
factors. The constants OPx and OPy represent
the motion velocities about which the flow
equations were linearized. The delta terms
represent scale factors for the contribution of
each motion parameter. Thus, by scaling the
contribution of each motion parameter, novel
views can be generated.

3.3 Sources of Errors

The parametric flow primitive introduces two
forms of error. The first comes from the small
rotation approximation made in the three-
dimensional motion operator (1). The second is
the result of linearizing the different hyperbolic
components of (3).
The rotational approximation is negligible
under most conditions as it is reasonable to
assume small rotations between frames for an
observer given a realistic frame rate. Also,
such an error is easily bounded.
The error introduced by linearizing the flow-
field is small. Only three of the six degrees of
freedom contribute to the error when linearized.
This is because translations parallel to the
image plane (Tx and Ty) and rotations about the
camera’s viewing axis (Rz) scale the flow field
linearly.
Section 4 will qualify the error in the context of
a flight simulator. The six degrees of motion

will be tested individually. A realistic full
flight path will also be produced.

3.4 Increase in Performance

This section compares the computational
performance of the suggested linear flow
method with that of standard depth image
rendering for an N image sequence.
Multiplication and division are considered
equivalent, as are addition and subtraction.
The standard depth image method [12], when
ignoring spatial consistencies∗ , requires
computing equations (3) for each image in the
sequence. The total number of operations,
when optimized, is Nx(13 multiplications + 9
additions) per pixel.
The linearized flow method requires full
computation of Ai, Bi and Ci (4), as well as the
scale parameters (8) and (10) for the first image
in the sequence. This results in an additional
34 multiplications + 9 additions with respect to
the depth image method.
Assuming that the motion of the observer is
held constant (no acceleration), the scale
parameters need not be multiplied by the
motion parameters after the first image. The
different contributions can be added or
discarded at no computational cost when
generating novel views. Thus the flow
equation can then be reduced to a maximum of
8 additions per pixel for the N-1 subsequent
frames. Under such conditions, the linear flow
method proposed becomes advantageous over
the depth image method for N > 3.
Given that some acceleration is probably
desired, a maximum of two extra
multiplications per degree of freedom
accelerated are required (only one for Tx and
Ty). For the worst-case, ten extra
multiplications per image per pixel are
required. This is an equivalent complexity to
traditional depth image extrapolation.
It is shown in the next section that, for the
implementation of a flight simulator, the

∗ Note that the incremental method of [17] can be
implemented on top of the motion consistency method
presented, as temporal and spatial consistencies are
independent. Spatial consistency was ignored to allow
for better gauging of motion consistency.
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linearized flow model allows for image
sequences for which N is between 10 and 30.
Thus, this method increases the frame rate
three to ten times.

4 Flight Simulator

A dynamic exploration system was constructed
under the premise that an IBR primitive should
be used in conjunction with a geometrical
rendering engine. The IBR should offload the
graphics engine as much as possible. Refresh
events are triggered when the predicted
linearized flow error exceeds a given threshold.
This results in a new base image being
generated and new flow parameters being
computed.

4.1 The Simulation Environment

A flight simulator was used as a test
environment to measure the error introduced by
the linearized flow primitive. The simulator
was implemented in C++ using an OpenGL
rendering package. A hilly terrain with
forested zones was used as an environment
model (Figure 2). Such a terrain provided a
wide range of depth values for testing the linear
flow primitive.

Figure 2: Sample image of flight simulator

The ground truth optical flow was computed
using the depth image primitives and true
homogenous transformations. Thus the small
rotation approximation was removed in this
case.

Both the depth image and parametric flow
methods were implemented to display up to
pixel accuracy only. Linear interpolation was
used in the case of forward motion to reduce
the effects of pixel stretching. Popescu et al.
[14] suggest a method for pixel warping that is
more appropriate for a full implementation of
such a system.
The disocclusion problem, typical to all IBR
methods, was not dealt with in this system.
Layered depth images [17] could have been
used. This would have simply increased
processing time for both IBR methods
equivalently while providing no additional
insight into how well the parametric linear flow
model works.
The optical flow was computed to floating point
precision for the purpose of error measurement.
The mean-square-error (MSE) was computed
between ground truth pixel translations, (DIx,
DIy) and the parameterized linear model (LFx,
LFy) for each rendered image i,

( ) ( ) .∑ −+−=
Image

22 DIyLFyDIxLFxMSEi (11)

The six degrees of freedom of the viewer were
separately tested with six different motion
sequences (Table 1). This allowed gauging of
the error introduced by the linearized flow
primitive.

Table 1: Velocities parameters for motion of
observer

Motion Km/h Motion Deg/sec

Tx 100 Rx 3

Ty 100 Ry 3

Tz 200 Rz 9

A realistic flyby sequence was also generated.
Simultaneously motions along multiple degrees
of freedom and accelerations were applied
(Table 2). The velocity of the viewer in each
motion sequence was set to reflect realistic
values for a helicopter flying at low altitude
over a terrain. A resolution of 320x240 was
assumed.
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Table 2: Velocities for full motion

Motion Km/h Motion Deg/sec

Tx 0 Rx 0.6

Ty 12.5 Ry 3.0

Tz 100-150 Rz 3.0

The system was run with an open loop control
for the base-image refresh rates (fixed refresh
rate). The refresh rate, maximum flow error
and computational gain are provided in Table
3. Computational gain is measured with
respect to standard depth image methods. A
maximum MSE of half a pixel was chosen to
provide smooth frame transitions when
refreshing the base image.
Flow parameterization values were computed
for half the expected displacement for each
degree of freedom, given the previous refresh
rate. This minimized the error resulting from
linearizing of the hyperbolic components. Thus
parabolic errors were expected for these
motions.
A closed loop control system, based on a
predicted MSE, was used to automatically
update the refresh rate and parameterization
values for the full motion sequence.

4.2 Error Measurements

The results for four of the seven sequences are
displayed graphically in Figure 3, Figure 4,
Figure 5 and Figure 6. The MSE was computed
for each rendered frame. Stars indicate when
the model parameters were refreshed and a new
base frame was rendered geometrically.

The results of each motion sequence are
summarized in Table 3. Note that the only
motion that introduced serious levels of error
was the translation along the Z-axis. This
motion provided an increase in performance of
four. For all other forms of motion (excluding
the full motion), an increase in performance of
at least six was achieved. The performance
was most enhanced for rotations about the x-
axis, where an increase of a full order of
magnitude was observed.

Table 3: Compilation of observed error results
Motion Refresh

(avg)
Max
MSE

Comp.
Gain

Tx 20 0 6.7

Ty 20 0 6.7

Tz 12 0.63 4.0

Rx 30 0.16 10.0

Ry 20 0.16 6.7

Rz 20 0.41 6.7

Full 14.3 0.60 3.4

As expected, translations parallel to the image
plane (Tx and Ty) resulted in negligible error.
Thus the error graphs are omitted from the
paper. Translation perpendicular to the image
plane (Tz) produced the greatest linearization
error (Figure 3). The flight simulator system
required refreshing the base image and scale
parameters every twelve frames to ensure that
the MSE remained reasonably close to the
desired half-pixel threshold.

Figure 3: MSE for Tz

Rotations about the x- and y-axis were
identical. Thus, they produced the same error
function. Little linearization error was
observed for these rotations (Figure 4). A
maximum MSE of 0.17 pixels resulted when
refreshing the image every thirty frames. The
rotation about the y-axis was refreshed every
twenty frames due to greater disocclusions
along the horizontal edges.
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Figure 4: MSE for Rx and Ry

Rotations about the z-axis produced some error
due to the small rotation assumption. For a roll
of 9 deg/sec the base image and
parameterization values were refreshed every
twenty frames (Figure 5).

Figure 5: MSE for Rz

The full motion sequence provided a realistic
flight path near the terrain. Coarse closed loop
control was applied for refreshing the base
image and flow parameters. The average
refresh rate was every 14.3 frames (Figure 6).
A computational gain of 3.4 was observed.
This demonstrates that for a realistic sequence,
in which the parameterization error is
compounded, a significant increase in
computational efficiency can be obtained from
motion consistency.

Figure 6: MSE for full motion

5 Conclusion

This paper described an enhancement to current
extrapolating image-based rendering
algorithms. The framework is developed in the
context of a real-time dynamic environment.
The algorithm is based on ideas presented in
previous work on image-based rendering. Prior
work shows that interpolation of flow can be
used to generate new viewpoints. Interpolation
methods are, however, not causal. Current
depth-image rendering techniques provide a
causal representation but do not take advantage
of consistencies in the motion of the viewer.
Thus a generalized representation is
introduced. This approach augments pixels
with the individual flow contributions of the six
degrees of freedom of the viewer. This
provides a parameterization of the flow field.
A linear approximation of the flow equations is
chosen to demonstrate that consistency of
motion can be used to accelerate the IBR
process. Three of the six degrees of freedom
turn out to be linear. The other three motion
contributions are linearized to provide a more
efficient computational structure while
introducing little error.
This new method was shown to provide
increased efficiency. An improvement of up to
a full order of magnitude was demonstrated,
while causality was maintained. The algorithm
was tested in the context of a helicopter flight
simulator. Realistic values for the motion of
the helicopter were used to test error
contribution of each motion. A real low
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altitude flight path was also generated and
tested. Results showed that the linearized flow
method increased the frame rate up to ten times
for a maximum pixel flow error of half a pixel.

References

[1] Agrawala, M., Beers, A.C., and Chaddha,
N., “Model-Based Motion Estimation for
Synthetic Animations”, SIGGRAPH '95,
pp. 477-488, 1995.

[2] Carlsson, S. and Eklundh J.O., “Object
Detection using Model Based Prediction
and Motion Parallax”, 1st European
Conference on Computer Vision, pp. 297-
306, 1990.

[3] Chen, S.E., and Williams, L., “View
Interpolation for Image Synthesis”,
SIGGRAPH '93, pp. 279-288, 1993.

[4] Debevec, P.E., Taylor, C.J., and Malik, J.,
“Modeling and Rendering Architecture
from Photographs: A hybrid geometry- and
image-based approach”, SIGGRAPH '96,
pp. 11-20, 1996.

[5] Fang, J.-Q. and Huang T.S., “Solving
Three Dimensional Small-Rotation Motion
Equations”, Proceedings of IEEE
Conference on Computer Vision and
Pattern Recognition, pp. 253-258, 1983.

[6] Foley, J.D., van Damn, A., Feiner, S.K.,
and Huges, J.F., “Computer Graphics:
Practices and Principles 2nd Edition”,
Addison Wesley, 1990.

[7] Guenter, B. K., Yun, H.C., and
Mersereau, R.M., “Motion Compensated
Compression of Computer Animation
Frames”, SIGGRAPH '93, pp. 297-304,
1993.

[8] Horn, B.K., “Robot Vision”, MIT Press,
1986.

[9] Laveau, S., and Faugeras, O., “3-D Scene
Representation as a Collection of Images”,
Proceedings of the International
Conference on Pattern Recognition, pp.
689-691, 1994.

[10] Lengyel, J. and Snyder, J., “Rendering
With Coherent Layers”, SIGGRAPH '97,
pp. 233-242, 1997.

[11] Longuet-Higgins, H.C. and Prazdny K.,
“The Interpolation of a Moving Retinal
Image”, Proc. Royal Society London B,
no.208, pp. 385-397, 1980.

[12] McMillan, L., and Bishop, G., “Plenoptic
Modeling: An Image-Based Rendering
System”, SIGGRAPH '95, pp. 39-46, 1995.

[13] McMillan, L., “An Image-Based Approach
to Three-Dimensional Computer
Graphics”, PhD thesis, University of North
Carolina at Chapel Hill, 1997.

[14] Popescu, V., Eyles, J., Lastra, A.,
Steinhurst, J., England, N., and Nyland,
L., “The WarpEngine: An Architecture for
the Post-Polygonal Age”, SIGGRAPH
'2000, pp. 433-442, 2000.

[15] Seitz, S.M., and Dyer, C.R., “Physically-
Valid View Synthesis by Image
Interpolation”, Proceedings of the IEEE
Workshop on Representations of Visual
Scenes, pp. 18-25, 1995.

[16] Seitz, S.M., and Dyer, C.R., “View
Morphing”, SIGGRAPH '96, pp. 21-30,
1996.

[17] Shade, J., Gortler, S., He, L., and Szeliski,
R., “Layered Depth Images”, SIGGRAPH
'98, pp. 231-242, 1998.

[18] Wallach, D.S., Kunapalli S., and Cohen
M.F., “Accelerated MPEG Compression of
Dynamic Polygonal Scenes”, SIGGRAPH
’94, pp. 193-196, 1994.


