
A Graph Neural Net can choose mutations
in an evolutionary algorithm to design
better routes for self-driving buses.
A Neural-Evolutionary Algorithm for Autonomous Transit Network Design
Andrew Holliday, Gregory Dudek
Transit Network Design

0

1

4

2

65

7
3

8

9

[5, 6, 7, 8, 9]
[0, 5, 6, 7, 2]
[1, 2, 3, 4, 8, 7]

Routes

Stops

We are given a city graph C composed of:
•Transit stop nodes N ,
•A set of road edges Es ,
•An |N | × |N | demand matrix D
A route as a non-repeating path in C. Our goal is
to find a set of routes, R, that connects all nodes
while minimizing a cost function:
C(C,R) = αCp(C,R) + (1− α)Co(C,R) (1)

•Cp: mean trip time over all passengers
•Co: total length of all routes
•α ∈ [0, 1]
We formulate transit network construction as
a Markov Decision Process (MDP). The below
flowchart gives the MDP structure. Blue nodes
are agent choices.

Start: R = {}, r = []

|R| = S?A = SP Return R

Choose a pathin A, add it to r
A = {all validextensionsof r in SP}

|r | < MIN?

|r | = MAX? Choose: haltor continue r?
Add r to R,set r = []

no yes

no

yes

no

yes

continue
halt

Neural Policy
We train a policy for this MDP via REINFORCE
with baseline [3] on a dataset of synthetic cities,
with reward R = −C(R). The policy πθ is a
graph attention net with two “head” MLPs for
alternating actions.

Evolutionary Algorithm
The evolutionary algorithm of [2] (EA) is a
transit network improvement algorithm. It takes
an initial network R and iteratively applies
random “mutations”, then stochastically filters the
mutated networks Rb based on C(C,Rb).

Mutate Select Reproduce

Repeat

Solutions

Schematic of an evolutionary algorithm

This algorithm has two “mutator” operators. One
deletes a random route r from R and replaces it
with the shortest path between one terminal of
r and a random other node. The other chooses a
random route and either adds or deletes a random
node at one end.
We change the first mutator: instead of a
random shortest path, we replace r with a new
route r ′ sampled from πθ(R \ {r}). We call
this modified algorithm the neural evolutionary
algorithm (NEA).

Experiments
We compare NEA to EA and to πθ alone. For πθ
alone, we sample 100 transit networks and take
the lowest-cost network. We call this procedure
LC-100. We evaluate on the widely-used
Mumford benchmark cities [1]. For benchmark
cities with ≥ 70 nodes, NEA consistently
dominates EA and LC-100 across values of α.

30 32 34 36 38
Cp (minutes)

2500

3000

3500

4000

4500

5000

5500

C o
 (m

in
ut

es
)

Mumford3 (127 nodes)

NEA
LC-100
EA

This figure shows our results forα values from 0.0
to 1.0 on the largest Mumford city, Mumford3,
which has 127 nodes.
References
[1] Christine L Mumford. “New heuristic and evolutionaryoperators for the multi-objective urban transit routingproblem”. In: 2013 IEEE congress on evolutionary computation.IEEE. 2013, pp. 939–946.
[2] Miloš Nikolić and Dušan Teodorović. “Transit networkdesign by bee colony optimization”. In: Expert Systems with

Applications 40.15 (2013), pp. 5945–5955.
[3] Ronald J Williams. “Simple statistical gradient-followingalgorithms for connectionist reinforcement learning”. In:

Machine learning 8.3 (1992), pp. 229–256.

Scan QR code to get the full paper

