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Abstract— In this paper, we investigate a hybrid scheme that
combines nonlinear model predictive control (MPC) and model-
based reinforcement learning (RL) for navigation planning
of an autonomous model car across offroad, unstructured
terrains without relying on predefined maps. Our innovative
approach takes inspiration from BADGR, an LSTM-based
network that primarily concentrates on environment modeling,
but distinguishes itself by substituting LSTM modules with
transformers to greatly elevate the performance our model.
Addressing uncertainty within the system, we train an ensemble
of predictive models and estimate the mutual information be-
tween model weights and outputs, facilitating dynamic horizon
planning through the introduction of variable speeds. Further
enhancing our methodology, we incorporate a nonlinear MPC
controller that accounts for the intricacies of the vehicle’s model
and states. The model-based RL facet produces steering angles
and quantifies inherent uncertainty. At the same time, the
nonlinear MPC suggests optimal throttle settings, striking a
balance between goal attainment speed and managing model
uncertainty influenced by velocity. In the conducted studies,
our approach excels over the existing baseline by consistently
achieving higher metric values in predicting future events
and seamlessly integrating the vehicle’s kinematic model for
enhanced decision-making. The code and the evaluation data
are available at (Github-repo).

Index Terms— Nonlinear MPC, model-based RL, transform-
ers, uncertainty-aware planning, offroad navigation

I. INTRODUCTION

Researchers in the field of off-road autonomous navigation
have developed robust techniques to effectively drive vehicles
toward their destinations. A key strategy involves the use
of image-based predictive models to enhance planning and
optimize reward functions [1], [2]. A notable contribution
in this area is BADGR [3], which combines model-based
and model-free RL, effectively addressing path planning on
smooth terrains while minimizing collision risks. BADGR
prescribes actions based on image data and leverages pre-
dictive models to anticipate future event sequences. Subse-
quent researchers have harnessed diverse data sources and
devised architectural enhancements. One notable example
fuses drone aerial imagery with onboard visuals, improv-
ing perceptual capabilities [4], while another introduces a
trajectory planner with constrained attention mechanisms
integrated into the BADGR framework [5]. However, these
models lack the inclusion of uncertainty and focus solely
on the robot’s environment, neglecting its kinematics and
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dynamics. Addressing this issue would involve integrating
motion constraints into planning and considering factors such
as road friction, slope, and vehicle states, which are difficult
to estimate from images alone.

Fig. 1: A model scale vehicle
as used in our data collec-
tion.

The previously mentioned
predictive models are re-
lated to model based control
as used in control theory.
Deep learning-based con-
trollers excel at processing
complex, high-dimensional
input data, whereas MPC
traditionally relies on a
mathematical model to eval-
uate actions [6]. MPC has
seen extensive use in plan-
ning, particularly in naviga-

tion. An influential method in this domain is the Model-
Predictive Path Integral (MPPI) [7] approach, which intro-
duces a stochastic optimal control framework. Numerous
studies have been conducted using this technique, aimed at
enhancing various facets of its application. For example, [8]
incorporates Conditional Value-at-Risk (CVaR) to generate
optimal control actions for safety-critical robotic applica-
tions, resulting in fewer collisions compared to the baseline
MPPI. Additionally, [9] proposes a variable horizon planning
MPPI, a topic further explored in the subsequent literature
section on uncertainty incorporation. However, these ap-
proaches predominantly assume a static world when planning
and neglect to model the dynamics of the environment based
on the given set of actions. In other words, they tackle the
planning problem by predominantly focusing on the vehicle’s
dynamics while inadequately representing the environment’s
dynamics.

Regarding the image-based predictive model, a conven-
tional approach involves using a long short-term memory
(LSTM) network for temporal feature extraction; however,
transformers have demonstrated superior performance across
a broad spectrum of applications [10], [11]. Initially designed
to tackle bottlenecks in natural language processing [12],
they have since been found useful in many other domains,
including vision [13]. Transformers have been shown to
be better than LSTMs at identifying and exploiting long-
range dependencies in sequential data. Motivated by this,
we explore the application of transformers in constructing
a predictive model for more accurate anticipation of future
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Fig. 2: Our proposed transformer-based architecture.

events.
An essential consideration in the design of a planner

involves the integration of uncertainty, which serves as an
indicator of distribution shifts and the model’s prediction
confidence. The utilization of uncertainty as a concept has
been extensively explored in various fields [14], [15]. Within
the context of navigation, efforts have been made to in-
corporate uncertainty-aware exploration [16]. In the realm
of balancing uncertainty and speed, a comparable strategy
to ours can be found in RAMP [9]. This method utilizes
LiDAR data and ground point inflation to map uncharted
areas. It uses an MPPI-based planner to increase speed in
low-uncertainty zones and decrease speed in high-uncertainty
areas. Unlike RAMP, which prioritizes reducing speed in
uncertainty, our approach optimizes the robot’s trajectory to
minimize uncertainty and it incorporates the world’s dynamic
into the planning.

In a nutshell, we address mapless navigation challenges
using a hybrid approach. We improve an environment pre-
dictive model with transformers and integrate uncertainty
and nonlinear MPC for a hybrid planner. This approach
optimizes robot navigation for speed, collision avoidance,
and reduced uncertainty. The practical validation of our
approach is conducted using real-world data gathered by
an RC car, depicted in Fig. 1. Subsequent sections delve
into the methodology and present the results, accompanied
by insightful observations. Ultimately, the conclusion section
provides the culmination of our paper’s findings.

II. METHODOLOGY

Our method is comprised of two key modules. The first
is the image-based predictive model, which models the
environment and leverages an RL approach suggesting a
set of steering angles at each planning step. The second
module is the MPC planner, which utilizes the vehicle’s
kinematic/dynamics model as well as the uncertainty in the
environment’s model to recommend throttle actions. In the
subsequent sections, we provide an in-depth exploration of
both modules. Besides, to train the image-based planner,
we gathered a dataset and performed manual annotations to
ensure its quality and have better evaluation studies.

Parameter Unit Description Initial Value
C1 - Geometrical 0.5
C2 m−1 Geometrical 1.69
Cm1 m/s2 Motor Parameter 12
Cm2 1/s Motor Parameter 2.5
Cr2 1/m 2nd-order Friction Parameter 0.15
Cr0 m/s2 0th-order Friction Parameter 0.7
g m/s2 Gravity 9.81

TABLE I: The model parameters.

A. Image-based Predictive Model

The image-based planner operates by processing the cur-
rent image alongside a designated set of actions covering “p”
future steps, yielding the corresponding predictions for those
upcoming events. This work adopts the model introduced in
[3] as the foundational reference. Utilizing these predicted
events, a reward function is then formulated, enabling an
online model-based RL approach. This involves the use of a
global optimizer, such as the cross-entropy method [17] or
covariance matrix adaptation evolution strategy (CMA-ES)
[18], [19], to maximize the expected reward signal across
time. Notably, re-planning occurs at each step, implying that
only the initial action from the proposed set is executed. Ex-
isting models mainly use LSTM networks, but transformers
have shown better performance across various applications.
This study replaces LSTM modules with transformers, cre-
ating a new architecture as shown in Fig. 2.

In order to estimate epistemic uncertainty we trained an
ensemble of 5 image-based predictive models. This enables
one to estimate the mutual information (MI), I(·, ·) between
model outputs, Z, and weights, W , an established measure of
epistemic uncertainty within the community [14], [20]. Our
model adopts a multitask objective, assigning equal weight
to the losses from both the image class prediction (classi-
fication task) and bearing estimation (regression task). For
the classification task, we model an ensemble of categorical
distributions, making it possible to derive the closed-form
solution for I(Z,W ). However, when estimating epistemic
uncertainty for the regression task, we create an ensemble of
Gaussian distributions and I(Z,W ) no longer has a closed-
form solution [21]. To address this challenge, we rely on
the pairwise-distance estimators (PaiDEs) [22]. PaiDEs have
been shown to efficiently estimate epistemic uncertainty for
regression tasks for probabilistic neural networks by lever-
aging closed-form distributional distance between ensemble
components [23]. We utilize both Kullback-Liebler (KL)
divergence and the Bhattacharyya distance between ensemble
components for our PaiDEs.

B. MPC

Regarding the MPC module, we have adopted the state-
space model provided in [24] and subsequently incorporated
the slope effect into it:



Label Tree Other Obstacles Human Waterhole Mud Jump Traversable Grass Smooth Road Wet Leaves
Samples 586 1631 517 66 267 164 6421 10632 698

TABLE II: Our datasets label distribution.

Model Macro-
Precision

Macro-
Recall

Macro-F1-
Score

Accuracy

ResNet18 0.440 0.741 0.499 0.654
ResNet50 0.627 0.838 0.701 0.808

ResNet101 0.644 0.846 0.719 0.808
VGG11 0.791 0.818 0.793 0.875
VGG16 0.719 0.839 0.766 0.851

ViT-B/16 0.685 0.844 0.749 0.854
ViT-L/16 0.760 0.857 0.802 0.878

TABLE III: Results of the classification study on our datasets
test set.

Ẋ = V cos(ψ + C1δ) (1)
Ẏ = V sin(ψ + C1δ) (2)

ψ̇ = V δC2 (3)
V̇ = (Cm1

− Cm2
V )D − Cr2V

2 − Cr0

−(V δ)2C1C2
2 −Mg sin(ϕ) (4)

ϕ̇ = 0 (5)
σ̇ = prediction−model(ψ,D, input− image) (6)

The configuration and pose of the vehicle in GPS coordi-
nates, its linear velocity, and the road slope are collectively
represented by the state vector [X,Y, ψ, V, ϕ, σ] ∈ ℜ6. The
input vector, denoted as [δ,D], encapsulates both the steer-
ing angle and the throttle value. Furthermore, the model’s
parameters are detailed in Table. I. To enhance the accuracy
of the model during MPC iterations that assess various action
sets, a key focus is placed on state and parameter estimation,
aiming to minimize model uncertainty. To achieve this, we
employ a moving horizon estimator [25], which leverages
a measurement window to estimate states and parameters.
The measurements encompass GPS data, which includes the
vehicle’s position and orientation, alongside accelerometer
data and camera data. While the standard model in the
mentioned equation includes an additional uncertainty state,
the dynamic nature of this uncertainty is encapsulated by the
image-based module. Consequently, within the optimization
process, MPC accommodates uncertainty, preventing undue
speed increments irrespective of the world model’s uncer-
tainty. The flowchart of the proposed planner is presented
in Fig. 4. For MPC action set formulation and practical
viability, we harness global optimization techniques as men-
tioned earlier, which eliminates the need for gradient flow
in optimization, streamlining a potentially challenging and
time-intensive aspect.

C. Dataset

Our dataset encompasses trials of hands-on robot navi-
gation, deliberately exposing the robot to intricate scenar-
ios to enhance the dataset’s diversity. This effort resulted

Fig. 3: The ViT-L/16 model’s confusion matrix on our
datasets test set.

in a carefully synchronized repository of 20,982 samples
collected at a frequency of 5 Hz to minimize potential sam-
ple correlations. Unlike previous approaches, we opted for
manual annotations to minimize potential labeling noise. Our
annotations encompass nine distinct events, including “tree”,
“other-obstacles”, “human”, “waterhole”, “mud”, “jump”,
“traversable-grass”, “smooth-road”, and “wet-leaves”. A de-
tailed summary of the annotation distribution across our
dataset is provided in Table. II. To evaluate the complexity of
our dataset on a classification task, we trained and evaluated
three Residual Network (ResNet) [26] models, two Vision
Transformer (ViT) [27] models, and two Visual Geometry
Group (VGG) [28] models on our dataset. We trained each
model using transfer learning and assessed their classification
performance using established metrics such as macro-F1-
score, macro-recall, and macro-precision.

Table. III presents the outcomes of our classification study,
revealing that while the classification of our dataset proves
challenging for ResNet18, it avoids excessive complexity
that would necessitate a substantial alteration in results by
augmenting the model’s layers from ResNet50 to ResNet101.
The confusion matrix depicted in Fig. 3 demonstrates the
Vision Transformer ViT-L/16 model’s ability to effectively
differentiate among the predefined categories. These results
solidify the dataset’s optimal level of intricacy, lending
confidence to the feasibility of the classification task at
hand. Lastly, preceding research restricted the scope of
analyzed events, notably omitting labels for dynamic entities
like humans. In contrast, our dataset meticulously annotates
nine distinct events, opening avenues for comprehensive
exploration across diverse applications.



Fig. 4: Flowchart of the proposed planner

III. RESULTS

A. Image-based predictive model

In this section, we describe the studies we conducted
to compare the LSTM and transformer-based techniques.
Initially, we trained the pre-existing baseline model known
as BADGR [3] on our dataset. To delve deeper into the
ramifications of the planning horizon, we train three models
of each type with three different planning horizons: 10, 20,
and 40 timesteps, and compare their performance. Please
note that a horizon of 40 can be considered the ultimate
planning limit, as it covers the next 8 seconds of planning.
This duration is sufficient, given our maximum speed of
3m/s. In every study, we conduct training for a total of
700 epochs, utilizing a batch size of 64, and employing an
NVIDIA GeForce RTX 3090 GPU. We evaluate each model
on a test set including 4000 random samples, and the same
random trajectories are used for all studies.

It’s worth noting that this facet of inquiry has been largely
overlooked in the existing literature, which has predomi-
nantly concentrated on the realm of RL, focusing on metrics
such as expected returns.

Fig. 5 unveils the outcomes, highlighting a compelling
ascending trend for the LSTM-based model as we progress
through the prediction steps. We think this pattern might
arise from the LSTM networks’ recurrent nature. As we
progress in prediction, they extract increasingly valuable
temporal features, enhancing predictive performance until

reaching a saturation point. Moving on to the second study,
we substituted the LSTM component, as delineated in the
methodology section, with a transformer-based model, sub-
sequently reiterating the study.

Fig. 5 underscores a remarkable enhancement in the
model’s performance when using transformers. Notably, this
improvement is most pronounced in its consistent prediction
of future events. This trend continues in the domain of
bearing estimation, as depicted in Fig. 8, a pivotal component
for guiding the vehicle toward the final goal. The LSTM
network has poor accuracy for the short-term predictions,
but its accuracy increases for predictions farther in the
future. In contrast, the transformer-based model demonstrates
impressive performance right from the start, although it
experiences a slight decrease in predictive accuracy at later
timesteps.

The superiority of the transformer-based model over the
LSTM lies in its capacity to effectively filter essential
information through self-attention mechanisms. In contrast,
LSTM networks, due to their recurrent nature, tend to exhibit
biases towards future events, making them reliant on prior
action inputs for accurate future event predictions. This key
distinction underscores the advantage of the transformer-
based model. To further probe the performance of the LSTM-
based model, we conducted an additional study, increasing
the number of time-steps between predictions to minimize
correlations among future events. However, this adjustment
did not alter the model’s performance; the weakness in early
predictions persisted.

This discrepancy holds great significance when the robot
re-plans after each action. In this context, precise early-stage
predictions become crucial, making the transformer-based
architecture a preferable choice. To further assess the initial
performance of LSTM, we present confusion matrices for
the initial prediction steps in Fig. 6. These matrices unveil
the LSTM model’s bias towards predicting “smooth-road” or
“traversable-grass” in its early predictions.

B. Uncertainty-aware hybrid planner

In this section, we execute the complete pipeline, which
incorporates the uncertainty module as well as the MPC with
a specific objective in mind: to minimize both uncertainty
and the time taken to achieve the goal at the same time.
We employ a strategy involving simulated higher speeds,
achieved by augmenting the time steps in the planning
process. This enhances input action diversity, improving the
training and exploration of the uncertainty-aware planner. To
elaborate, we designate a data sampling time of 0.2 seconds
as the baseline speed, while 0.4 seconds equate to 2 times
that speed (2X), and 0.6 seconds correspond to 3 times (3X)
the baseline. Consequently, we adapt the training of the
image-based component of the planner to align with these
variations.

Within this framework, the throttle range [0,1] is mapped
to a speed range of [0, 3X baseline]. Following this, we train
the predictive model with random speeds; we then compare
the average uncertainty in each prediction step for both the



Fig. 5: When assessing three distinct metrics, it becomes evident that the transformer-based model excels in terms of
sustaining consistent performance throughout the planning horizon. Note that each model’s evaluation is limited to the
horizon it was originally trained for.

Fig. 6: This figure depicts confusion matrices from a trained LSTM-based model with planning horizon of 40 at prediction
steps 0, 3, and 6. Initially, it mostly predicts ”smooth-road” or ”traversable-grass,” but as the prediction horizon advances,
the performance improves. Obstacles start to be recognized, and although some errors persist, the obstacles and smooth road
become more distinguishable. Furthermore, we have 4,000 test samples, in contrast to the 2,000 samples shown in Fig. 3.

Fig. 7: MPC effectively mitigates epistemic uncertainty while also improving performance on favored terrains. Notably, the
average of expected returns are 64.6 and 59.7 for the integrated and ignored uncertainty models, respectively.

LSTM and transformer based models. Fig. 9 presents the
results, revealing that the uncertainty of both the LSTM
and transformer models increases as the planning horizon
increases for each task. This observation aligns with previous
findings [15], and is consistent with our intuition that there
should be greater certainty for steps closer to the current
state. Note that for the classification task, the I(Z,W )
is calculated directly. In contrast, for the regression task,
we employed two pairwise-distance estimators, namely KL

divergence and Bhattacharyaa distance (Bhatt), as outlined
in [23].

Finally, we consider the transformer based architecture
with the uncertainty incorporated, coupled with the MPC
controller. This combination enables strategic planning for
diverse scenarios using an RL approach, akin to the method-
ology outlined in previous works such as [3], [4], [5]. For the
image-based module, we adhere to the same reward function



Fig. 8: The results from the comparative study on bearing
estimation errors further affirm the superior performance of
the transformer-based model.

definition as:

R(ê0:Kt:t+H) = −
∑t+H−1

t′=t êcollt′ + (7)
αPOSRPOS(ê0:Kt′ ) + αBUMRBUM (ê0:Kt′ )

Where RPOS = (1 − êcollt′ ) 1π∠(ê
POS
t′ , pGOAL) + êcollt′ and

RBUM = (1− êcollt′ )êBUM
t′ + êcollt′ , with a total of K events

within a given horizon of H , and predicted probablities
for each event represented as ê e.g. êcollt′ stands for the
probability of having collision at time t′. These values are in-
strumental in directing the vehicle towards preferred terrains
while ensuring collision avoidance. This function transforms
the model’s event predictions into rewards, and the RL agent
then seeks to maximize the cumulative discounted reward
over the defined horizon. In the MPC component, we tackle
uncertainty by introducing a distinctive reward function,
detailed as follows:

RMPC =
βσ
σ2

+ βV V
2 (8)

with βσ and βV as tuning parameters, and σ representing the
overall uncertainty. This helps to incorporate the imperative
of uncertainty minimization. With this framework in place,
we proceed to evaluate the effectiveness of our planner in
real-world scenarios. The reason we can effectively balance
the trade-off between speed and uncertainty using Eq. (8)
is due to the incorporation of the MPC algorithm. MPC
proposes a set of throttle commands that inherently considers
the kinematic model of the vehicle, allowing us to obtain
critical vehicle’s states information such as speed for each
prediction step. Extracting this information directly from
images is notably more challenging, although it is feasible, it
could result in a complex and resource-intensive architecture.

Fig. 7 summarizes our final study, which involved multiple
trials. We used βσ = 10 and βV = 1 in our experi-
ments. Our reward function optimizes throttle settings to
minimize uncertainty, addressing various factors like input
data distribution shifts. This doesn’t always mean just using
lower speeds during high uncertainty periods. Given the
transformer-based predictive model’s consistent and promis-
ing performance, lower uncertainty suggests improved results

Fig. 9: An exploration of uncertainty in LSTM and
transformer-based models highlights that uncertainty grows
along the planning horizon, results displayed with 95%
confidence interval.

when the input closely aligns with the training data. The
prediction uncertainty curve shows a U-shaped pattern over
prediction time, indicating increased confidence as more
actions are considered. Initial uncertainty is high due to
uncertainty about the robot’s path, and it rises again at a pre-
diction horizon threshold when current data is insufficient for
accurate prediction. Finally, employing MPC in conjunction
with the reward signal described in Eq. (8) leads to lower
average speeds and increased speed variance. This highlights
how MPC aims to balance speed and uncertainty, making
the overall planner more conservative in its use of maximum
speeds.

IV. CONCLUSION

This paper proposes a hybrid planner that combines non-
linear MPC and RL-based approaches, effectively addressing
uncertainty. The RL algorithm employs an image-based
predictive model to optimize steering angles based on reward
maximization, while non-linear MPC recommends throttle
settings that trade off goal-reaching time and uncertainty due
to various reasons. Furthermore, we introduce a transformer-
based architecture to model the environment. This model
surpasses the current baseline by achieving consistent and ap-
plicable prediction accuracy across various prediction steps.
Our dataset covering nine diverse events ensures rigorous
evaluation, producing a balance between complexity and
feasibility. Our results underscore the superiority of our
proposed planner over the existing baseline, seamlessly inte-
grating vehicle and environment models to generate viable,
uncertainty-aware trajectories.
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