
RRT-Plan: a Randomized Algorithm for STRIPS Planning

Daniel Burfoot and Joelle Pineau and Gregory Dudek
Centre for Intelligent Machines

McGill University, Montreal, Canada
{burfoot, dudek}@cim.mcgill.ca, jpineau@cs.mcgill.ca

Abstract

We propose a randomized STRIPS planning algorithm called
RRT-Plan. This planner is inspired by the idea of Rapidly ex-
ploring Random Trees, a concept originally designed for use
in continuous path planning problems. Issues that arise in the
conversion of RRTs from continuous to discrete spaces are
discussed, and several additional mechanisms are proposed to
improve performance. Our experimental results indicate that
RRT-Plan is competitive with the state of the art in STRIPS
planning.

Introduction
In this paper we propose a new approach to planning in dis-
crete domains, and demonstrate the approach in the context
of STRIPS planning. The planning problem is formulated as
a search through a large state space. To effectively explore
this space, we employ a strategy based on randomization.

Heuristic planners such as HSP (Bonet & Geffner 1999)
and FF (Hoffmann & Nebel 2001) define a state-specific
evaluation function to guide search through the state space.
While this approach is often quite successful, in many sit-
uations the guidance provided by the heuristic function is
incorrect or misleading. In particular, the topology of the
search space will often exhibit large plateaus or local min-
ima, which must be exhaustively searched. To avoid this,
our algorithm combines large scale stochastic exploration
with limited local searches. We argue that this provides a
large degree of robustness to problems where heuristic eval-
uations are imperfect.

The notion of Rapidly-exploring Random Trees (RRTs)
was introduced by (LaValle 1998), and applied to robot path
planning. RRTs are known to be particularly useful in path
planning domains where the state space is very large, but so-
lutions are not scarce. With the notable exception of (Mor-
gan & Branicky 2004), RRTs have not been extended to
discrete-space planners. These authors considered only the
general case of discrete search, and did not leverage any of
the ideas or techniques that have been developed for STRIPS
planning.

The primary contribution of this paper is a STRIPS plan-
ning algorithm which is inspired by RRT-style randomized

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

exploration. Techniques are presented to deal with several
difficulties that arise when attempting to translate RRT ideas
from the continuous case to the discrete case. A new idea
called goal subset locking is introduced which helps to avoid
a common mistake made by the relaxed plan heuristic. Fi-
nally, results are shown which validate the performance of
RRT-Plan compared to the state-of-the-art planners FF (on
whose technology we rely significantly), and LPG (Gerevini
& Serina 2002).

In the following we assume the reader is familiar with
the STRIPS planning formalism (Fikes & Nilsson 1971) and
the concept of relaxed plan heuristic (h+) search introduced
by (Bonet & Geffner 1999). We also make reference to
the algorithm known as Enforced Hill Climbing developed
by (Hoffmann & Nebel 2001)

Rapidly-exploring Random Trees
Rapidly-exploring Random Trees (RRTs) were first intro-
duced by (LaValle 1998) to solve multidimensional path
planning problems. An RRT is a tree composed of nodes
which represent positions in the search space. The RRT
growth process causes it to rapidly expand throughout the
space. Initially the tree has only one node located at the
starting state. Then we choose a point qrand at random in
the state space. We find qrand’s nearest neighbor in the tree,
that state is denoted qnear. Next we try to connect qrand

and qnear using a simple local planner, which essentially
just moves in a straight line from one point to the other until
it encounters an obstacle. If the local planner succeeds in
reaching qrand, it is added as a new node in the tree. Typi-
cally the search is only allowed to proceed for some distance
ε, in which case the location reached (called qnew) is added
instead. This process is illustrated in Figure 1. The distance
ε is a parameter that must be set. It can be shown that, given
enough time, the RRT will grow to uniformly cover the state
space (LaValle 1998).

(Kuffner & LaValle 2000) extended the basic RRT con-
cepts to create an algorithm called RRT-Connect. This algo-
rithm works by growing an RRT from the start state, and af-
ter every expansion phase attempting to connect to the goal.
Because of the uniform sampling property of the tree, the
algorithm is probabilistically complete.

RRTs are intended to find solutions in large problems
where optimality is not critical. A good example of the



Figure 1: RRT Expansion process. qrand is a randomly cho-
sen point, qnear is its nearest neighbor in the tree. The local
planner is only allowed to progress a distance ε, after which
a new point is added and the process repeats.

kinds of problems that can be solved easily by RRTs is that
of a humanoid robot picking up an object (Kuffner et al.
2003). The robot has many degrees of freedom, creating
a high-dimensional search space; however, there are also
many valid solutions.

In many STRIPS planning problems, an analogous situa-
tion occurs: the state space is very large, but solutions are
not scarce. This motivates our attempt to translate the RRT
concept into discrete domains.

The RRT-Plan Algorithm
RRT-Plan is a STRIPS algorithm based on RRT concepts.
At a high level, our RRT-Plan contains the same steps as the
RRT-Connect algorithm described above. An outline is pro-
vided in Figure 2. The basic idea is to randomly expand a
tree over the state space until a node is found that is suffi-
ciently close to the goal that it can be achieved with a local
search.

There are several obstacles to extending the concepts of
RRTs to the discrete planning case. First, RRTs require the
ability to randomly sample from the state space. Second,
given a random state, RRTs require the ability to find its
Nearest Neighbor in the tree. Finally, a deterministic planner
must be invoked to try to connect nodes to random states and
to the goal. We now discuss each step of our algorithm in
detail.

Select random state. The first step relies on the ability
to sample points randomly from the space. While it is not
difficult to sample randomly, it is very hard to sample the
reachable space uniformly. This is because determining if
any given state should be assigned a non-zero probability
(i.e. determining if it is reachable) is equivalent to solving
the planning problem itself.

Because of this difficulty, RRT-Plan generates target
states qrand by taking random subsets from the goal atoms.

Figure 2: One iteration of the RRT-Plan algorithm.

This approach has several advantages. It is easy to compute.
If the problem is solvable, then every goal subset must itself
be reachable. Finally, it tends to bias the search towards the
goal. In the following we abbreviate “random goal subset”
as RGS.

Some domains have natural goal orderings. To take these
into account, we use the goal agenda heuristic of (Koehler
& Hoffmann 2000) when generating an RGS. The ordering
would eventually be found through trial and error, but using
the goal agenda speeds up the process.

Find Nearest Neighbor. The second step in the expan-
sion process requires finding the node in the tree that is clos-
est to the random target. Unfortunately finding the precise
distance between two states is again equivalent to the plan-
ning problem itself.

We adopt the HSP technique h+

add to estimate distances
between states. For a given state, this provides an estimate
of the cost to achieve every atom in the problem. Thus the
costs, once calculated, can be reused for every nearest neigh-
bor query.

Invoke sub-planner to connect qnear to qrand. RRT-
Plan requires a sub-planner at two steps - first to connect
the nearest neighbor qnear to the target qrand, and second
to connect the new node qnew to the goal. We apply a lim-
ited version of FF as a local planner. Only the fast Enforced
Hill Climbing phase is used, and a node expansion limit is
enforced, after which the search is abandoned. These restric-
tions are analogous to the ε parameter in continuous RRTs.

Add qnew to tree. We maintain a simple tree structure in
memory. When a goal subset qrand is reached from qnear,
a new node is added to the tree as a child of qnear, and the
actions required to reach qrand are stored. If the full goal
is reached from a node in the tree, we can construct a full
solution by following the path from the root to the node and
then to the goal (note that soundness of the full algorithm
is guaranteed by the soundness of the local planner). If the
sub-planner fails to connect to the target, no new node is
added to the tree.

Attempt to connect qnew to goal. Again, we use the En-
forced Hill Climbing phase of FF, with bounded node ex-
pansion. In contrast to the previous connection attempt, in
this case the best resulting node is kept and added to the tree.
This is because it might be very close to the goal even if the
search does not succeed.



Importantly, this allows for the node expansion limit to
be effectively bypassed. Consider the following scenario:
a new RRT node is created, and then an attempt is made to
reach the goal. This attempt fails because of the node expan-
sion limit, but would have succeeded if it had been allowed
to continue. Because the resulting state is also added as a
new node, it can be selected as nearest neighbor on the next
iteration, and the search can be continued from the point it
was halted due to the expansion limit.

Goal Subset Locking. Several of the problems encoun-
tered by h+ planners are caused by the fact that the relaxed
plan length heuristic does not penalize the deletion of goal
atoms. If a goal atom can be achieved in an “easy” way
through the deletion of an already asserted goal atom and in
a “hard” way (in which other goal atoms are not deleted), the
heuristic value is low, corresponding to the “easy” way. Fur-
thermore, and perhaps more problematically, states which
are closer to or further from the solution along the hard path
are not accorded correspondingly better or worse values.

To avoid such situtations, when a RGS is achieved in the
connection phase of RRT-Plan, the atoms of the RGS are
locked so that any future action which deletes them is not
considered. Additionally, any goal atoms which are locked
in a parent node are also locked in its children. Importantly,
this restriction is taken into account when calculating the
atom cost estimates for the node. States for which the final
goal is accorded an infinite heuristic value are discarded. We
define h+

gsl(s, gs) to be the length of the relaxed plan from
s to the goal where actions which delete atoms in goal sub-
set gs are disallowed. It is clear that this modification can
never decrease the heuristic evaluation of a state. Also, it is
admissible with respect to the restricted planning problem.

Adapting Search Parameters. We can extract useful in-
formation from the growth (or failure to grow) of the tree.
This information is used to adapt the parameters of the sub-
planner. Roughly, statistics are kept regarding which goal
atoms are easy to achieve and which are difficult. When
searching for difficult goal atoms, the local planner is al-
lowed to expand a greater number of states. Similarly, we
keep track of which nodes in the RRT look like they might be
dead ends, and discriminate against those nodes in Nearest
Neighbor queries. These techniques are described at greater
length in (Burfoot, Pineau, & Dudek 2006).

Experimental Results
To validate RRT-Plan, we compared its performance with
that of state-of-the-art planners FF and LPG-td 1.0 (speed
settings) on problems1 from the planning competitions from
1998, 2000, and 2002 (McDermott 2000; Bacchus 2001;
Long & Fox 2003). We also used the STRIPS version of
the Pipesworld domain from the 2004 competition.

In addition we used a simple new domain called Push-
Block, to illustrate a case in which RRT-Plan’s techniques

1In Blocks-World only the first 35 problems from 2000 were
used; FreeCell problems come from both 2000 and 2002 compe-
titions; the Logistics problems came from Track1 of 2000 includ-
ing the Additional set; Typed versions of domains were used when
available.

are a substantial improvement. This is simply a 20x20 grid
of positions which can be occupied by blocks. The blocks
can be pushed left, right, up or down, but not into a location
which already contains another block. The goal is simply
a set of locations to which we must move blocks. We gen-
erated 20 domains, starting with one block/goal atom and
moving up to 20.

Table 1: Performance of FF, RRT-Plan, and LPG on various
domains. Entries list the number of problems the planner
could not solve within five minutes of CPU time.

Domain FF RRT-Plan LPG
Blocks World (35) 3 1 0

Driverlog (20) 5 0 0
Depot (22) 3 0 0

Freecell (80) 8 10 70
Logistics (63) 0 0 0
MPrime (35) 3 3 0
Mystery (30) 14 13 12

Pipesworld (50) 15 8 9
Rovers (20) 0 0 0
Satellite (20) 0 0 0

Push-Block (20) 15 0 19

Table 1 shows the number of problems solved by the three
planners on the test suite. These statistics were generated
by allowing the planners to run for up to five minutes and
recording the time to completion. Experiments were per-
formed on a 3GHz Pentium 4 Linux machine with 2GB of
RAM. Looking at the table, we see that RRT-Plan outper-
forms FF in several domains and is worse in only one, Free-
Cell.

Looking at the results, we distinguish three cases. First,
there are domains which FF solves easily (Logistics, Rovers,
Satellite). Here RRT-Plan succeeds easily as well, on the
first goal connection attempt. Second, there are problems
which have very few goal atoms (Mystery, MPrime, Free-
Cell). This hinders the RGS scheme employed by RRT-
Plan. However, the algorithm will realize this and effectively
channel all computational resources to the local planner, so
it again becomes equivalent to FF. In several other domains
(DriverLog, Depots, Pipesworld, Push-Block), randomiza-
tion yields significant performance benefits. Push-Block is
an extreme example of a domain in which goal atoms can
be achieved quickly, but only at the price of deleting other
goal atoms. This means the h+ heuristic gives egregiously
bad estimates. RRT-Plan can handle this through random-
ization and goal subset locking. More in-depth analysis is
given in (Burfoot, Pineau, & Dudek 2006).

The goal of RRT-Plan is to find solutions to difficult prob-
lems. We were prepared to accept suboptimal plan lengths,
and expected RRT-Plan’s solutions to be uniformly worse
than those of the other planners. Surprisingly, this was not
always the case. Figure 3 shows the number of plans gener-
ated with less than a given number of actions. The curves for
the three planners are nearly identical, indicating that RRT
techniques do not significantly worsen plan length.



75 150 225 300
0

50

100

150

200

250

300

350

400

Plan Length

P
ro

bl
em

s 
S

ol
ve

d

FF
RRT−Plan
LPG

Figure 3: Plan length comparison for FF, LPG, and RRT-
Plan.

Discussion
This paper presents a randomized algorithm for STRIPs
planning. In general, one of the most important advan-
tages of randomized over deterministic algorithms is that
they avoid systematic errors. Heuristic evaluation functions
often report misleading information, which can lead to large
plateaus or local minima. If the search is guided only by the
heuristic, the planner is required to exhaustively search such
regions. RRT-Plan avoids this pitfall by using randomization
for large scale exploration and limiting local searches. An
important side benefit is that large open lists are not needed,
reducing memory consumption. Note also that the down-
side of the Enforced Hill Climbing phase of FF - that it can
fail if it reaches a dead end - does not particularly concern
RRT-Plan.

One critical difference between continuous and discrete
RRTs regards the volume of the “ε-ball”, the region from
which the goal can be achieved by the sub-planner. In con-
tinuous planning, the volume of the ε-ball is usually just one
or two orders of magnitude smaller than the entire configu-
ration space. By contrast in discrete planning, the ε-ball can
be exponentially smaller than the state space, depending on
the heuristic.

Instead of attempting to choose states randomly from the
space, RRT-Plan instead randomly samples from goal sub-
sets. As the number of achieved goal subsets in the tree
grows, it moves closer and closer to the complete goal.

While RRT-style exploration is at the heart of our ap-
proach, several additional techniques are required. Most
prominently is the idea of goal subset locking. By point-
ing the h+ heuristic at a goal subset and preventing it from
deleting already achieved goals, the topology of the search
landscape is simplified. In some cases local minima and
plateaus are removed. Also, as the tree grows certain goal
atoms are identified as problematic, and more effort is de-
voted to achieving them.

A future objective is bi-directional RRT-Plan, in which
another tree is grown from the goal and expands in the re-

gression space of the problem. We also plan to add support
for tasks involving numeric constraints.

Acknowledgments
We would like to thank the authors of FF and HSP for mak-
ing the code to their planners available online.

References
Bacchus, F. 2001. The AIPS ’00 planning competition. AI
Magazine 22(3):47–56.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Biundo, S., and Fox, M., eds.,
Proc. 5th European Conf. on Planning, 359–371. Durham,
UK: Springer: Lecture Notes on Computer Science.
Burfoot, D.; Pineau, J.; and Dudek, G. 2006. A STRIPS
algorithm based on Rapidly-exploring Random Trees. TR-
CIM 06-02, Center for Intelligent Machines, McGill Uni-
versity.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. In IJCAI, 608–620.
Gerevini, A., and Serina, I. 2002. LPG: A planner based
on local search for planning graphs with action costs. In
Ghallab, M.; Hertzberg, J.; and Traverso, P., eds., AIPS,
13–22. AAAI.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. J. Artif.
Intell. Res. (JAIR) 14:253–302.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm. Journal of Artificial Intelligence Re-
search 12:338–386.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Proc.
IEEE Int’l Conf. on Robotics and Automation, 995–1001.
Kuffner, J.; Nishiwaki, K.; Kagami, S.; Inaba, M.; and In-
oue, H. 2003. Motion planning for humanoid robots. In
Proc. 11th Intl Symp. of Robotics Research (ISRR 2003).
LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning. TR 98-11, Computer Science
Dept., Iowa State University.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. J. Artif. Intell. Res.
(JAIR) 20:1–59.
McDermott, D. V. 2000. The 1998 AI planning systems
competition. AI Magazine 21(2):35–55.
Morgan, S., and Branicky, M. S. 2004. Sampling-based
planning for discrete spaces. In Proc. IEEE/RSJ Intl. Conf.
Intelligent Robots and Systems.


