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ABSTRACT

This thesis explores limitations of heuristic search planning, and presents techniques to

overcome those limitations. The two halves of the thesis discuss problems in standard

propositional planning (STRIPS) and in planning with numeric state variables respectively.

In the context of STRIPS, the primary focus is on the widely used relaxed plan heuristic

(h+). A variety of cases are shown in which h+ provides systematically bad estimates of goal

distance. To address this breakdown, a planning system called RRT-Plan is presented. This

system is inspired by the concept of Rapidly-exploring Random Trees, which was originally

developed for use in mobile robot path planning. Experimental results show that RRT-Plan

is comparable to leading planners in terms of number of problems solved and plan quality.

We conclude that the effectiveness of RRT-Plan is based on its ability to search the space

of artificial goal orderings.

The second half of the work considers heuristic search planning in numeric domains.

Two particularly significant obstacles are identified. The Curse of Affluence is due to the

vast blowup in the search space caused by the addition of numeric variables. The Curse of

Poverty relates to the difficulty of finding relevant lower bounds on resource consumption.

Exploration of the Curse of Affluence leads to the new concepts of reduced search

and enhanced states. In reduced search, certain simple operators are not used to expand

states. Instead, enhanced states are constructed which represent all possible states which

could be achieved by suitably inserting simple operators in the plan. Enhanced states are

represented by a set of constant discrete variables, and a convex hull of numeric values. This

representation can be queried and updated in a natural way. Experimental results show

that there are domains for which reduced search gives order of magnitude performance

improvements over Metric-FF, a leading heuristic search planner for numeric domains.



RÉSUMÉ

Cette thèse explore les limites des heuristiques de planification de recherche et présente des

techniques pour surmonter ces limites. La thèse est divisée en 2 parties. La première traite

de problèmes standards de planification propositionnelle et la seconde de planification avec

variables numériques d’état.

Dans le contexte de STRIPS, l’attention est portée sur l’heuristique “Relaxed Plan”

(h+) qui est couramment utilisé. Une série d’exemples pour lesquels h+ donne systématiquement

des résultats erronés est présentée. Pour résoudre ce problème, un système de planification

appelé RRT-Plan est proposé. Ce système s’inspire du concept d’exploration rapide d’arbres

aléatoires qui a d’abord été développé pour la planification de trajectoires de robots mobiles.

L’efficacité de RRT-Plan repose sur sa capacité à chercher l’espace d’ordonnancement de

buts artificiels. Lorsque le problème est partitionné de cette faon, h+ donne un meilleur es-

timé. Les résultats présentés démontrent que RRT-Plan peut être comparé aux techniques

de pointe en terme de nombre de problèmes résolus et de qualité des plans obtenus.

La seconde partie de la thèse se penche sur les heuristiques de planification de recherche

dans les domaines numériques. La Malédiction de l’Affluence est un problème qui résu lte

de l’explosion de la taille de l’espace de recherche lors de l’ajout de variables numériques.

La Malédiction de la Pauvreté est liée à la difficulté de déterminer une limite inférieure à

la consommation de ressources.

L’exploration du problème de la Malédiction de l’Affluence amène les nouveaux con-

cepts de recherche réduite et d’état enrichi. La recherche réduite s’effectue en remplaant

l’utilisation de certains opérateurs simples dans le développement des états par des états

enrichis qui représentent tous les états qui auraient pu être atteints par l’utilisation des

opérateurs simples éliminés. Un état enrichi est représenté par un ensemble de constantes



RÉSUMÉ

discrètes et une enveloppe convexe de valeurs numériques. Cette représentation facilite la

requête et la mise à jour. Les résultats expérimentaux démontrent qu’il existe certains do-

maines pour lesquels la recherche réduite permet d’améliorer la performance d’un ordre de

grandeur par rapport à Metric-FF, un heuristique de planification de recherche de pointe

pour les domaines numériques.
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CHAPTER 1

Introduction

1.1 Overview and Motivation

This thesis describes research in the field of discrete planning. Broadly speaking, plan-

ning is the selection of a set of actions (a plan) that will affect the state of the world in

some desirable way. Often this is to move from the initial state of some system to a goal

state. Within this framework, discrete planning as discussed in this thesis has the further

requirements that:

• There is no randomness.

• The state of the system is fully observable.

• There is a finite set of actions from which to choose.

These are strong assumptions, nevertheless they admit a vast number of possible prob-

lems and applications. Historically, discrete planning research has focused on simple exam-

ples such as Blocks-World [1]. The idea was that by starting simple, useful techniques and

concepts could be identified, and the scope of the technology could gradually broaden to

include more and more advanced problems. Recently, there has been a trend toward more

realistic problems, such as airport traffic control [2], oil pipeline flow planning [3], and model

checking [4]. These reflect collaborations between the scientific community and industrial

partners who have an interest in planning technology. A more basic application of planning

systems is to logistics problems. Here, the system must route packages or passengers to

their destinations with a limited supply of trucks or airplanes, while possibly also limiting
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the amount of fuel or time expended. Needless to say, such problems are often encountered

in the real world.

The open-endedness of the problem statement is a source of both frustration and inter-

est. One might imagine an ideal discrete planner which would be able to analyze the task

definition, identify important features and characteristics, and select the best algorithm to

use. The development of such a system would constitute an significant success for Artificial

Intelligence (AI). It would not only provide a powerful tool to be used for other AI projects

such as robotics, but the techniques employed would undoubtedly be generalizable. This

dream is far away, unfortunately.

One fundamental issue is that computationally intractable problems can be encoded

as discrete planning tasks. Because of this there exist broad task families which can never

be solved efficiently by planning systems. Researchers in this field are thus faced with the

question of defining precisely what they are trying to achieve. Two leading practitioners,

Jörg Hoffmann and Bernhard Nebel advocate the following approach [5] :

• Identify common features of existing benchmark domains,

• Develop algorithms which perform well on those domains,

• Formalize the class of problems for which the algorithms work well.

This thesis roughly follows the above outline. We focus particularly on heuristic search

planning, a widely used technique. Shortcomings and limitations of this paradigm are found,

illustrated by simple problems that modern planners cannot efficiently solve. To overcome

these limitations, new algorithms are proposed. Finally, we analyze circumstances under

which the new algorithms enjoy an advantage over the current methods.

1.2 Planning as Heuristic Search

In discrete planning, the system upon which the agent acts is represented by a set of

variables. An assignment of values to variables is called a state. The problem is defined

by an initial state, a set of goal conditions, and a set of operators which modify the state

in some deterministic way. A solution to the planning problem is a list of actions, called a

plan, which leads from the initial state to a goal state, of which there may be many.

2



1.2 PLANNING AS HEURISTIC SEARCH

Given the relatively abstract definition above, one can see that there are many possible

formalisms which would acceptably instantiate the basic idea. Moreover once the formalism

has been defined, there are many ways in which the problem can be formulated. Some

systems, such as LPG [6], are based on iterative plan repair. They start out with a set of

operators which is probably invalid, and then iteratively attempt to resolve inconsistencies

with it. The SatPlan system [7] translates the planning problem into a satisfiability problem,

and then invokes a satisfiability engine to generate a solution.

A widely used formulation, and the one we examine in this thesis, is that of planning

as heuristic search. The planning problem is represented as a large graph, with each node

corresponding to a state of the world. A link between two nodes A and B exists if there is

some operator that will transform state A into state B. Now the problem is simply a graph

search.

For finite problems, this algorithm is complete: assuming a goal node exists and is

reachable, it will be found in finite time. Unfortunately, in practice this will only work for

extremely simple problems, because the number of nodes in the graph is exponential in the

number of variables. In order to proceed, it is necessary to guide the search somehow, to

reduce the number of states that must be explored. To do so we define a heuristic function.

This function attempts to estimate, for the state under consideration, the distance to a

goal state. This distance is typically measured in number of actions, but other methods

can be used to find plans which optimize time, resource consumption, or other plan quality

metrics. Finding good heuristics is by no means trivial and constitutes a significant area of

interest [8, 9].

Equipped with this heuristic function, a standard method such as Best First Search

or the A* algorithm [10] is applied to find a path from the starting node to a goal node.

Best First Search is most often used because it increases the speed with which a solution is

found, while the A* algorithm is slower but will produce optimal plans.

Planning systems which operate in this way are called heuristic search planners. The

original planning system of this type is called HSP [11]. Heuristic search planning is widely

used: of the last four International Planning Competitions [12, 13, 14, 15], two were won

by pure heuristic search planners and another (the most recent) was won by a hybrid system

which includes heuristic search [16].
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Methodology of Thesis. Having introduced the necessary concepts, the methodology

the thesis can be stated as follows:

• Critically analyze heuristic search planning,

• Identify limitations and common failure modes,

• Present methods to overcome these limitations.

This process is performed twice, once for standard propositional domains and once for

numeric domains. The remainder of this chapter provides an overview of the findings and

results.

1.3 Limitations of Standard Heuristic Search Planning Techniques

By definition, heuristic functions are not exact. If the heuristic gives an accurate

estimate of the distance from a given node to a goal state, the search will proceed rapidly. In

the worst case when the heuristic gives completely erroneous information, the time required

for the search will be on the order of the number of nodes in the graph.

It should be noted that while some heuristic functions are better than others, only a

limited amount of progress can be made by attempting to define better functions. Finding

the exact distance to the goal in the state space graph is equivalent to the planning problem

itself. Furthermore, the heuristic must be computed many times (once for each state that

is explored), meaning that additional complexity will come at a high price.

Heuristic functions often give systematically erroneous estimates about the goal dis-

tance. Because of this, many problems cannot be solved except by exhaustive search.

A standard technique to deal with systematically misleading information is randomiza-

tion. The planner described in Chapter 3 interleaves randomized exploration with directed

heuristic search. This allows the system to exploit the power of heuristic search in regions

where the information is accurate, while providing some degree of robustness to situations

in which the heuristic gives incorrect estimates.

A specific issue that often causes the heuristic to report misleading or useless informa-

tion is the existence of rival goals in the problem. Roughly speaaking, two goal conditions

are rival if an action which leads towards one leads away from the other. If this happens, the

4
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heuristic will typically assign large regions of the state space an identical value, requiring

exhaustive search.

Inspiration from Mobile Robot Path Planning. Path planning for mobile robots

is a well-studied problem in the field of robotics [17, 18, 19] (see Section 2.9 for a brief

discussion). This problem bears some resemblance to discrete planning. In both cases,

the system is attempting to find a path from the initial state to a goal state. The main

difference is that in mobile robot path planning the set of plans is uncountable, while in

discrete planning it is countable.

In high-dimensional path planning, it is often the case that solutions are abundant and

optimality is not paramount. A recent line of research by LaValle and Kuffner [20] seeks to

exploit this observation by defining the Rapidly-exploring Random Tree (RRT). The basic

principle is to grow a tree, rooted at the initial position, outward into the state space. The

growth process is based on randomization, and biases expansion so that the nodes in the

tree will converge to an uniform sampling of the state space of the problem. Because of

this, a node will eventually be created in the region of the goal, and so a local planner can

connect directly from there to the goal. The success or failure of the RRT method depends

not on the dimensionality of the planning problem, but rather on the abundance or scarcity

of solutions.

The idea of the first half of this thesis is to apply the concept of RRTs to discrete

planning. In the following, the difficulties in translating the RRT idea from one domain

to another are discussed. A discrete planning algorithm called RRT-Plan is presented. We

show through analysis and empirical testing that there are categories of problems which

RRT-Plan can solve efficiently, while other planners cannot.

We conclude that RRT-Plan’s success is based on the existence of artificial goal order-

ings in many domains. In contrast to natural goal orderings which specify a required order

in which goals must be achieved, an artificial goal ordering is permissible: the full goal

may be achieved by following it. Using a bad artificial goal ordering can make the problem

unsolvable, but if a good one is found it can make the problem much easier. RRT-Plan is

effective at obtaining a good artificial goal ordering when one exists.

5
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1.4 Limitations of Heuristic Search Planning in Numeric Domains

The second half of this thesis deals with heuristic search in numeric domains. These

domains constitute an important extension of the planning formalism to problems which

involve continuous as well as discrete variables. The starting point is the identification of

two deep problems.

1.4.1 Two Curses. Two critical issues can be readily identified when attempting

to apply the concept of heuristic search to numeric domains. The first, of primary interest

for this research, is the Curse of Affluence. We also discuss (but do not address) the converse

problem, called the Curse of Poverty.

The Curse of Affluence is caused by unconstrained resources. There are many domains

which allow the agent to produce a resource. If the domain does not impose maxima on

the amount that can be produced, then the size of the state space becomes infinite. Even

if there is a production ceiling, the state space still grows by a factor equal to the number

of values the variable can take on.

In finite state spaces, there are almost always small regions which must be searched

exhaustively. These are caused by incorrect estimates provided by the heuristic func-

tion. When the state space becomes infinite, these formerly small regions can no longer

be searched exhaustively. This causes a standard search procedure to fail.

The Curse of Poverty involves problems in which certain resources must be conserved

in order to reach the goal. The issue is that it is basically impossible to find meaningful

lower bounds on resource requirements. This is because the relevant lower bounds are often

not specific to one variable, but to combinations of variables. In order to find a plan which

conserves the appropriate resources, it is necessary to prune states which have insufficient

resource availability. However, because of the difficulty of obtaining lower bounds, this is

quite hard to do.

1.4.2 Reduced Search with Enhanced States. In traditional heuristic search,

each node in the search tree represents a state of the problem, and the state is fully spec-

ified. The contribution of Chapter 4 is a method for handling the Curse of Affluence by

constructing enhanced states, which represent many actual states. This will significantly

compress the search space.
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An enhanced state is created when a simple operator becomes applicable. Deferring

the precise definition of “simple operator”, consider the case of a refuel action in a Logistics

domain. This action has some preconditions but no propositional effects. The only effect is

to increase the fuel. This implies that it can be applied multiple times (barring a maximum

fuel level). A standard search algorithm would create multiple successor states, each rep-

resenting a certain number of refuel actions. A reduced search creates one enhanced state.

This enhanced state carries information relating to the range of values the fuel variable can

take on by inserting the refuel operator.

In order to represent the reachable numeric space associated with an enhanced state, a

connection is made to the concept of the convex hull. This representation permits queries,

updates, and expansions to be carried out in a natural way. Furthermore, the convex hull

has been widely studied in the computational geometry literature, and efficient algorithms

exist for computing it [21, 22].

1.5 Thesis Contributions

The underlying theme of this thesis is the recognition of limitations of heuristic search

planning, and the development of techniques to circumvent those limitations. These tech-

niques constitute the major contributions of the thesis, and are instantiated by the devel-

opment of two planning systems:

• RRT-Plan, a randomized algorithm for STRIPS planning (Chapter 3)

• Convex Hull Causal Graph Planner (CHCGP), a planning system which uses

reduced search to compress the numeric state space (Chapter 4)

Two minor contributions related to CHCGP are the extension of the Causal Graph

heuristic [23] to numeric domains, and the development of a method that can find lower

bounds on resource consumption in certain cases.

The motivation for these planning systems comes in part from a critical analysis of the

limitations of heuristic search planners in various contexts. This analysis constitutes an

additional contribution of the thesis. Planning domains which illustrate the limitations are

developed and presented in Appendix B.
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1.6 Organization

Chapter 2 gives background on previous discrete planning systems, robot motion plan-

ning, and convex hull concepts. Chapter 3 describes RRT-Plan, a discrete planning algo-

rithm based on the idea of RRTs. Chapter 4 introduces the notion of reduced search with

enhanced states. Chapter 5 provides some concluding remarks. Appendix A describes tech-

nical details relating to the implementation of CHCGP. Appendix B presents the planning

domains used for experimental evaluations of the systems described in Chapters 3 and 4.
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CHAPTER 2

Background

We begin this chapter with a brief introduction to the STRIPS language, giving definitions

and two classic examples. Definitions regarding the numeric version of STRIPS are then

given. Next, we review results about the complexity of STRIPS planning. The majority

of the chapter is spent on a discussion of historically important planning systems. In

particular three important heuristic planners are described - HSP, Fast Forward (FF), and

Fast Downward, as well as a version of FF that can solve numeric planning problems. A

brief discussion of mobile robot path planning algorithms is given; the method of Rapidly-

exploring Random Trees is used in Chapter 3. The chapter concludes with a consideration

of the convex hull, a concept from computational geometry that is relevant to Chapter 4.

2.1 STRIPS planning

In 1971, Fikes and Nilsson introduced one of the first discrete planning systems [24].

They named their system STRIPS, for Stanford Research Institute Problem Solver. Since

then the word STRIPS has come to refer primarily to the language used by the system,

rather than the system itself. Most discrete planning research has used the STRIPS lan-

guage.

Information represented by the STRIPS language is divided into two parts, a domain

definition and a problem specification. The domain definition contains a set of predicates

and operators. The predicates indicate properties of objects or relationships between

objects. The operators correspond to the types of actions that the agent can choose from. A

problem specification provides a set of objects, which are used to instantiate the predicates
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and operators. A instantiated predicate becomes a proposition (also called atom or fact),

an instantiated operator becomes a grounded operator. A state s of the system is simply

a set of propositions. The problem definition also includes a set of propositions called the

initial state si, which has an obvious meaning, and another set called the goal conditions

s∗. A state s such that s ⊇ s∗ is a goal state.

The set of grounded operators in the problem is denoted O. For every operator o ∈ O,

there are three associated proposition sets: add effects add(o), delete effects del(o) , and

preconditions prec(o). An operator is applicable in a state s if prec(o) ⊆ s. The result of

applying an operator to s is:

result(s, o) = {s \ del(o)} ∪ add(o) (2.1)

A plan is a sequence of operators {u1, u2 . . . un}. A plan combined with an initial state

si creates a sequence of states {s0, s1, . . . sn} such that s0 = si and

sk = result(uk, sk−1) (2.2)

A valid plan is one for which sk ⊇ prec(uk+1). A solution is a valid plan where

sn ⊇ s∗. We now give two examples of classic STRIPS planning domains.

2.1.1 Example - Blocks World. This domain (Figure 2.1) depicts stacks of blocks

on a table. The initial state is given as some configuration of blocks and the goal is to achieve

some other configuration. The agent is allowed to move the top block from a stack onto the

table or onto some other block that is clear. The goal is a set of ON propositions which

partially specify a stack of blocks.

An interesting observation about this domain is that certain sets of propositions are

inconsistent. For example, it is impossible for both ON (A, B) and ON (B, A) to be true

at the same time. There is also a simple invariant function of the number of blocks and

the number of each proposition type that remains constant under all operator applications.

Thus one way of approaching STRIPS planning is to attempt to discover these rules and

invariants. Another interesting fact about this domain is that there are natural goal

orderings. These are orderings in which the subgoals must be achieved for the full problem

10
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Figure 2.1. The Blocks World domain definition.

to be solved. Specifically, the blocks at the base of a column must be stacked before the

higher blocks.

2.1.2 Example - Logistics. Another well-studied STRIPS domain is Logistics

(Figure 2.2). This domain involves a set of packages that must be delivered to various

locations. The packages can be driven around after being loaded into a truck. A link

predicate indicates that two locations are connected, so a truck can drive from one to the

other. Note the way type predicates are used to ensure that trucks aren’t loaded into other

trucks and packages can’t drive themselves.

Like Blocks-World, Logistics has strong invariants regarding the relationship between

the number of trucks, packages, and propositions. Specifically, there must be exactly one

true at proposition for every truck and exactly one true at or in proposition for every

package. Also, there are constant predicates (link) which never change.

Unlike Blocks-World, goals in the Logistics domain can be achieved in any order. Fur-

thermore, propositions corresponding to the locations of trucks do not depend on any other

non-constant propositions. A truck can be driven around regardless of the status of the other

packages or trucks. This observation is exploited by the planning system Fast Downward

(see Section 2.8).

11
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Figure 2.2. The Logistics domain definition.

2.1.3 STRIPS planning with Numeric Variables. Over the years various ef-

forts have been made to extend the STRIPS language to allow it to handle a broader class

of problems. These efforts produced several more advanced language features, including the

ability to represent first-order logic [25], temporal constraints [26], and most recently goal

preferences [27].

This work is concerned with STRIPS planning with numeric variables. To enable this,

the notion of numeric functions was introduced [26]. These are analogous to predicates,

except an instantiated function has continuous, rather than binary, values. A state s thus

includes, in addition to a list of propositions, an assignment of values to functions. In this

document functions are called numeric variables. Functions can be incorporated into the

planning problem in three ways:

• They can constrain the applicability of operators.

• They can be changed by the application of operators.

• They can participate in goal metrics, supplying a means of evaluating the qual-

ity of plans in a way other than by plan length.

12
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In this work the focus is on the first two roles. Numeric constraints (item 1) and

numeric effects (item 2) are evaluated in terms of expressions. The syntax of expressions in

PDDL 2.1 is quite simple:

< expression >::= (< op >< expression >< expression >)| < constant > | < function >

Here op is one of the standard arithmetical operations {+, -, *, /}. Numeric constraints

are tuples (exp1, relop, exp2), which are evaluated by comparing the two expressions using

one of the standard relational operators {≤, <, =, >, ≥}. Numeric effects, similarly, are

tuples of the form (targ, assignop, exp) which changes the value of the function targ by

evaluating exp and applying the given assignment operator, which is one of {+=, -=, *=,

/=, :=}. Note that when applying an operator, constraints are evaluated before effects,

and effects are evaluated simultaneously.

2.2 Theoretical Considerations

Several researchers have studied the complexity of STRIPS planning in various forms [28,

29]. In this section we focus on the work of Bylander [1], which deals with standard

STRIPS, and Helmert [30], which studies STRIPS planning with numeric variables. We

will give proof outlines for two of the simplest and most powerful results and state several

others.

Because basic STRIPS tasks consist of a finite set of propositions N , the size of the

search space is bounded by 2N and the problem is decidable, albeit potentially costly. A

brute force algorithm that simply visits every state will be complete.

Given this fact, we now proceed to consider the complexity of STRIPS planning. Let

PLANSAT be the problem of determining if a plan exists for a STRIPS planning task. In

particular, consider a restricted version PLANSAT1+ of the problem where operators are

allowed to have only one positive effect, i.e. del(o) = ∅ and |add(o)| = 1 for all operators.

Theorem PLANSAT1+ is NP-complete (Bylander [1]).

Hardness is shown by a polynomial reduction to 3SAT, which is known to be NP-

complete [31]. We consider a 3SAT problem which consists of M literals and K clauses,

and give a STRIPS task that is polynomially equivalent. The domain is given in Figure 2.3.

13
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There are two operators which represent making literals true or false, and two which satisfy

a clause of the problem if the literal has the correct value.

Figure 2.3. Domain definition for the 3SAT reduction.

The initial state is just a list of propositions specifying the way literals enter into clauses.

Thus if clause A is (r ∨ s ∨ ¬t), then the initial state would include ENTERSTRUE (A, r),

ENTERSTRUE (A, s), ENTERSFALSE (A, t). Note that the literals are initially in an

“unassigned” state, but once an assignment is made it cannot be reversed. The goal is for

all clauses to be satisfied. A solution to this STRIPS task would give a solution to the

corresponding 3SAT problem, so PLANSAT1+ is NP-hard.

Propositions are never deleted, and so every state is strictly larger than its predecessor.

Therefore if a solution exists it is linear in the number of propositions in the task. Because

of this PLANSAT1+ is in NP, and therefore NP-complete.

Note that if instead of defining the predicates ENTERSTRUE and ENTERSFALSE

we had simply written out 3 operators for each of the K clauses explicitly, such that each

operator would have a precondition on a specific proposition (e.g., TRUE (w), where w

is an object listed in the task definition), the operators would now be limited to a single

14
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precondition. Thus even PLANSAT 1
1+, where operators have single preconditions and one

positive effect, is NP-complete.

Bylander [1] also proves that the following problems are PSPACE-complete:

• PLANSAT : operators have general preconditions and effects;

• PLANSAT 1 : operators have only one precondition and arbitrary effects;

• PLANSAT 2+
2 : operators have two positive preconditions and two total add or

delete effects.

The following problems are polynomial:

• PLANSAT+
1 : operators have positive preconditions and one add or delete effect.

• PLANSAT 1(g) : operators have one precondition and the number of goals is

limited to a constant g.

• PLANSAT 0 : operators have no preconditions.

The first item has an elegant proof which is based on the observation that the operators

in a valid PLANSAT+
1 plan can be reordered such that all the operators with positive effects

come before all the operators with negative effects. Bylander also shows several results for

the problem of finding an optimal plan, PLANMIN . Clearly this is strictly harder than

the PLANSAT problem, and only highly restricted versions are tractable.

We now discuss the work of Helmert [30] who studied the complexity of STRIPS plan-

ning with numeric variables. Helmert defines the problem as PLANSAT (G,P, E) where G
and P are the types of numeric constraints allowed on the goal and on operators, respec-

tively; E denotes the type of numeric effects allowed. The constraints G and P are classified

as follows:

• C∅ : no numeric conditions.

• C0 : compare a variable to zero.

• Cc : compare a variable to a constant.

• C= : compare two variables to one another.

• Cp : compare a polynomial of a single state variable to zero.

• Cp+ : compare a polynomial of the state variables to zero.

The following families of numeric effects are also considered:
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• E∅ : no numeric effects.

• E=c : assign a constant.

• E+1 : increase a variable by one.

• E±1 : increase or decrease a variable by one.

• E±c : increase or decrease a variable by a constant.

• Ep : assign to one variable a polynomial function of the other variables.

There are several other types, but for the most part they end up being equivalent to the

ones listed above. The first result given by Helmert, which we summarize, is the following

theorem.

Theorem PLANSAT (Cp+, C∅, E+1) is undecidable (Helmert, [30]).

The proof is based on the decision problem of determining if a Diophantine equation

has a solution in the natural numbers (a Diophantine equation is simply a polynomial

in several variables). This is Hilbert’s Tenth Problem, which Matiyasevich showed to be

undecidable [32].

The simple numeric STRIPS task to which we reduce the above problem is as follows.

There are no propositions in the problem. The are N numeric variables which are initialized

to zero. Each variable vi has a corresponding operator which increments it. The goal is

to achieve a value of the vi such that p(v1, v2, . . . vn) = 0, for some polynomial p. This

planning problem can be decided only if the Diophantine equation decision problem can

be decided. Thus numeric STRIPS planning, even under the rather restrictive conditions

imposed above, is undecidable.

Helmert goes on to show that numeric STRIPS planning is undecidable in the following

cases (referring to the notation given above):

• PLANSAT (C=, C∅, Ep)

• PLANSAT (C0, C∅, Ep)

• PLANSAT (C∅, C0, E±1)

• PLANSAT (C∅, C=, E+1)

The latter two results seem particularly discouraging. It should be noted, however,

that the results for E±1 and E+1 depend on the fact that there are no limits to the values

the variables may take on. If such limits existed or could be imposed (as may be the case
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in many practical applications), the state space would become finite and thus the problem

would be decidable. Helmert goes on to demonstrate that PLANSAT (G,P, E) is decidable

if the following conditions hold:

• E ∈ {E+1, E+c, E=c
+1, E=c

+c}, G 6= Cp+, P /∈ {C=, Cp+}
• E ∈ {E±1, E±c, E=c

±1, E=c±c}, G 6= Cp+, P = {C∅}

2.3 GraphPlan

GraphPlan was introduced by Blum and Furst [33] and marks an important advance in

the history of discrete planning. GraphPlan achieved a marked improvement in performance

over previous planners and strongly influenced later systems. Fast Forward (see below) and

LPG [6] both rely on the notion of the planning graph (“LPG” stands for Local search on

Planning Graphs). GraphPlan attempts to solve standard STRIPS problems.

Unlike the heuristic search planners discussed later in this chapter, GraphPlan is a

partial order planner. This means it allows non-interfering operators to be executed simul-

taneously. For example, if a planning problem involves two packages that must be delivered,

and has two trucks available to deliver them, then GraphPlan will return a plan in which

drive-truck operators are simultaneous.

The central idea of the GraphPlan system is that of a planning graph. This is a

directed, levelled graph. The levels alternately represent propositions and operators that

could be active in a given epoch. An epoch is a timestep during which several operators

may be applied. An arc from a proposition p to an operator o in the next action layer exists

if p ∈ prec(o). An arc from an operator o to a proposition p in the next fact layer exists if

p ∈ add(o).

The growth process for the planning graph is as follows. The zeroth level of facts

represents the initial state. Each operator layer is constructed by finding the operators for

which all preconditions are contained in the previous fact layer. The subsequent fact layer

contains all facts that are added by some operator in the previous action layer.

Some observations about the above process are in order. First, because delete effects

are not considered, the graph will grow quickly and then level off. If at any time two

consecutive fact layers contain the same set of atoms, then all subsequent layers will be

identical, and so the growth process can be terminated. Any atom which is not present in
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the final layer of the graph is unachievable. In the worst case, the number of fact layers in

the graph is bounded by the number of atoms in the problem.

Unfortunately the planning graph does not directly yield a valid plan. However, a plan

can be extracted from the planning graph, by “activating” subsets of action nodes in each

layer. Care must taken when performing this activation, because many actions will conflict

with one another in some way, and so cannot be simultaneously activated. Indeed, detecting

and exploiting these mutual exclusion (mutex) relationships is an important additional

component of the GraphPlan system.

As the planning graph is being constructed, mutual exclusion relationships are cal-

culated between nodes within a given layer. Two propositions pA and pB are marked as

mutually exclusive if every action which adds pA is mutex with every action which adds pB.

A pair of actions can be marked as mutex for two reasons:

• Interference If either of the actions deletes a precondition or add effect of the

other.

• Competing Needs If there exists a precondition of one action which is mutex

with a precondition of the other in the preceding fact layer.

This technique does not find all possible mutual exclusion relationships. Interlayer

mutexes are not considered. There could also be tertiary mutexes such that for a given set

of three facts, only two can be true simultaneously. Binary mutexes do succeed in capturing

important information. For example in a Logistics domain, there are many facts that can

represent the location of a single truck. Clearly only one of these propositions can be true at

any given time. The mutex propagation system will mark these facts as mutually exclusive.

Once the planning graph has been constructed, the plan extraction algorithm can be

summed up with the code sketch of Figure 2.4. The function EXTRACT PLAN is called on

a set of goal atoms G and a layer in which they are to be achieved. FACTS(i) and MUTEX(i)

refer to the achievable facts and proposition mutexes in goal layer i, respectively.

If this function fails, the planning graph is extended by another level and a new attempt

is made. Note that while subsequent levels will not have more propositions, they might have

fewer mutex relationships.
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function EXTRACT PLAN(goals G, level i)
if G 6⊆ FACTS(i) or ∃gi, gj ∈ G : {gi, gj} ∈ MUTEX(i) then

return FAIL
end if
if i = 0 then

return SUCCESS
end if
for each non-mutex action set A : G ⊆ add(A) in operator level i do

if EXTRACT PLAN(prec(A), i− 1) then
return SUCCESS

end if
end for
return FAIL

Figure 2.4. The GraphPlan plan extraction algorithm.

From the above description, we see that the algorithm can be classified as a regression

search. It starts from the goal and searches backwards toward the initial state. The major

pitfall of regression planners is that they can often spend large amounts of time searching

backwards from states which are not actually achievable themselves. If the mutual exclusion

reasoning works well, then this problem is ameliorated; but the mutex information is not

comprehensive, as noted. In contrast, forward search planners are always sure that every

state they evaluate is reachable.

2.4 SatPlan

Kautz and Selman are well-known for their work on the GSAT algorithm [34, 35].

GSAT is able to solve SAT encodings of empirically difficult NP-hard problems such as

graph coloring. The success of GSAT motivated them to attempt to formulate planning as

satisfiability [7]. In the following we refer to STRIPS propositions as facts so as to avoid

confusion with the new SAT propositions.

The first step in transforming discrete planning into satisfiability is to add a new ar-

gument to the facts. This argument denotes the timestep at which the fact is true. Thus

instead of AT (T, C) we have AT (T, C, 4). This simply means that AT (T, C) is true in

the fourth timestep. It is easy to encode the initial state with the above system. Encoding

the goal conditions requires an existentially quantified formula such as:
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∃i. at(P1, C, i) ∧ at(P2, D, i) (2.3)

This would represent the requirement that at some timestep package P1 is at location

C and P2 is at location D.

A similar set of propositions are introduced to represent operator application. These

are of the form DRIVE(T, C, D, 5), which is true if the given action was performed in the

fifth timestep. For each action type we must also create an axiom to represent preconditions

and effects. For example, the DRIVE action in the Logistics domain takes the following

form:

∀t, a, b, i. drive(t, a, b, i) ⊃ (at(t, a, i) ∧ at(t, b, i + 1) ∧ ¬at(t, a, i + 1)) (2.4)

Notice that preconditions and effects are treated symmetrically. Another set of axioms

ensure that some operator is applied at every timestep, and that only one action occurs at

a time.

Simple logical rules are used to rewrite the above axioms and propositions into a

Boolean satisfiability sentence. Note that quantifiers involving the timestep i pose some

difficulty, since there is no obvious limit to the values that i can take on (i.e., the length of

the plan cannot be known in advance). This is solved by imposing some arbitrary value N ,

and then trying larger values if failure is reported. Once the problem has been rewritten

in conjunctive normal form, a satisfiability engine is invoked to find an acceptable truth

assignment, which corresponds to a valid plan.

Kautz and Selman argue that progress in SAT solver technology advances rapidly, and

that their formulation allows such progress to carry over directly to discrete planning. This

argument is backed up by good empirical results. Another argument made in favor of

the formulation is that it allows a more sophisticated specification of goal conditions. For

example, if for some reason package Pk can never be placed in truck Tj , this requirement

can be encoded as:

∀i. ¬in(Pk, Tj , i) (2.5)
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In later work [36] Kautz and Selman examine the possibility of combining SAT-based

planning with planning graph techniques. The mutexes provided by the planning graph give

a set of additional constraints on the problem. These constraints can be written as axioms

and compiled into the satisfiability sentence. Any valid plan must follow these constraints

anyway, so knowing them in advance is potentially valuable.

Mutex computation can be considered a special case of limited inference that is specific

to the discrete planning problem. Limited inference is the application of logical rules to

the SAT sentence before sending it to the solver. More general limited inference techniques

exist and can sometimes also be beneficial to use.

2.5 Heuristic Search Planner - HSP

The concept of planning as heuristic search was introduced by Bonet and Geffner [11].

They named their planning system HSP, for heuristic search planner1. The basic idea of

planning as heuristic search was given in the introduction, so we proceed directly to a more

specific discussion.

In order to create a reasonably efficient heuristic search planner, one must first define

a good heuristic function. This is some function h(s) that, given a state s, estimates the

distance to the goal. Observe that this notation h(s) is somewhat misleading: it would be

more proper to write h = h(s, s∗,O), as the goal conditions and operator list must also be

taken into account (though they are constant throughout the problem instance).

The heuristic h(s) defined by [11] is based on the idea of the relaxed planning problem.

This is a simplification of the original problem where the delete effects of all operators are

removed. Under a simple assumption, every solution to the relaxed planning problem is

also a solution to the real planning problem. Furthermore, deciding if a relaxed planning

problem has a solution can be done in polynomial time. This specific heuristic function is

denoted h+(s).

The assumption referred to above is that all preconditions are positive (i.e., a precon-

dition cannot require a proposition to be false). Note that all STRIPS planning problems

can be transformed to satisfy this requirement by the introduction of inverted propositions.

1This name causes some confusion, since many other planning systems inspired by HSP are also heuristic
search planners. For that reason we refer to the system described in [11] solely by its acronym HSP.
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function ATOM COST(s)
atom cost g(p) = ∞, ∀p
set P = ∅
priority queue Q
for each prop p ∈ s do

INSERT(Q, (0, p))
end for
while size(Q) > 0 do

(g(p), p) = REMOVE(Q)
for each operator o : prec(o) 6⊆ P, prec(o) ⊆ {P ∪ p} do

c = intrinsic cost(o) + AGGREGATE(g(prec(o)))
for each p ∈ add(o) do

UPDATE(Q, (c, p))
end for

end for
P := P ∪ p

end while

Figure 2.5. The HSP heuristic calculation.

Thus the relaxed planning problem is a case not considered by Bylander [1] which may be

denoted PLANSAT+
+ (all preconditions and all postconditions are positive).

Because all solutions to the relaxed problem are also solutions to the real problem, if the

optimal relaxed solution could be found it would constitute an admissible estimate of the

distance to the goal. That is, the estimate would provide a guaranteed lower bound. Un-

fortunately, Bylander showed even PLANMIN1+
1+ to be NP-complete. Therefore we must

be content with an approximation of optimal relaxed plan distance. This approximation

can be obtained using the algorithm shown in Figure 2.5.

The ATOM COST function maintains an queue of all propositions p in the problem.

When a proposition comes out of the queue, the associated cost is guaranteed to be the

lowest possible. Furthermore, all operators that become applicable by the addition of p

to all other propositions that have already been processed (P) also have lowest possible

cost. Thus all propositions and all operators will be considered at most once by the above

algorithm.

The atom cost of each p is given by g(p). The routine AGGREGATE gives an evaluation

of an operators cost based on the costs of its preconditions g(prec(o)). The authors consider

two possibilities for AGGREGATE: either using the maximum cost of the elements prec(o)

or the sum of the costs. The former technique achieves admissibility, but the latter is
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preferred by the authors because it is more informative. The final heuristic evaluation of

the state is AGGREGATE(s∗).

An alternate way of formulating the above process is through a fixed point calculation.

For every operator o with precondition C that adds an atom p, the following update rule is

applied:

g(p) := min[g(p), intrinsic cost(o) + g(C)] (2.6)

Here g(C) = AGGREGATE(C). This process is continued until the costs cease to

change.

Bonet and Geffner use 1 for intrinsic cost(o). This will give an estimate of goal distance

in terms of the number of operators required to reach it. However, the above algorithm

would work exactly the same way using many alternate definitions of the intrinsic cost of

the operator. If it were desired to evaluate the quality of a plan based on criteria other

than plan length, the intrinsic cost could be appropriately modified. Furthermore, if one

wanted to find lower bounds on the consumption of some resource, the intrinsic cost could

be defined as the operator’s usage of that resource.

Given the heuristic function, a variety of search algorithms can be used. HSP uses hill-

climbing, to attempt to obtain a solution as quickly as possible, regardless of the quality of

the solution.

2.6 Fast Forward

Fast Forward (FF), a planning system developed by Hoffmann and Nebel [5], represents

a significant advance in heuristic planning technology. In basic structure it is similar to HSP.

However, FF contains several important refinements.

2.6.1 New Relaxed Plan Estimation Technique. FF’s first refinement is to

use a more sophisticated method than the algorithm shown in Figure 2.5 to approximate

h+. This is basically to run GraphPlan [33] on the relaxed planning problem. In addi-

tion to providing better heuristic estimates, information created by the application of the

GraphPlan algorithm is used to assist with several search shortcuts (see Sections 6.2 and 6.3

below).
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Consider what happens when the GraphPlan algorithm is run on a relaxed planning

problem. First observe that the planning graph grows at exactly the same rate as in the

standard problem, since the delete effects are not considered in the growth process. Further-

more, there will be no mutual exclusion relationships between any atoms or operators. This

can be seen that noting that the first mutex added in a normal problem must be caused

by the Interference rule; the other mutex rules are defined recursively in terms of other

mutexes. Since the Interference rule is based on delete effects, it will never apply for the

relaxed problem. Because there are no mutexes, any choice of operators which support the

goal atoms will constitute a valid relaxed plan, so the action set selection process will never

backtrack. Finally, the GraphPlan algorithm guarantees that the resulting plan will be

optimal in terms of makespan (the number of epochs of simultaneous operator application).

The planning graph based technique of approximating h+ takes into account the fact

that a single operator can add two goal atoms. Thus it usually gives better estimates of

goal distance than the HSP technique. The remaining difficulty is selecting minimal action

sets at each level in the planning graph. This turns out to be NP-complete also, but for

this detail it would seem that an ad hoc solution is acceptable.

FF runs in two phases. The first is a highly optimized but incomplete phase which uses

several “shortcuts” as described below. The second phase runs if the first fails, and is slower

but complete. In Chapter 3 the distinction between these phases will become relevant, as

only the faster version is used in RRT-Plan.

2.6.2 Helpful Actions. When applying a search algorithm to a large space, in-

formed pruning is often beneficial. If it can somehow be determined that a certain edge

should not be followed (or, equivalently, if a certain state should not be expanded), large

regions of the search space can be bypassed. The idea of the Helpful Actions technique

is to identify certain operators as the most likely candidates to lead to the goal and prune

all other edges.

The technique arises naturally from the use of GraphPlan on the relaxed version of the

problem. GraphPlan backtracks from the final layer of the planning graph, selecting action

sets at each layer which support the subsequent layer’s preconditions. The helpful actions

are simply the operators selected in the first layer.
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The fast phase of FF only follows edges in the search tree that correspond to helpful

actions. This can significantly reduce the search space, but renders the search incomplete.

2.6.3 Added Goal Deletion. The technique of added goal deletion is motivated

by the fact that many domains have strong goal ordering constraints [37]. In such domains,

certain goals must be achieved before other goals. This implies that a goal which is achieved

out of order will eventually need to be deleted, amounting to a backtrack in the search space.

In most cases, obtaining a full goal ordering is equivalent to the planning task itself. This

motivates us to make an informed guess of the goal ordering, and use this guess to determine

whether or not to expand a node.

Again, the information used to formulate this guess comes from the application of

GraphPlan to the relaxed task. For a given state s, a relaxed plan P ′ is obtained. A set

is constructed including all the delete effects of the operators in P ′. If this set contains a

goal atom p that was added by the operator which led to s, then it is assumed that p was

achieved out of order, and no successors to s are created.

As with helpful actions, this technique can often be highly effective, but also renders

the search incomplete. A similar technique called Goal Subset Locking is an integral part

of the RRT-Plan algorithm presented in Chapter 3.

2.6.4 Enforced Hill Climbing. The highly optimized first phase of FF utilizes

the Helpful Actions and Added Goal Deletion methods, and an alternate search algorithm.

This algorithm, called Enforced Hill Climbing, is simply Best First Search except that the

open list is cleared when a state with lower heuristic value is discovered.

Enforced Hill Climbing works well when there are no dead ends in the search space.

If a dead end state is mistakenly assigned a low heuristic value and the search reaches

from it, the algorithm will fail. However, Hoffmann showed [38] that many of the planning

benchmarks do not contain dead ends. Furthermore, this problem only occurs if the dead

end is unrecognized.

2.7 Metric-FF

Metric-FF by Hoffmann [39] is an attempt to apply the technology of Fast Forward to

numeric problems. The basic idea is again to construct a relaxed planning graph and use
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that to derive a heuristic estimate of the goal distance. The main concern is how to modify

the planning graph constuction process to support numeric variables.

Hoffmann notes that the heuristic employed by FF has three desirable properties: ad-

missibility, polynomiality, and basic informedness. Only the third property requires elab-

oration. Basic informedness requires that a zero-length plan is a solution for the relaxed

problem if and only if it is also a solution for the real problem, and that the first operator

applied in the relaxed plan actually is applicable in the given state. This property guaran-

tees that a heuristic value of zero can only be achieved by a state which satisfies the goal

conditions.

The basic strategy is to define a restricted version of a numeric planning problem in

which relaxation concepts can be directly applied. Further development gradually removes

some of the restrictions. The starting, highly simplified language is as follows. The only

constraints allowed are those which use ≥ and >. The only effects allowed are += and

-= (simple assignment, :=, is not allowed). The only expressions allowed are constants.

Essentially we only allow the problem to add or subtract constants from the variables, and

the goal is simply to raise those variables above some threshold.

Given this restricted language, we can obtain a relaxed plan heuristic simply by ignoring

the subtraction effects. Since we allowed only ≥ and > comparisons, the subtraction effects

cannot bring us closer to the goal. The analogy to ignoring delete effects should be clear.

The three properties listed above are easily achieved.

2.7.1 Monotonicity and Dynamic Relaxation. We now wish to extend the

notion of ignoring subtraction effects while allowing non-constant effects. In general it

cannot be determined in a preprocessing phase whether a non-constant effect will result in

an increase or decrease of the target value. This is because variables (and expressions) can

be negative. For example the assignment (vi, +=, vj) can result in a decreased value of vi if

vj is negative. For this reason it is necessary to consider a dynamic relaxation in which the

results of an effect are evaluated in the context of the actual state. If the effect evaluates

to a negative value it is ignored.

This requires the problem to satisfy a new set of (less restrictive) conditions. These

conditions require that increasing the value of a variable in a state s:

(1): will not violate a constraint if the constraint is satisfied in s,
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(2): will never decrease the value of an expression in a numeric effect.

(3): will never decrease the magnitude of change caused by a numeric effect, except

for simple assignments.

And furthermore, regarding the problem generally:

(4): All expressions diverge as their variables diverge.

(5): There is some set of values which satisfy all the goal conditions.

If the domain satisfies requirements (1-2), it is called monotonic. If it satisfies require-

ments (3-5), it is called strongly monotonic. Monotonicity ensures that every solution of

the real planning task is also a solution of the relaxed task. For example if (1) did not hold,

a real plan could involve an action which decreases a variable and so satisfies a constraint.

But the relaxed version of this plan would ignore the decreasing effect, and so the outcome

might not satisfy the goal constraint.

Strong monotonicity guarantees that the relaxed planning problem can be decided in

polynomial time. The contribution of rules (4-5) to this guarantee should be obvious. The

importance of rule (3) can be seen by considering an effect (v, +=, 1− v
2 ). Assuming v < 2

to begin with, each application of the effect increases v, but it can never grow larger than 2.

The numeric planning graph construction algorithm cannot detect this kind of convergence,

so situations leading to it must be disallowed.

Simple assignments exist in many planning domains and do not satisfy Rule (3), so

they must be excepted. For example the change caused by assigning a value to a constant

(which is certainly an action we would want to allow) will decrease as the value increases.

This issue is circumvented by posing an alternate requirement that the problem not have

acyclic simple assignment effects, which will also guarantee that the planning graph growth

ends in polynomial time.

2.7.2 Linear Tasks. A large number of planning tasks are linear. This means that

only addition, subtraction, and simple assignment effects are allowed, and all expressions are

formed by linear sums of variables. Notice that all constraints involving general comparisons

of linear expressions can be rewritten with a single comparison operation such as ≥.

In order to transform linear tasks into monotonic tasks, inverted variables are in-

troduced. These are new numeric variables which are always the exact negative of their

standard counterparts. Now all expressions can be rewritten so as to be increasing in all of
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their variables, i.e:

exp(V ) =
∑

i

λivi, λi > 0, ∀i (2.7)

When put in this form and assuming there are no cyclic assignment effects, the domain

satisfies the requirements for strong monotonicity. Metric-FF does not run on problems

which are not linear.

2.7.3 Building the planning graph and Extracting a Plan. The relaxed

planning graph is constructed using a technique similar to that of the standard propositional

case. In the standard case, each new level is initialized by copying the current level. Then

all positive effects of actions whose preconditions are satisfied in the current level are added.

For the numeric case “positive” refers to positive numeric effects, rather than propositional

add effects. For simple assignments we take the greater of the current max value and the

assignment value.

In the propositional case, planning graph growth terminates when the set of facts does

not change from the previous level. In the numeric case, a cutoff value mneed(vi, s) is

defined which is the maximum value required for all constraints involving vi to be satisfied,

given the values of the other variables in s. A virtual “fact” can be defined as the condition

that vi ≥ mneed(vi, s) The termination condition is then identical to the propositional case,

using facts and virtual facts.

Once the relaxed numeric planning graph is built, a relaxed plan is extracted from it as

follows. We find a set of actions that asserts the goal facts in the final level, and use their

preconditions as a set of sub-goals that must be achieved in the previous level. For variables,

for every constraint, we find an action that adds some amount to the variable (remember

we only have ≥, > constraints). Again, we add the fact and constraint preconditions for

the given action to the set of subgoals that must be achieved at the previous level.

2.7.4 State Domination. Any search algorithm must take care to ensure that

the new states being examined have not already been visited. In the pure propositional

case, this is straightforward. In the numeric case, a new state may be created which is

identical to another already visited state, except some numeric variable is smaller. Under the

assumption of monotonicity, such a state cannot lead to more solutions than the previously
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visited state. This motivates the following definition: a state s dominates a state s′ if:

pi(s) = pi(s′) ∀pi ∈ P

vi(s) ≥ vi(s′) ∀vi ∈ V

Where P is the set of propositions and V the set of numeric variables. With this definition

in hand the search is expedited by skipping any state which is dominated by a previously

visited state. Note that this condition requires numeric variables that have relevant inverted

counterparts to be identical in the two states.

2.8 Causal Graph Heuristic Planning

A recent paper by Helmert [9] describes a new heuristic function, based on the concept

of causal graphs. Unlike h+, the causal graph (CG) heuristic does not attempt to achieve

admissibility. Rather the purpose is to obtain good estimates of goal distance.

The CG heuristic applies to problems which are expressed in the SAS+ planning formal-

ism. SAS+ is an alternative to STRIPS, where instead of propositions there are variables

which can take on a certain discrete set D of values. Operator preconditions are expressed

as {v : d}, meaning v must have value d. Effects are of the form {v : d → d′}, meaning the

operator changes v from value d to d′. Evidently the STRIPS distinction between add and

delete effects no longer applies. It is a non-trivial to convert STRIPS problems to SAS+

problems, but this issue has been studied by several researchers[40, 41].

We can now define the Domain Transition Graph (DTG). This is a graph defined

for a specific variable v in the problem. The nodes of this graph correspond to values

d ∈ Dv the variable can take on, while an edge (d, d′) exists if some operator has an effect

{v : d → d′}. The edges are labelled with the preconditions on other variables that the

operator requires. Deferring for the moment the question of how to obtain edge costs, define

cost(d, d′) as the shortest cost path from d to d′ in the DTG, which can easily be calculated

with Dijkstra’s algorithm in time O(|Dv|).
The next definition is that of the Causal Graph. This graph has a node for each

variable in the problem. An arc exists between two nodes (v1, v2) if some operator with

an effect on v2 has a precondition on v1. An example of a Causal Graph from a Logistics

problem is shown in Figure 2.6. In Logistics, all nodes representing trucks have arcs leading
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Figure 2.6. The Causal Graph for a Logistics problem. The Ti and Pi boxes
represent truck location and package location variables respectively. The fact that
the trucks have no incoming arcs shows that they can be moved independently of
the other variables. The acyclic nature of the graph shows that Logistics problems
can be solved easily.

to all variables representing packages. Importantly, the truck nodes have no incoming arcs.

This implies that trucks can be moved independently of the other variables. In general, if

the Causal Graph is acyclic and the Domain Transition Graphs are strongly connected, the

problem can be solved easily.

Unfortunately, Causal Graphs will usually not be acyclic. For example in Blocks-World,

there is an operator to place any block on any other block. Thus every Causal Graph node

will be linked to every other node. Because of this we prune the graph by dropping arcs

until it becomes acyclic. This simplification is analogous to the technique of ignoring delete

effects in the relaxed plan heuristic. The resulting value will not give the exact distance to

the goal, but hopefully still contains enough useful information to be used as a heuristic.

The simplified Causal Graph allows us to define the DTG edge costs. The cost of each

transition is one plus the cost of achieving the preconditions of the operator that allows the

transition, but only for those variables which are above the DTG variable in the pruned CG.

Also, within the DTG traversal, a local copy of the relevant precondition variables is kept at

each DTG node. The purpose of this technique is illustrated by Figure 2.7. Assume the state

being evaluated is (a = 1, b = 1). Then the costb(1, 3) will be 2 + costa(1, 2) + costa(2, 1).

The full cost computation is illustrated in Figure 2.8.
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Figure 2.7. The use of local state information in the DTG traversal. The DTG for
variable B is shown. If initially A = 1, then costb(1, 3) will include both costa(1, 2)
and costa(2, 1).

function COMPUTE COSTS(Π, s, v, d)
Let V ′ be the set of immediate predecessors of v in the pruned CG of Π.
Let DTG be the domain transition graph of v.
costv(d, d) := 0
costv(d, d) := ∞ for all d′ ∈ Dv \ {d}
local stated := s restricted to V ′
unreached := Dv

while unreached contains a value d′ ∈ Dv with costv(d, d′) < ∞ do
Choose such a value d′ ∈ unreached minimizing costv(d, d′).
unreached := unreached \ {d′}
for each transition t in DTG leading from d′ to some d′′ ∈ unreached do

transition cost := 0
cond set := cond(t)
for each pair v′ = e′ in cond set do

e := local state(v′)
call COMPUTE COSTS(Π, s, v′, e)
transition cost += costv′(e, e′)

end for
if costv(d, d′) + transition cost < costv(d, d′′) then

costv(d, d′′) := costv(d, d′) + transition cost
local stated′′ := local stated′

for each pair v′ = e′ in cond set do
local stated′′(v′) := e′

end for
end if

end for
end while

Figure 2.8. Causal Graph heuristic computation. Notice that each value d has a
corresponding local state of values for the CG predecessors of v. From [23]

The heuristic value of a state is just the computed cost of achieving each goal:

cg(s) =
∑

v∈G
costv(d(s), d∗) (2.8)

Here d(s) is the current value of v, and d∗ is the goal value.
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2.9 Robot Motion Planning

There is a wide literature on robot motion path planning [17, 18, 19]. Here several

basic concepts and algorithms are discussed.

The path planning problem can be formulated as a search through a configuration

space. This space contains all valid combinations of the robot’s position and internal

degrees of freedom (such as joints). Because joints are included, the configuration space

can be high dimensional and non-Euclidean. Simple cubic obstacles in the three dimensional

world can give rise to complex boundary surfaces in the configuration space, due to joint

geometry.

Many standard path planning algorithms are topological in character. They form a

graph representation of the topology of the configuration space, and then construct plans

by a standard graph search. The basic algorithm is as follows:

• Construct a graph G representing the topology of the configuration space.

• Given start point s and goal g, find nearest neighbors s̄ and ḡ in G,

• Attempt to connect s to s̄ using a local planner,

• Find a path from s̄ to ḡ in G,

• Connect ḡ to g using a local planner.

Here the local planner is typically does something very simple, such as moving in a

straight line, while checking for collisions. Because the local planner is simple, the topolog-

ical graph must be quite comprehensive. Obviously then the main difficulty in the above

algorithmic framework is to construct a good topological representation of the space. We

now discuss several techniques to do this.

2.9.1 Deterministic Techniques. The technique called Visibility graph plan-

ning [17] is motivated by the following observation: in a world where the obstacles are

polygonal, the shortest path between any two points will follow lines of visibility. Two

points are mutually visible if the line between them does not intersect an obstacle.

The visibility graph Gv is constructed as follows. There is a node in the graph for each

vertex in the obstacle set, and for the start and goal configurations for a given problem.

An edge exists between two nodes if the corresponding points are mutually visible. There

exist efficient algorithms to construct this graph which run in O(N2) time, where N is the
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total number of vertices of all the obstacles [17]. The visibility graph Gv is then used in the

general algorithm described above.

There are two drawbacks to this approach. One is that the robot may be required to

pass very near to the edges of the obstacles. In real-world situations, this can be dangerous.

Another drawback is that in very high dimensional spaces, the number of obstacles can be

enormous and the resulting visibility graph construction can be prohibitively expensive.

A second technique is based on the notion of Voronoi diagrams. The Voronoi dia-

gram for a set P points {p1, p2 . . . pN} is a partitioning of the space into a set of regions

{v1, v2 . . . vN} such that each vi contains all points whose nearest neighbor in P is pi. The

edges of the Voronoi regions are the set of points which are equidistant from some pi, pj ∈ P.

By defining the region edges in terms of equidistance from elements of P, the concept can be

generalized to the case where P is a set of (obstacle) boundaries. The edges of the Voronoi

regions form a topological graph G, which can be searched as described above.

2.9.2 Probabilistic Techniques. Another important category of path planning

algorithms involve probabilistic sampling of the configuration space. The two main tech-

niques are called Rapidly-exploring Random Trees (RRTs) and Probabilistic Roadmaps

(PRMs). We focus on the former, which inspires the STRIPS planning algorithm given in

Chapter 3. Broadly, the idea of Chapter 3 is to use the expansion properties of RRTs to

expand throughout the state space of large STRIPS problems.

The concept of Rapidly-exploring Random Trees was first introduced by LaValle [42].

They were used by Kuffner and LaValle [20] to solve multidimensional path planning prob-

lems. A good example of the kinds of problems that can be solved easily by RRTs is that of

a humanoid robot picking up an object [43]. The robot has many degrees of freedom, and

thus the planning problem is highly dimensional. The size of the search space is difficult

for more traditional deterministic planners to deal with. However, solutions are abundant;

there are many acceptable paths to the goal. Intuitively, RRTs allow us to find one solu-

tion out of many in high dimensional search spaces. Conversely, RRTs are not very good at

finding a solution if only one exists. The growth process for RRTs is illustated in Figure 2.9.

The one parameter of this process is ε. This is the maximum distance towards qrand

that the local planner is allowed to move. This is to ensure that not too much time is spent

attempting to reach any given point.
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function EXPAND RRT(sinit)
let G = {sinit}
while true do

sample point qrand from configuration space
let qnear = minq∈G dist(q, qrand)
let qnew = LOCAL CONNECT(qnear, qrand, ε)
INSERT CHILD(G, qnear, qnew)

end while

Figure 2.9. RRT expansion process. The local planner only extends a distance ε
toward qrand.

When the RRT is grown in this way, the following property holds. If the random points

are chosen uniformly, then the tree expands to sample the configuration space uniformly. If

the points are chosen according to some other distribution p(x), then the tree will converge

to a sampling of the space by p(x) [42].

Figure 2.10. The RRT expansion process. qRand is the randomly sampled point,
qNear is its nearest neighbor in the tree, and qNew is the new point added to the
tree. The local planner only proceeds a distance ε toward qRand before stopping.

The RRT growth process can be slightly modified to produce a planning algorithm:

after each growth phase, attempt to connect the new point qnew to the goal. Because of

the coverage property, the algorithm is guaranteed to eventually expand into a region from

which the goal is directly reachable. A further refinement uses another tree that grows

outward from the goal.

A similar method to RRTs is the Probabilistic Roadmap [44] or PRM. The main

difference here is that the PRM is intended to be built once and then reused several times.
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Furthermore, once the PRM is built, paths can be generated very quickly. The PRM is

constructed in two preprocessing phases, which are allowed to take a relatively long time.

Also, the algorithm is designed to handle potentially complex spaces with many disconnected

regions. Like RRTs, the focus is on finding any acceptable path, as opposed to finding an

optimal or near-optimal path.

The PRM is a topological graph G which is constructed as follows. During the con-

struction phase, points are chosen randomly from the configuration space. Given a random

point p, a distance function is used to find set Nc of nearest neighbors in the PRM. Then

a local planner is used to attempt to connect p to each n ∈ Nc. If the planner succeeds, an

edge is added between p and n. Also, a neighbor n is skipped if it is already connected to p

through the graph (from an edge that was added between p and a previous neighbor). Note

that, unlike the case for RRTs, the point p is added to the PRM regardless of whether any

connection attempt was successful.

After the PRM has been constructed, it is then “inflated”. The point of the inflation

process is improve the connectivity of the graph. A heuristic measure can be used to find

nodes which seem to be in narrow passages of the space. Several possible heuristic measures

can be defined; one example is to count the number of neighbor nodes lying within some

distance of a given node. Once a node is selected by the heuristic, a new point is created

nearby, and the planner attempts to connect this new point to the PRM. In this way, new

points are added to narrow regions of the configuration space.

2.10 Convex Hulls

We now give a brief introduction to the idea of the convex hull. The notion of the convex

hull is of widespread importance. It has been studied extensively, and many applications

have been found [45, 46]. Chapter 4 presents a method for reducing the search space of a

numeric planning problem that uses the convex hull of a list of points to represent a region

of reachable numeric values.

2.10.1 Basic Concepts. Consider a set of points S in the d-dimensional Euclidean

space Ed. The convex hull of S, denoted conv(S), is the smallest convex set containing S.

This will be a polyhedron, the vertices of which are elements of S. These vertices are called

the extreme points of S, denoted ext(S).
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Given the extreme points ext(S) = {r̄1, r̄2, . . . r̄n}, the set conv(S) can be written as a

convex combination of the r̄i:

conv(S) = {x̄ : x̄ =
n∑

i=1

λir̄i,
n∑

i=1

λi = 1, λi ≥ 0} (2.9)

The problem of finding the extreme points of S has been extensively investigated, and

linear time algorithms exist for two dimensions [21]. A related problem, that of finding

the full description of the hull boundary (i.e., an ordering of the extreme points), can be

reduced to a sorting problem in linear time and is therefore Ω(NlogN) [21].

2.10.2 Halfspace Representation. The planning technique presented in Chapter

4 uses the convex hull to represent a region of achievable numeric values. A key operation

is updating this region to take into account new numeric constraints. This operation can be

performed naturally by transforming the convex hull from the V-representation (specified

by a set of points) to the H-representation (specified by a set of halfspace boundaries).

Consider a set H of halfspace boundaries in the d-dimensional Euclidean space Ed.

The halfspace allowed by any given boundary is convex, and thus the intersection of all

the halfspaces bounded by H is also convex. We call the set formed in this way a convex

polytope. A classic theorem due to McMullen and Shepard establishes that if the space

bounded by a convex polytope is finite, then it can be represented as the convex hull of a

set of points [21]. The converse also holds: for any convex hull conv(S) it is possible to

find a set of halfspace boundaries that are equivalent to it. Converting between the two

representations is a well established problem [21].

A halfspace boundary is said to support an extreme point r̄ if r̄ is on the boundary.

An important relationship between the halfspace surfaces and the extreme points that

equivalently define the hull is that, in a d-dimensional Euclidean space Ed, each extreme

point is supported by at least d halfspace boundaries.

2.10.3 Gift-Wrapping Algorithm. Here we outline a simple method, called the

Jarvis’ March Algorithm [47], for calculating the convex hull in the plane. We choose this

particular algorithm out of the many that exist both because of its simplicity and because

it generalizes higher dimensions. The Jarvis’ March Algorithm depends on the following

theorem.
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Theorem. Given a set of points S and two points {s, s′ ∈ S}, the line segment l

defined by {s, s′} is an edge of the convex hull conv(S) if and only if all other points in S

lie on one side of it [21].

This theorem implies that, given a known point s̄ of the convex hull2 then the next

point s̄′ in the hull can be found by checking the line segments l defined by s̄ and all possible

choices of s̄′. Note that in two dimensions, each vertex of the hull has exactly two edges.

Therefore we may proceed (“march”) around the hull by repeating the process on s̄′.

The method of determining the correct subsequent hull point s̄′ given s̄ may be done

as follows. Write the points {S \ s} in polar form with s̄ as the origin. Then s̄′ is the point

with lowest polar angle. This method allows s̄′ to be found in linear time.

Roughly speaking, the above theorem generalizes to the higher dimensional case as

follows. Instead of analyzing edges, we look at facets and subfacets. Facets are d − 1

dimensional convex sets formed by d−1 points in S; subfacets are d−2 dimensional convex

sets formed by d − 2 points in S. Then given a known facet F of the hull, we may find

adjacent facets by:

• Looking at a subfacet f ,

• Considering facets F ′ formed by f and some s̄′,

• Choosing F ′ such that the dot product of the normals to F and F ′ is maximal.

The main difficulty is now that each facet can have multiple neighbors. Thus we cannot

march around the hull as in the planar case. For an efficient implementation, the lists of

facets and subfacets under consideration must be carefully managed.

The complexity of the gift-wrapping method is given in terms of the number of facets

and subfacets of the polytope under consideration. Let φd−1 and φd−2 be the number of

facets and subfacets respectively. Then the complexity of the algorithm is O(Nφd−1) +

O(Nφd−2). Since the number of facets of a d-dimensional polytope is O(N b d
2
c), the worst-

case complexity is O(N b d
2
c+1) + O(N b d

2
clogN) [21]. Other methods exist for finding the

convex hull in higher dimensions [22, 48], but they all face the same problem that the

number of facets is exponential in d.

2An initial point can be found by taking the lexicographic minimum of S.
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CHAPTER 3

RRT-Plan

3.1 Introduction

This chapter describes work on RRT-Plan, a randomized STRIPS planning algorithm

inspired by RRTs. The basic premise is that for many STRIPS problens the state space is

quite large, and therefore techniques based on searching the space can encounter difficulty.

A mitigating factor is often present, however, which is that many solutions are possible.

The goal is to translate the success of RRTs on path planning problems with large, complex

spaces where solutions are abundant to discrete planning problems that are similarly large

but unconstrained.

RRT-Plan uses the same conceptualization of the planning problem as the heuristic

search planners described above. However, the method of exploring the space is quite

different. RRT-Plan interleaves large scale stochastic exploration with deterministic local

searches.

While heuristic search planners work well in many cases, they fail in many others.

A significant reason for this failure is their reliance on deterministic procedures for both

state evaluation and search. In particular, in many domains the heuristic function can give

bad estimates, or can fail to adequately distinguish neighbouring states. By interleaving

large scale stochastic exploration with deterministic local searches, the planner achieves a

significant degree of robustness to heuristic breakdown.

The primary contribution of this chapter is a novel algorithm for solving STRIPS

problems through the use of randomized search. We call this algorithm RRT-Plan. There
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are a variety of difficulties that arise with attempting to translate the RRT concepts from

the continuous case to the discrete case. First, RRTs require the ability to randomly sample

a state from the state space. While this is relatively straight-forward in continuous spaces,

sampling feasible states can be challenging in discrete domains. Second, given a random

state, RRTs require the ability to identify a “nearest neighbour” (in state space). Again,

this has a straight-forward interpretation in continuous domains, but is less clear in discrete

planning. Finally, a sub-planner must be invoked to try to connect the current state to the

goal. This chapter discusses how RRT-Plan is able to overcome these problems specifically

for the STRIPS representation, and argues that many of these ideas extend nicely to more

general discrete planning problems.

In addition to presenting the core RRT-Plan algorithm, we present results validating

performance of RRT-Plan compared to the state-of-the-art planners FF (on whose tech-

nology we rely significantly), and LPG [6]. We present several techniques which allow

RRT-Plan to effectively focus on solving subgoals as well as to adapt its search parameters

based on information from the growth of the tree. Finally, we describe problems that are

particularly challenging for heuristic planners, and show that these can be easily overcome

by RRT-Plan due to its randomized searching.

3.2 Motivation

Consider the situation of Figure 3.1. A truck starts out with two packages in the center

of a chain of locations. It must deliver one package to each end of the chain. This simple

example reveals an important failure of the relaxed plan heuristic. Moving the truck in

either direction does not create a state with a better heuristic evaluation. The stumbling

block is that the two goals in a sense compete with one another. We refer to such goals as

rival.

Observe that this is basically a logistics problem, so from the results of Hoffmann [38]

we would expect the relaxed plan heuristic to work very well. Indeed, if there were only

one goal present, the relaxed plan would give perfect goal distance estimates. Building on

this idea, we see that if the planner were required to achieve the goals in a particular order,

each individual goal would be quite easy to achieve.
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3.3 THE RRT-PLAN ALGORITHM

Figure 3.1. A simple example of rival goals. The truck T starts in the center and
must deliver packages to locations A and B. Moving in either direction will leave
the heuristic evaluation unchanged.

• Select random goal subset RGS
• Find Nearest Neighbor qNEAR.
• Invoke local planner to connect qNEAR to RGS.
• If state qNEW is found that satisifies RGS:

– Add qNEW to tree as child of qNEAR.
– Calculate atom costs for qNEW .
– Attempt to connect qNEW to final goal.

Figure 3.2. An outline of the RRT-Plan algorithm.

Very often the problem of rival goals can be handled by imposing an artificial goal

ordering. Also, in many cases there are many such orderings which are allowable (for

example, in a typical Logistics problem the goals can be achieved in any order). One way

of viewing RRT-Plan, the algorithm we present below, is that it conducts a search through

the space of possible artificial goal orderings. If an allowable one is found, the relaxed plan

heuristic gives much better estimates, and the search can be performed more quickly.

3.3 The RRT-Plan Algorithm

RRT-Plan is a randomized planning algorithm for discrete state spaces, in particular

those that can be represented using the STRIPS planning language. The algorithm extends

well-known heuristic planners such as HSP and FF, by introducing randomization in the

exploration of the state space, therefore providing the ability to escaple plateaus in the

heuristic function.

At a high level, RRT-Plan contains much the same steps as the RRT-Connect algorithm

described above. The basic idea is to expand a tree over the discrete state space, in random

directions (guided by the sampling of states), until a node is created that is sufficiently close

to the goal that they can be connected by a short deterministic search. An outline is given

in Figure 3.2.
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There are several obstacles when trying to extend the concepts of RRTs to the discrete

planning case. First, RRTs require the ability to randomly sample from the state space.

Second, given a random state, RRTs require the ability to find its nearest-neighbour in the

tree. Finally, a deterministic planner must be invoked as a sub-routine to try to connect

nodes to random states and to the goal. We now discuss each step of our algorithm in

detail.

Select random state (qrand). The first step relies on the ability to sample points

randomly from the space. While it is not difficult to sample randomly, it is practically

impossible to sample the reachable space uniformly. This is because determining if any

given state should be assigned a non-zero probability (i.e. determining if it is reachable) is

equivalent to solving the planning problem itself.

Because of this difficulty, RRT-Plan generates target states qrand by taking random

subsets from the goal atoms. This approach has several advantages. It is easy to compute.

If the problem is solvable, then every goal subset must itself be reachable. Finally, it tends

to bias the search towards the goal. In the following we abbreviate “random goal subset”

as RGS.

Some domains have natural goal orderings, meaning that some goal atoms must be

achieved before others. The classic example of this is again Blocks World. Several methods

exist to discover goal orderings [49, 50]; we use the heuristic technique of [37]. By utilizing

this information, we can improve the selection of random goal subsets by respecting the

ordering relationships between goal atoms. Specifically, no goal atom is included in the

RGS unless all goal atoms which must be achieved before it are also included. While the

ordering would eventually be discovered through random trial and error, using the computed

goal agenda speeds up the process.

Find Nearest Neighbor. The second step in the expansion process requires finding

the node in the tree that is closest to the random target. While this distance is well-defined

in terms of the number of actions required to get from one state to the other, finding the

precise value is again equivalent to the planning problem itself.

We therefore use a heuristic estimate of the distance between nodes. The h+ heuristic

can be used for this purpose. In particular we use the atom cost technique of HSP given

by Equation 2.6. These costs only need to be calculated once per RRT node.
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Note that it is possible that the nearest neighbor node in the tree actually contains

the RGS target. In this case extra goal atoms are added to the RGS until it is no longer

contained by the nearest neighbor.

Invoke sub-planner to connect qnear to qrand. RRT-Plan requires a sub-planner

at two steps - first to connect the nearest neighbor qnear to the target qrand, and second to

connect the new node qnew to the goal. For this purpose a modified version of FF is used.

Recall that FF features two stages of search: a fast phase of Enforced Hill Climbing,

and a slow (but complete) phase of Greedy Best First Search. When applying FF as a

subplanner in RRT-Plan, we only use only the first of these phases. In addition, we only

expand a limited number of nodes. The search is restricted in these ways because the

connection attempt might be impossible if qnear is a dead end, though significant effort is

applied to prevent dead ends from being added to the tree (see below). If a certain point

cannot be reached easily, we move on and do another expansion iteration.

When using FF to perform local search, the added goal deletion technique is turned off.

A similar method called goal subset locking is used in RRT-Plan (see below). The helpful

actions technique is used, but the stringency of action pruning is modulated as certain

atoms begin to appear difficult to achieve.

Add qnew to tree. We maintain a simple tree structure in memory. When a goal

subset qrand is reached from qnear, a new node is added to the tree as a child of qnear, and

the actions required to reach qrand are stored. If the full goal is reached from a node in

the tree, we can construct a full solution by following the path from the root to the node

and then to the goal. In contrast to the continuous formulation, if the sub-planner fails to

connect to the target, no new node is added to the tree.

Calculate atom costs for qnew. We use the HSP heuristic defined in Eqn 2.6 to

calculate atom costs for any new node. These reflect the estimated cost of achieving the

goal from state qnew. Note that these new costs reflect the fact that the goal subset atoms

are now locked (see 3.3.1).

Attempt to connect qnew to goal. Again, we use the Enforced Hill Climbing phase

of FF, with bounded node expansion. Normally the connection attempt does not succeed.

However, the algorithm has invested time in finding a route to this new state, and should

42



3.3 THE RRT-PLAN ALGORITHM

use the knowledge that the new state can be reached. Thus the best (smallest heuristic

value) state discovered in the search is added to the tree.

Importantly, this allows is for the node expansion limit to be effectively bypassed.

Consider the following scenario. A new RRT node is created, and then an attempt is made

to reach the goal. This attempt fails because of the node expansion limit, but would have

succeeded if it had been allowed to continue. Because the resulting state is also added as a

new node, it can be selected as nearest neighbor on the next iteration, and the search can

be continued from the point it was halted due to the expansion limit.

One common occurrence is as follows. The algorithm will perform a goal connection

attempt, and make good progress, achieving many goal atoms and obtaining a low heuristic

value. However due to some subtlety of the problem it will fail to achieve the goal. The best

state is added to the tree, and on the following iteration it is selected as nearest neighbor.

The search moves to the random goal state, which constitutes a slight detour but puts the

goal in direct reach. A good example of this is the DriverLog domain. On the first goal

attempt, all of the packages will be delivered to the correct locations, but getting the drivers

and trucks to their destinations is more difficult. The tree continues to grow from this near

goal state, and the problem is solved after a bit of trial and error.

3.3.1 Goal Subset Locking. Several of the problems encountered by h+ planners

are caused by the fact that the relaxed plan length heuristic does not penalize the deletion

of goal atoms. If a goal atom can be achieved in an “easy” way through the deletion of

an already asserted goal atom and in a “hard” way (in which other goal atoms are not

deleted), the heuristic value is low, corresponding to the “easy” way. Furthermore, and

perhaps more problematically, states which are closer to or further from the solution along

the hard path are not accorded correspondingly better or worse values (see the discussion

of the Push-Block domain below).

To avoid such situtations, when a RGS is achieved in the connection phase of RRT-

Plan, the atoms of the RGS are locked so that any future action which deletes them is not

considered. Additionally, any goal atoms which are locked in a parent node are also locked

in its children. Importantly, this restriction is taken into account when calculating the atom

cost estimates for the node (Eqn 2.6). States for which the final goal is accorded an infinite

heuristic value are discarded. We define h+
gsl(s, gs) to be the length of the relaxed plan from
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s to the goal where actions which delete atoms in goal subset gs are disallowed. It is clear

that:

h+(s) ≤ h+
gsl(s, gs) ∀gs

This follows directly from the fact that the actions allowed in the goal subset locked

relaxed plan are a subset of those allowed for the general relaxed plan. Reducing the number

of available actions can only increase the length of the resulting plan.

3.3.2 Tree Growth Limits. When the tree is grown in this way, there is a limit

on the total depth to which the tree can grow. Every time a new RGS is reached, two nodes

are added to the tree - the new node which achieved the RGS, and the node representing

the result of the goal connection attempt. Each new RGS node must have at least one

additional goal atom more than its parent, because of Goal Subset Locking and the fact

that we add more atoms to the RGS if the Nearest Neighbor already includes them all.

Going from the root of the tree to the leaves, the number of achieved goal atoms must

increase by at least one every other node. Thus the maximum depth of the tree is 2N .

3.4 Adaptive Search Parameters

We can extract several important bits of information from the growth (or failure to

grow) of the tree. This information is used to adapt the parameters of the sub-planner.

Three pieces of information are collected regarding tree growth. Each is the result of

counting connection failures of the sub-planner. First, we keep track of how many times a

given node has failed to connect to qrand in the expansion phase. This counter is added to

the distance function for a given node, so that a node with a large failure counter is selected

less frequently as a nearest neighbor (eventually it is no longer selected at all).

The planner also keeps two similar counters for the goal atoms. These are incremented

each time the atom is included in the RGS but cannot be reached. The sub-planner search

can fail for two reasons: the node expansion limit is reached, or the list of states to expand

is exhausted. We track the number of occurrences of both failure modes for each atom, and

the parameters for the local search are chosen based on maximum failure counts for the

atoms in the RGS.
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When the algorithm has failed several times to reach an atom because of the node

expansion tolerance, that parameter is simply increased. When the list of states has been

exhausted, the remedy is to decrease the aggressiveness of action pruning. There are cur-

rently three levels of action pruning:

• TARGET HA - consider only actions which are helpful in achieving the current

RGS.

• FULL HA - consider all actions which are helpful in achieving the full goal.

• ALL APPLICABLE - consider all actions which are applicable in a given state.

Where we mean helpful actions in the sense of [5].

In the domains we have tested on, there is typically only one atom which is difficult to

reach. For example in Blocks-World, the atom representing the blocks at the base of the

tower is often very difficult to achieve, especially in a way such that h+
gsl < ∞. As the tree

expansion continues, RRT-Plan fails several times to reach that atom, until eventually the

search parameters are sufficiently relaxed. After the atom is achieved, the goal can usually

be reached rapidly.

Note here the contrast to FF. On such problems, FF will try the fast Enforced Hill

Climbing phase, which will fail. Then the slow GBFS phase will run, and eventually succeed

in achieving the critical atom in such a way that the full goal is now easy. But the algorithm

remains in the slow phase, and the “good” state does not have a particularly low heuristic

value, so many more node expansions are required to complete the search.

A precise and optimal strategy for relaxing the search constraints remains a topic for

further work. In the following results the node expansion tolerance began at 500 and in-

creased 10% per failure. The action pruning began with TARGET HA, relaxed to FULL HA

after 10 failures, and relaxed to ALL APPLICABLE after 50 failures. Given the fact that

a sufficiently expansive search will eventually be conducted if necessary regardless of the

initial settings of these parameters, we do not believe that the algorithm is particularly

sensitive to the particular choice. Essentially no time was spent tuning the parameters.
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3.5 Limitations of Standard Heuristic Search Techniques

Heuristic planners such as those described above (e.g. HSP and FF) use an approx-

imation of the relaxed plan length as an estimate of the distance to the goal. FF uses a

variety of additional techniques to prune the search space. These methods are generally

quite effective, but are prone to failure in certain cases.

We now describe some of these situations with specific examples. Similar observations

were made by Helmert [9]. We show how randomization can deal effectively with these

issues. Broadly speaking, the issues that arise here involve the existence of rival goals in

the problem. Two goals are rival if the most direct action leading to achieve one pushes the

other farther away.

3.5.1 Issue with the h+ heuristic. The h+ heuristic function gives length of the

relaxed plan from a state to the goal. The relaxed plan ignores the delete effects of actions.

Since the goal cannot be achieved more rapidly by discarding delete effects, the h+ function

is admissible.

Unfortunately this heuristic is often somewhat uninformative. Indeed, in their original

paper on HSP, Bonet and Geffner [11] argue that an approximation which is closer to a

correct estimate of the true distance to the goal is more helpful than one which provides

a strict lower bound. In any event, it often occurs that a large number of states are

assigned an identical heuristic value. In the terminology of Hoffmann [38], this is called a

plateau. When the search procedure reaches a plateau, it cannot make progress except by

exhaustively examining states.

We can see an example of this in a modified logistics domain. Assume there is a long

chain of locations, with one truck in the middle. The truck must deliver a different package

to each end of the chain. In this case, the relaxed plan length heuristic assigns the same

value to each state where one of the packages is not yet delivered. As a result, the heuristic

is completely uninformative in terms of making progress towards either goal (in this case,

the problem can still be solved because there are only as many states as links in the chain,

but larger instances can be constructed with an exponential number of states). The two

goals in this problem are rival.
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Figure 3.3. The Push-Block domain. The black squares are blocks. A and B
denote locations to which the blocks must be pushed. Any state in which the lower
block is closer or farther away from A has the same evaluation, because the relaxed
plan simply moves the block from B to A.

In this domain, RRT-Plan will succeed immediately: one goal atom or the other will be

randomly selected. Achieving either of the goal atoms (while ignoring the other) is easily

done, and once the first is achieved, the second is also easy.

A related problem arises in a domain we have constructed called Push-Block. Here we

have a set of blocks positioned on a regular grid. Blocks can be pushed horizontally and

vertically, but only one block can occupy a location. There is only one meaningful predicate,

OCCUPIED(X Y), which indicates whether a grid position has a block in it (there are other

predicates which just encode adjacency relationships between rows and columns). The goal

is a set of locations which must be OCCUPIED.

Consider the situation shown in Figure 3.3. The goal is to have blocks in positions A

and B. Position B is already occupied and thus we need only move the block from the lower

left corner to A. However, in the relaxed plan a short solution appears: move the block at

B to A. Thus every state in which the lower block is nearer or closer to A has the same

heuristic value of 3, which is the length of the relaxed plan.
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If we ignored the block at B, the problem would be trivial. The h+ heuristic would give

a perfect evaluation of states, and the lower block would move directly to A. This is exactly

what RRT-Plan does by locking the goal atom representing the block at B. In general, the

more goals and blocks considered by the heuristic, the worse the quality of the evaluation

provided.

From the two examples above we may make an interesting observation about RRT-

Plan. By choosing goal subsets at random and locking goal atoms already achieved, the

algorithm is effectively imposing an artificial goal ordering on the problem. If an artificial

goal ordering is acceptable (i.e. the problem can be solved using it) then it has the effect

of breaking a hard problem into a sequence of individually easy problems.

3.5.2 Issue with helpful action pruning. FF uses the notion of helpful actions

to prune the search space during enforced hill climbing. Helpful actions are those which have

add effects which are present in the first fact level of the solution to the relaxed planning

problem. Intuitively, these are the actions which provide the most direct means of achieving

the most pertinent atoms.

Hoffmann and Nebel [5] give an example where helpful actions can prune all of the

solutions to the problem. Their example is somewhat abstract; we’ll present a situation that

arises in one of the actual planning domains, DriverLog (see Appendix B for a description).

DriverLog is basically the same as Logistics, except there are no airplanes, and the

truck drivers can walk around as well as drive. Hoffmann [38] showed that FF can handle

the logistics problems in polynomial time, so we might expect this domain to be similarly

easy. However, consider the situation shown in figure 3.4.

Here a truck and driver are both at location A. Locations A and B are linked by a

highway which can be driven across but not walked. A and B are also linked indirectly

through C, and these paths can be walked by the driver. The goal is to have the truck at

A, and the driver at B. The solution is clearly WALK(D1 A C) - WALK(D1 C B).

The relaxed planning graph will have only one level, because the first goal atom is

achieved in the initial state and the second goal atom can be achieved with only one action.

Thus the only helpful action considered is to drive from A to B.

RRT-Plan handles this case by randomly asserting AT (TRUCK A), and locking this

atom when it is achieved. Now the relaxed plan solution will not be allowed to consider the

48



3.6 EXPERIMENTAL RESULTS

Figure 3.4. Problem encountered by FF in DriverLog domain. Truck and driver
are both at A; goal is to move only the driver to B. Dotted lines indicate walking
paths, solid line is unwalkable highway. The only action recognized as helpful by
FF is to drive from A to B.

DRIVE action, and so will select the correct WALK action instead. Note that RRT-Plan

has no way of knowing in advance that AT (TRUCK A) should be selected, it simply chooses

it after several iterations of trial and error.

3.6 Experimental Results

To validate RRT-Plan, we compared its performance with that of well known planners

FF and LPG [6] on problems from the planning competitions from 1998, 2000, and 2002

[12, 13, 14]. We also used the STRIPS version of the Pipesworld domain from the 2004

competition.

We also used the Push-Block domain described above. This is simply a 20x20 grid of

positions which can be occupied by blocks. The blocks can be pushed left, right, up or

down, but not into a location which already contains another block. The goal is simply a

set of locations to which we must move blocks. We generated 20 domains, starting with

one block/goal atom and moving up to 20 (see Appendix B for the PDDL definition of the

domain).

Figure 3.5 shows the number of problems solved by the planners within a given time

length. These statistics were generated by allowing the planners to run for up to five minutes

and recording the time to completion. Table 3.1 shows the number of problems within a

given domain which the planners could not solve within the time cutoff. Experiments were

performed on a 3GHz Pentium 4 Linux machine with 2GB of RAM. Looking at Table 3.1,
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Figure 3.5. Number of plans solved as a function of time for FF, LPG and RRT-
Plan. Time is on a logarithmic scale.

we see that RRT-Plan outperforms FF in several domains and is worse in only one, FreeCell.

These results can be broken down as follows:

Rovers, Satellite, Logistics . In these domains, FF’s fast Enforced Hill-Climbing

phase is able to rapidly solve the problem. Because we use this same technique for the sub-

planner, RRT-Plan will also rapidly solve the problem, after a small number of iterations.

LPG also solves these problems easily.

Mystery, MPrime, FreeCell . The problems in these domains have a small number

of goal atoms. This essentially cripples the randomization of RRT-Plan, because there are

so few goal subsets to choose from. However, the search constraints will be relaxed until

all the effort is expended by the sub-planner, thus RRT-Plan again becomes equivalent

(modulo exact parameter settings) to FF. LPG does significantly better on the MPrime

domain than both FF and RRT-Plan, and significantly worse on the FreeCell domain.

Blocks-World, DriverLog, Depot, Pipesworld, Push-Block. In these domains

RRT-Plan seems to achieve consistently better results than FF. In the case of DriverLog

and Push-Block, the reason should be clear from the discussion above.
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For Depot and in particular Blocks-World, the cause is a bit more difficult to discern.

These domains are characterized by strong goal orderings. However, the goal agenda tech-

nique used by FF [37] is able to discover the goal ordering and provide it to the planner.

We speculate that FF does not consider the full goal when achieving goal subsets, which

cripples the Goal Added Deletion heuristic. RRT-Plan will attempt to reach the first goal

atom and reject several states as unacceptable (h+
gsl = ∞). Thereafter the search constraints

are relaxed, and finally the difficult atom is achieved acceptably, after which the problem

becomes easy.

The goal of RRT-Plan is to find solutions to difficult problems. To that end, we

were prepared to accept suboptimal plan lengths. We expected the plans generated to be

uniformly worse than those created by other planners. Surprisingly, this was not always the

case, as shown by Table 3.3. Indeed, for some problems the plan generated by RRT-Plan

is about half the length of FF’s. Figure 3.6 shows the number of plans generated of a given

length.

RRT-Plan is of course a randomized algorithm and therefore can produce different

results on different runs. While we have not performed exhaustive testing, the numbers in

Table 3.1 change only slightly (in one test suite we observed only 6 failures on Pipesworld, in

another 1 failure in Push-Block). This is probably because the average completion time for

some problems is around the 5 minute cutoff and therefore variation can mean the problem

sometime registers as a failure.

We have performed systematic tests on the hard DriverLog (16-20) problems. Table 3.2

shows the time required for the three planners on these problems. For RRT-Plan, the mean

and standard deviation of the time required is shown for the hard problems. Table 3.3

shows the plan length of the solutions.

In comparing RRT-Plan to LPG, the most reasonable analysis is to look at the num-

ber of domains where one exceeds the other, rather than number of problems. With the

exception of Push-Block, the score is seems to be tied: RRT-Plan wins in MPrime and

loses in FreeCell, while in other domains performance is roughly equal. A greater number

of problems and especially domains is needed to more rigorously compare performance of

the planners.
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Table 3.1. Performance of FF, RRT-Plan, and LPG on various domains. Entries
list the number of problems the planner could not solve within five minutes of CPU
time.

Domain FF RRT-Plan LPG
Blocks World (35) 3 1 0

Driverlog (20) 5 0 0
Depot (22) 3 0 0
Freecell (80) 8 10 70
Logistics (63) 0 0 0
MPrime (35) 3 3 0
Mystery (30) 14 13 12

Pipesworld (50) 15 8 9
Rovers (20) 0 0 0
Satellite (20) 0 0 0

Push-Block (20) 15 0 19

Table 3.2. Time to completion (seconds) on DriverLog problems 10-20. For prob-
lems 16-20, mean and std dev are given for RRT-Plan.

Problem FF RRT-Plan LPG
driverlog-11 0.00 0.00 0.05
driverlog-12 0.41 0.02 0.17
driverlog-13 0.17 0.05 0.47
driverlog-14 0.21 0.05 0.13
driverlog-15 0.06 0.09 0.18
driverlog-16 - µ = 15.7, σ = 6.4 274.79
driverlog-17 - µ = 5.0, σ = 1.6 2.14
driverlog-18 - µ = 2.7, σ = 0.6 38.34
driverlog-19 - µ = 34.4, σ = 16.5 215.41
driverlog-20 - µ = 12.7, σ = 5.6 9.77

Table 3.3. Plan Length for DriverLog problems 10-20. For problems 16-20, mean
and std dev are given for RRT-Plan.

Problem FF RRT-Plan LPG
driverlog-11 24 25 16
driverlog-12 51 48 40
driverlog-13 35 35 49
driverlog-14 37 50 41
driverlog-15 47 49 39
driverlog-16 - µ = 144, σ = 17 181
driverlog-17 - µ = 114, σ = 4.6 95
driverlog-18 - µ = 107, σ = 5.3 83
driverlog-19 - µ = 191, σ = 15.2 159
driverlog-20 - µ = 143, σ = 2.9 94

52



3.7 DISCUSSION

Figure 3.6. Plan length comparison for FF, LPG, and RRT-Plan.

3.7 Discussion

This chapter presents a randomized algorithm for STRIPs planning. The strong em-

phasis on randomization is conceptually novel, compared to current state-of-the-art discrete

planners. The algorithm is shown to exhibits competitive empirical performance on a num-

ber of standard domains. The algorithm is inspired by Rapidly exploring Random Trees,

a concept borrowed from the domain of continuous space path planning. However, signifi-

cant alteration of the underlying RRT concept must be made for it to work in the discrete

domain.

In general, one of the most important advantages of randomized over deterministic

algorithms is that they avoid systematic errors. Heuristic planners such as FF use several

techniques which are generally powerful and effective, but can sometimes fail completely

even in simple situations. We have described a number of such situations above, and shown

that our randomized algorithm provides better robustness in such cases.

The goal of the original RRT formulation is to expand the tree so that it reaches a

uniform sampling of the configuration space. Our original idea was to try to achieve a
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similar thing for the discrete space search - to grow the tree until it samples the reachable

states uniformly. However, this approach met with a variety of difficulties.

The basic problem in the analogy between the continuous and discrete cases is as

follows. In the continuous case the region from which the sub-planner can achieve the goal

directly is typically of the same dimension as the entire space. In the discrete case, the

region can be exponentially smaller, depending of course on the nature of the sub-planner.

Therefore even if we achieved uniform coverage of the space - which is itself quite difficult

to do - the algorithm would still require exponential time and memory.

Instead of attempting to choose states randomly from the space, RRT-Plan instead

randomly samples from goal subsets. As the number of achieved goal subsets in the tree

grows, it moves closer and closer to the complete goal. In this sense, it is best to think of

RRT-Plan as searching through the space of artificial goal orderings. With this reformula-

tion in mind, we can make an interesting analogy. Continuous RRTs are highly effective

in problems with high dimensionality but where solutions are not scarce, but encounter

difficulty in problems where there is only a thin bundle of solutions (such as navigation

in a narrow corridor). Similarly, RRT-Plan is effective at choosing an artificial goal or-

dering, in problems where there is no natural goal ordering. This artificial ordering can

speed up the search significantly. RRT-Plan can also deal with problems with natural goal

orderings, when those orderings are discovered using the method of [37]. We imagine that

the algorithm will fare poorly in situations where natural goal orderings exist but are not

discovered.

While the selection of random goal orderings is at the heart of our approach, several

additional techniques are required. Most prominently is the idea of goal subset locking. By

pointing the h+ heuristic at a goal subset and preventing it from deleting already achieved

goals, the topology of the search landscape is simplified. Local minima and plateaus which

would otherwise hamper the planner’s progress are removed. Also, as the tree grows certain

goal atoms are identified as problematic, and more effort is devoted to achieving them.

Our results show RRT-Plan to be competitive with leading STRIPS planners. In par-

ticular, RRT-Plan can handle several types of problems which FF stumbles on, while per-

forming only slightly worse than FF in other cases, such as when there are very few goal

atoms. A main question for future work is how to extend RRT-Plan to deal with such cases.
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The answer to this question will likely involve finding actions that assert the goal atom(s)

and using the preconditions of those actions as a new set of goals, from which to randomly

sample. This could even involve growing another RRT from the goal which expands in the

regression space [11] of the problem.
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CHAPTER 4

Heuristic Search Planning in Numeric Domains

One recent extension to the STRIPS planning formalism is the addition of numeric vari-

ables [26]. The benefits of this extension should be obvious: it is now possible to represent

aspects of a problem such as the amount of fuel in a truck. In principle, complicated logical

mechanisms can be used instead of numeric variables, but these mechanisms are awkward.

As shown below, numeric variables have important properties that can be exploited.

We begin with a discussion of the problems encountered when attempting to apply

heuristic search techniques to numeric planning problems. These general issues motivate

the construction of a new planning technique called reduced search with enhanced states. A

planner called CHCGP (described in Appendix A) is presented which uses this technique.

Experimental results are given, which essentially show that there is a category of problems

which traditional heuristic search planners cannot solve efficiently but CHCGP can, due to

its use of reduced search.

4.1 Limitations of Heuristic Search in Numeric Domains

It is possible to make a rough analogy between heuristic search and the optimization

technique of gradient descent. In both cases, the algorithm moves in the direction of de-

creasing value of a function (heuristic or objective).

Recall that gradient descent works roughly as follows. The goal is to minimize some

objective function. A point is selected as a starting place. The gradient of the objective

function is calculated at the point. Then a new point is found by moving in the direction
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of the gradient. This strategy will almost always succeed in finding a local minimum. The

challenge is to efficiently find a global minimum.

The purpose of heuristic search is to find a zero heuristic value (goal) state. To move

toward lower values of the heuristic function, states are removed from the open list in order

of increasing heuristic value. As with gradient descent, the goal is to find a global minimum.

Importantly, in both cases local minima tend to impede progress by drawing the search away

from the true goal. The extent to which a local minima negatively impacts the search is

related to the size of the surrounding “basin”. This is simply the set of states that will lead

to a given local minima1.

Introducing numeric variables to the planning problem creates large basin local min-

ima in two ways. First, the basins that exist in the propositional version become vastly

larger if numeric variables are allowed (Curse of Affluence). Second, constrained resources

create new broad-basin local minima. This is because all states in the search tree below an

overconsumption mistake are dead ends. The Curse of Poverty prevents us from effectively

determining if such overconsumption mistakes have been made until the resulting search

tree has grown quite deep.

The difficulty of finding lower bounds on resource consumption, the cause of the Curse

of Poverty, is well-known in the literature. In general, however, because of the general

intractability of numeric planning and the diversity of planning systems, little effort has been

made to analyze specific causes of difficulty and their effect on heuristic search planners. In

some ways, the curses described below can be considered features of a numeric domain which

make a basically simple task intractable by currrent heuristic search methods. Because of

the essential simplicity of the task, it is reasonable to imagine that more advanced techniques

will overcome the obstacle. Below, we show this to be true in certain cases for the Curse

of Affluence. The Curse of Poverty is less amenable to improved methods, as discussed in

Appendix A.

4.2 Curse of Affluence

In Chapter 3, several failure modes of the h+ heuristic were noted. A clear example

is the Logistics problem with a linked set of states as shown in Figure 4.1. Here we have
1Note that basins are not intrinsic properties of the space but are rather defined relative to the search
mechanism being used.
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Figure 4.1. A Linked-State Logistics Problem. The truck begins near the middle
of the chain, and must deliver packages to A and B. However, it has only one
package, so first it must travel to region C and obtain another one. This will only
be done after exhaustive search, because h+ evaluation does not assign one-package
states a sufficiently high heuristic value.

a truck in the middle of a long chain of locations. The truck must deliver packages to

locations on either end of the chain. However, it has only one package, and in order to

obtain an additional package it must travel outside of the chain to the region marked C.

Unfortunately, h+ will not recognize this necessity, because it disregards delete effects in

its evaluation process [11] (see Section 2.5). Thus the planning system will exhaustively

search all of the states in the chain before returning to region C to obtain the additional

package. In this case the remedy is not terrible, because the number of states which must

be searched is small (on the order of the number of locations in the chain).

However, consider what happens when a fuel variable is added to the problem. Assume

each move from location to location requires one unit of fuel, but the truck can refuel at

each location.

Because of this added dimension, the number of states that must be searched has now

become vastly larger. In principle, each state in the non-metric problem now corresponds to

an infinite number of states in the metric problem, if the fuel variable has no maximum. If

the only piece of information the planner has at its disposal is the heuristic estimate, there

is no way to verify that one state is identical to another except for some irrelevant amount of

extra fuel, because there is no way to verify that the extra fuel really is irrelevant (it might

be the exact amount necessary to achieve the goal). This is the Curse of Affluence: the

possibly infinite explosion in the number of states caused by incrementally larger resource

quantities (affluence), which do not bring the goal any closer. This is shown in Figure 4.2.

An interesting variant to this problem occurs when dead ends are caused by limitations

of the numeric variables (as opposed to the discrete variables, such as those linked to the

58



4.2 CURSE OF AFFLUENCE

Figure 4.2. The Curse of Affluence. Circles represent states, arcs represent oper-
ators leading to new states, and dotted ovals represent regions which are identical
except for a different fuel value. The initial state is a dead end, but it and the
region above it are assigned incorrectly low heuristic value, and so are searched
exhaustively before further progress is possible. This is can usually be done, but if
a numeric effect is applicable, it creates a new region which is identical except for
having more of an irrelevant resource. This region must now also be searched. In
principle, an infinite number of such regions can be created by successive applica-
tions of the refuel operator. Another possibility is if the initial state is not a dead
end, but many refuel actions are required; here the goal is located in an oval region
far to the right.

packages). For example, imagine that the truck starts in region C and has the two necessary

packages, but not enough fuel to reach both A and B. Additional fuel can be obtained in

C, and so the question now becomes: how much fuel to add? A standard heuristic search

will attempt to deliver the packages, fail, add more fuel, search and fail again, etc until

the necessary amount of fuel is added. In Figure 4.2, this would correspond to a situation

where the goal state is in one of the regions far to the right of the starting point (ie, after

many refuel actions).

It is important to note that the failure modes described above are not unique to the

relaxed planning heuristic h+. Any heuristic which gives bad estimates for some states will

experience breakdown when those states are inflated into large regions by the addition of

numeric variables to the problem.
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4.3 Curse of Poverty

A wide number of numeric planning problems involve resources that must be conserved.

An ideal planner would be able to discover how much of a given resource is required to reach

the goal. States which did not meet this resource requirement would be pruned from the

search. In that way, the search would be confined to regions from which the goal can

actually be reached.

In reality, it is very difficult to find such lower bounds on resource consumption. This

is primarily because, even in simple problems, the relevant lower bounds are not on specific

variables, but on combinations of those variables. This is illustrated by the Two Rovers

problem discussed below.

Thus, the planner can be in a basin leading to a local minima, and have no real way to

know about it. Because resource conservation is typically a factor that must be considered

from the outset of the planning process, a mistake made early in the search can cause the

planner to explore large regions of states which are all dead-ends. This is illustrated in

Figure 4.3.

Two Rovers Problem Consider the following simple example given by Figure 4.4.

The goal is to go to location D, obtain a soil sample, and return to A. It costs 10 fuel

to get from A to D and back. In the first case, imagine that there is one Rover, with 15

fuel. Then, assuming a lower bound on the amount of fuel required to the reach the goal

can be found, this state can be pruned because there is insufficient fuel. This lower bound

on a specific variable could be found using a variation of the HSP atom cost fixed-point

calculation ([11], see Section 2.5).

To see the problem, consider the case that there are two Rovers at A. Then, the lower

bound for both fuel variables considered individually is zero. This is because either Rover

is capable of completing the task. In this case, the appropriate lower bound is on the

maximum of the two fuel variables. In principle, that could also be found, but there is no

obvious way to decide in advance that that particular combination of variables is the critical

one. Indeed, if Rover2 were already at D, then the appropriate lower bound would not be

on max(f1, f2) but rather on max(f1, f2 + 10).
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Figure 4.3. Constrained resource problems create broad basin local minima. Cir-
cles represent states, and arcs represent operators leading to new states, not all of
which are shown. The planner initially follows the path on the left, but has made
a mistake early on by failing to conserve fuel. This mistake typically cannot be
detected until much later. This creates a very broad basin leading to a dead end.
This basin must be searched exhaustively before returning to the point at which
the mistake was made.

Figure 4.4. The Two Rovers problem. Boxes represent locations; the goal is to
sample the soil at location D and return to the lander at A. 20 fuel is required to
get from A to D and back. With one rover, a lower bound of 20 on the available
fuel can be found, and a state with 15 fuel can be pruned. With two rovers, the
relevant lower bound is on the maximum of the two fuel variables.

4.4 Definitions and Assumptions

In this work we use the numeric planning formalism of PDDL 2.1, as described in

Section 2.1.3. The main restriction is that only linear expressions will be considered. Thus

every expression in the numeric state variables expr(V ) can be written as:
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expr(V ) =
N∑

i=1

wivi + C (4.1)

Here C represents a constant value, while the wi represent variable coefficients. With

this definition, numeric constraints can be simplified to expressions that must be greater

than zero:

expr(V ) ≥ 0 (4.2)

This definition can be extended to include comparison operations such as {>,≤, <,=}.
A numeric effect is a pair {vi, expr(V )} such that in the resulting state:

v′i = vi + expr(V ) (4.3)

By appropriate choice of the wi in expr, this definition can take into account the three

PDDL operations INCREASE (+=), DECREASE (-=) and ASSIGN (:=).

In many domains of interest, variables can only take on values that lie between certain

extrema. These extrema can be found as follows. If for every grounded operator o ∈ O that

decreases the value of a variable by an amount N , there is a precondition which requires

that the prior value of the resource is at least N + M , the minimum value of the variable

is M . In principle, N can be some expression N = expr(V ), but it is generally a constant

value. In most domains, variables have minimum values of zero. An analogous technique

can be used to find maximum values.

Given the above definitions and observations, we now define a concept that will be of

critical importance to this work.

Definition: Pure Translational Operator. An operator o ∈ O is pure translational

if the following conditions are met:

• o has no discrete effects;

• o has only constant numeric effects;

• the only numeric constraints of o are those which enforce resource extrema2.

2This requirement may be relaxed. However, it seems quite natural, and it simplifies the exposition.
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The essential intuition behind the idea of a translational operator is that once the

discrete preconditions have been met, it can be applied many times. An example of a

translational operator is the RECHARGE action in the Rovers domain [14]. The Settlers

domain [14] also exhibits many pure translational operators.

The techniques of reduced search discussed below rely on the existence of pure trans-

lational operators in the domain. The planner will still run if these operators do not exist,

but it will not realize any improvement over standard heuristic search. See Section 4.10 for

a discussion of why pure translational operators occur naturally in many domains.

A further definition which will be important is that of individual monotonicity. A

variable vi is individually monotonic if

• There is no expression expr(V ) in the domain for which wi < 0, ie vi only

participates positively in constraints and effects.

• For all effects eff with expressions expr(V ) such that wi 6= 0, targ(eff) is

monotonic.

This definition is very similar to Hoffmann’s [39]. The difference is that Hoffmann

defined monotonicity to be a property of a domain, while we define it to be a property of

a variable. Our definition allows monotonicity to be exploited when it is present, but the

techniques described below do not require it.

Note that the above properties of variable extrema, pure translational operators, and

individual monotonicity can be discovered in a preprocessing step. The complexity of the

preprocessing step is linear in the number of grounded operators in the problem.

4.5 Reduced Search with Enhanced States

In the most general terms, reduced search is a search in which certain operators are

left out. The operators to remove from the search are chosen because they have simple

effects. Because of this simplicity, it becomes possible to construct enhanced states. These

are regions in the full state space that can be reached by inserting the simple operators into

the reduced plan when appropriate. This is illustrated in Figure 4.5. Consider the following

definitions.
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Figure 4.5. The reduced search process. The λi show points at which an arbi-
trary set of applicable simple operators may be applied, to construct corresponding
enhanced states, shown as hexagons. S0 is the initial state, EO is the set of states
which can be reached from S0 solely through the use of simple operators applicable
in S0. E1 is the set of states reachable from first epoch of simple operators λ0, the
first general operator (denoted Op:0), and the second epoch of simple operators λ1.

Definition reduced plan: Given a full plan P = {u1, u2 . . . ut} and a set of “simple”

operators Os, the reduced plan Pr is {P \Os}, i.e. P with the simple operators removed.

Definition enhanced state: Given a reduced plan Pr leading from the initial state

si, the enhanced state se = result(si, Pr) is the set of all states s that can be obtained by

inserting simple operators into Pr such that the resulting full plan is valid.

The above ideas are not useful without a clear identification of which operators will

be considered “simple”. This choice must be made bearing in mind that an overly broad

identification will cause the enhanced states to become very difficult to represent and main-

tain. We must also redefine the conditions for operator applicability, and the results of

general operators, when dealing with enhanced states. Assuming this can be done, the

benefits should be clear: the space of the reduced search is simply much smaller because

fewer operators are considered.

For the purposes of this work, pure translation operators as defined in Section 4 are

considered simple. This allows the enhanced states to be represented compactly. The

discrete variables are constant, while a convex region is used to represent the values that

numeric variables can take on. Discrete preconditions and effects of general operators are

unchanged, while numeric constraints and effects can be handled naturally. In the following

the term reachable space, denoted R, is used to distinguish between numeric regions and

the enhanced states with which they are associated.

For a simple example of when the reduced search strategy can help, consider the Rovers

domain. Here the RECHARGE operator is pure translational, and is thus left out of the

search. When a state is reached in which a rover can be recharged, an enhanced state

is constructed containing a representation of all values the energy variable can achieve,

through repeated RECHARGE actions. Thus it is not necessary to apply RECHARGE
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during the actual search. In terms of Figure 4.2, the regions enclosed in dotted lines (and

all regions further to the right, not shown in the figure) are compressed together. If a goal

state is found as a descendent of the recharge state, the postprocessing step goes through

the reduced plan and inserts a sufficient number of RECHARGE actions to ensure that

subsequent energy requirements are met.

4.5.1 A Convex Hull Representation of Reachable Space. This representa-

tion of the reachable space R must satisfy several requirements. It must be easily queriable

in order to determine operator applicability. Also, it is clear that the reachable spaces can

vary significantly from one enhanced state to the next. Numeric effects can change the

space, and numeric constraints can cut out regions. Finally the space must be expanded

when new pure translational operators become applicable.

The way that we have defined pure translational operators ensures that the discrete

variables in enhanced states have constant values. Numeric variables are allowed to have

multiple values, due to the multiple possible insertions of pure translational operators in

the reduced plan leading to the enhanced state.

Because of this, and because of the assumption that numeric expressions are linear, a

natural choice for the representation of R is the convex hull. For every enhanced state se a

list of points R = {r̄1, r̄2, . . . r̄w} is maintained. The reachable space is then approximated

as the convex set of the R:

R = conv(R) = {x̄ : x̄ =
w∑

i=1

λir̄i,
w∑

i=1

λi = 1 λi ≥ 0} (4.4)

It is important to note that this is an approximation. The real reachable space is a

countable subset of points within this region. In the domains we have experimented on, the

approximation has been sufficiently accurate that the postprocessing step (see Section 4.6)

can always find valid plans. Note the distinction between R (a list of points) and R (the

convex set of R).

Now that we have decided on our representation, it is necessary to answer the following

questions. Given an enhanced state se, an associated reachable space R, and a general

operator og with numeric constraints C and effects E:

(i) How do we determine if some point in R satisfies C?
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(ii) How does R change based on both C and E?

(iii) How do we construct the new reachable space R′ which results from the applica-

tion of og to se?

Note that the third question is strictly more difficult than the second. This is because

new enhanced state has different sets of pure translational operators which are available,

and the potential effects of which must be factored into the new reachable space. These

questions are answered in the following subsections.

In the following we refer to the complexity of calculating the extreme points of a set

of N points in Ed as CH(N, d). This complexity depends on the exact algorithm being

used but is on the order of N
d
2 . See Section 2.10 for more information. In our current

implementation we use the LRS algorithm by Avis [22].

4.5.2 Querying the Hull. A convenient property of the convex hull reachable

space representation is given by the following Lemma.

Lemma: Let R′ = conv(R′) be the convex hull formed by applying a constraint c to

the convex hull R. Then every new extreme point

r̄ ∈ R′, r̄ 6∈ R

is created by the intersection of c with an edge of conv(R) [21].

This property of convex hulls are exploited in the function QUERY HULL, shown in

Figure 4.6. Here C = {c1, c2 . . . cn} is the set of constraints we wish to know if the hull

satisfies. This function proceeds by implicitly calculating the revised hull after each recursive

constraint application.

The INTERSECT function calculates the intersection of a line segment with a con-

straint surface. The complexity of the overall algorithm is O(|R|2|C|), as each recursive call

can potentially require the creation of O(|R|2) intersection points. In the domains we have

experimented with, |C| is at most 3. The Settlers domain of IPC3 [14], a rather complicated

numeric domain, the maximum value of |C| is 2. Care is taken to minimize the number of

queries that must be made: checks for operator applicability analyze discrete preconditions

first, and only if all such preconditions are satisfied is the above function called. It is also

worth observing that if |C| = 1 then the complexity of the function is in fact O(|R|).
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function QUERY HULL(R,C)
if |C| = 0 then

return true
end if
let SAT = {r̄ ∈ R : r̄ |= c1}
if |SAT | = 0 then

return false
end if
let UNS = {R \ SAT}
let INT = ∅
for each pair ¯rsat ∈ SAT, ¯runs ∈ UNS do

let ¯pint = INTERSECT (rsatruns, c1)
add ¯pint to INT

end for
return QUERY HULL(SAT ∪ INT, {c2, c3 . . . cn})

Figure 4.6. The QUERY HULL function. Determines if some point in conv(R)
satisfies a set of constraints C.

Note that the sets SAT ∪ INT can include more than just the extreme points of each

revised hull. This is because we do not know which pairs of points in R are connected

by edges in the hull. It is possible to obtain this information, and doing so may be an

interesting optimization to the algorithm.

4.5.3 Updating the Hull. Typically, the pure translational operators are not the

only operators that involve numeric variables. General operators, which must be handled

using the standard search procedure, may have numeric effects and constraints. When

creating new states as the result of these operators, the reachable space from the predecessor

state is copied and then updated to take into account of both the constraints on and effects

of these operators.

When an operator with some numeric constraints is applied to an enhanced state, the

new reachable space is constructed by (potentially) cutting out some region of the previous

R. This simply takes into account the fact that if some operator has a constraint v1+v2 > 4,

and the numeric effects of the operator do not change v1 or v2, then the new reachable space

R′ includes no points for which the constraint does not hold.

In order to update the hull by applying a set of constraints, a simple variation of

the QUERY HULL algorithm is used. Notice that at every step of the algorithm, the set

SAT ∪ INT is guaranteed to contain every extreme point of the revised hull. Therefore, we
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function EXPAND HULL(R, o)
let v̄ represent translation due to operator opt

for each point p̄ ∈ ext(R) do
calculate λmax(v̄, p̄)
create new point p̄n = p̄ + λmaxv̄
add p̄, p̄n to set A

end for
set R := ext(A)

Figure 4.7. The EXPAND HULL algorithm.

simply recalculate the extreme points of the set SAT∪INT that are obtained after applying

the final constraint cn. The complexity of this process in the worst case is O(CH(|R|2|C|, d)).

After the new hull taking the constraints into account has been computed, the oper-

ator’s numeric effects are applied. This process is quite simple. We simply evaluate the

effects at every point:

r̄′i = r̄i + eff(r̄i) (4.5)

4.5.4 Expanding the Hull. After updating the hull based on the result of a general

operator, we must now expand it to account for the new pure translational operators that

may have become applicable. In the Rovers example above, this happens when the rover

enters a state where the recharge action is applicable.

To begin, we explain the process for expanding the hull as a result of just one transla-

tional operator. This is done by the EXPAND HULL function shown in Figure 4.7.

The complexity of this operation is O(CH(|R|2|C|, d)). The calculation of λmax is done

simply by finding the intersection between the ray extending from p̄ in the direction given by

v̄ with the boundary values for the problem. These are just the extrema for the variables, or

some maximum allowable value that should be greater than the interesting ranges of values

in the problem. The final step is a recomputation of the extreme points of the convex hull,

which is done to remove extraneous points.

This technique allows us to expand the hull to take into account the effect of multiple

applications of a single pure translational operator. We now consider how to proceed when

many such operators are applicable.
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function EXPAND ALL(s, sprev)
let set Opt be all pure translational operators applicable in s but not sprev

let R = ∅
let R′ = reachable(s)
while R ⊂ R′ do

let R = copy(R′)
for each operator o ∈ Opt do

call EXPAND HULL(R′, o)
for each operator o′ ∈ amset(o) do

insert o′ into Opt

end for
end for

end while

Essentially what we will do is to order the pure translational operators in a list and iter-

ate through it, applying the EXPAND HULL routine for each one. The process terminates

when the hull ceases to grow. A simple refinement is to start with only those operators

which were not applicable in the previous state, and to consider new operators if their

preconditions are modified by the others. This can reduce the number of EXPAND HULL

calls that are necessary.

The notation amset(opt) denotes the set of pure translational operators whose con-

straint variables are changed by opt. The requirement that R ⊂ R′ simply means that if

the hull has not grown in one iteration, it is guaranteed to never grow in further iterations

and so the process terminates.

Conceptually, this process is quite similar to the construction of the planning graph

( [33], see Section 2.3). Like the planning graph, the reachable space is guaranteed to grow

at every iteration. Because each iteration depends only on the previous iteration, when the

space ceases to grow during one step it will never grow in any later step.

4.6 Plan Post-Processing

The final stage of the reduced search comes when an enhanced state is found which

satisfies all of the goal conditions. We must now go over the reduced plan and insert pure

translational operators when appropriate to ensure that the full plan is correct. In the

following, two things should be noted. First, because we have approximated the reachable

space as a compact region rather than a discrete lattice, it is possible for this process to fail.

In this case the planner simply resumes the search. Second, while some of the following
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steps can be expensive, they are small compared to the cost associated with the search

itself.

Given a reduced plan Pr = {o1, o2 . . . om}, the goal of the post-processing step is to

construct valid derivations for the points in the reachable space of the final enhanced state.

A derivation is a set of integers that represent the number of times a pure translational

operator is applied in every enhanced state:

Λ = {λ1
1, λ

1
2, . . . λ

1
n;λ2

1, λ
2
2, . . . λ

2
n; . . . λm

1 , λm
2 , . . . λm

n }

Here n is the number of pure translational operators in the problem and m is the

number of general operators in the reduced plan. The element λj
i denotes the number of

times the i-th pure translational operator is applied between general operators oj−1 and oj

in the reduced plan (or prior to first general operator o1).

A reduced plan Pr and a derivation Λ uniquely specify a sequence of points {p̄0, p̄1, p̄2 . . . p̄m}
such that p̄0 represents the values in the initial state, and each subsequent point is the result

of applying both the pure translational operators in stage j and the general numeric effect

effj of operator oj in the reduced plan:

p̄j = effj( ¯pj−1 +
n∑

i=1

λj
i v̄i) (4.6)

Here again the v̄i represent the effects associated with the i-th pure translational op-

erator. A derivation for a point q̄ in the reachable space of the enhanced state following

general operator oj will be called valid if the numeric constraints for every general operator

ok, k ≤ j are satisfied by previous point modified appropriately:

( ¯pk−1 +
n∑

i=1

λk−1
i v̄i) |= const(ok) (4.7)

We also require that q̄ = p̄j , which simply means that the derivation must actually

produce the point to which it is attached.

The basic strategy used to construct derivations is to go through the same process of

updating, expanding, and applying constraints to the hull as described above, except now

ensuring that every point in the reachable spaces has a valid derivation. The derivations at

each step are used to obtain the derivations for the subsequent step.
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The hull expansion process is done in the same way as described above, with one

additional detail. Now when a new point p̄′ is created, a copy of the derivation of the original

p̄ is made, and the λmax value is added. Clearly if all points in R have valid derivations at

the beginning of an EXPAND HULL call, the derivations of new points (with the addition

of λmax) will also be valid. Applying the numeric effects of general operators is done without

changing the derivations.

The main complexity of the process comes when the hull must be modified to take a

new constraint into account. When expanding the hull, new extreme points are created

by applying pure transitional operators to old extreme points, so it is easy to update the

derivations. When applying constraints, new extreme points arise as the result of intersec-

tions between the hull and the constraint surface, so the derivations cannot be obtained in

an obvious way.

Let us first simplify the problem by assuming that the λj
i can take on continuous values.

If this were the case, then a point satisfying the applied constraint could be found in the

following way. Given a segment between two points ā, b̄ that do and do not satisfy the

constraint, respectively, write the point given by the intersection of the segment and the

constraint as:

p̄ = ā + φ(b̄− ā) 0 ≤ φ ≤ 1 (4.8)

Then if the Λa, Λb are the derivations associated with ā, b̄, the derivation of Λp is simply:

Λp = Λa + φ(Λb − Λa) (4.9)

It follows by induction and linearity of effects that when a new derivation is created

which is a convex sum of two other derivations, as in Equation 4.9, all of the points in the

new sequence will be convex sums of the corresponding points in the original derivations.

That is,

p̄j = āj + φ(b̄j − āj) (4.10)

Thus, if the original derivations Λa and Λb are valid, the new derivation Λp produced

by Equation 4.9 is also valid. It produces the correct point p̄. Also, it satisfies all upstream
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numeric constraints. This can be seen by the fact that the {p̄j} are formed by convex sums

of the {āj} and {b̄j}, and both of those sequences satisfy the relevant constraints. Therefore

if the λj
i could take on non-integer values, the problem would now be solved.

4.6.1 Rounding Hypercubes. To deal with the requirement that the λj
i be inte-

gral we simply round the values φ(Λb−Λa). However, it is necessary to consider all possible

rounding choices. This is because hull points are by definition located on constraint sur-

faces, and so minor changes in their derivation can cause them to become invalid. The

function ROUNDING HYPERCUBE generates all derivations that are possible by making

different rounding choices for epoch/operator pairs i, j such that aλj
i 6= bλj

i . This is not a

hypercube in the numeric space of the problem but rather in the space of derivations.

function ROUNDING HYPERCUBE(Λa, Λb, k)

let derivation set D = {Λa}
for each pair i, j such that aλj

i 6= bλj
i do

let derivation set E = ∅
for each Λd ∈ D do

Λe = copy(Λd)
eλj

i += bφ(aλj
i − bλj

i )c
dλj

i += dφ(aλj
i − bλj

i )e
add Λe to E

end for

add E to D
end for

Once the final set of derivations D is obtained, each one is examined to ensure that

it satisfies all constraints in the reduced plan, including the new one that necessitates the

process. If several possible derivations remain, the one which is furthest from the point ā

is chosen. Finally, the resulting point is recalculated to take into account the rounding (i.e.

the new p̄ is modified to agree with its derivation, not Equation 4.8).

4.6.2 Partial Optimality. The basic purpose of the post processing algorithm

is to construct derivations Λ for each extreme point in the reachable space of the final

(goal-satisfying) enhanced state. Now that the derivations have been found, the planner
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is free to select the best point according to whatever goal metric has been given for the

problem. If the goal metric is a linear sum of the variables, one of the extreme points in R

will be optimal. Thus we have a guarantee of partial optimality. Given a reduced plan, the

post processing algorithm can select the optimal set of pure translational operators that are

consistent with ensuring plan validity.

4.7 Exploiting Monotonicity

The techniques described above do not require that the underlying variables be mono-

tonic. However, in problems that exhibit monotonicity, this property can be exploited. In

order to clarify how to do so, consider the following general definition.

Definition State Domination: a state s dominates a state s′, denoted s . s′, if every

plan which is valid starting from s is also valid starting from s′.

In the context of numeric planning, the following condition on s and s′ implies that

s . s′:

vi(s) = vi(s′) ∀vi ∈ P (4.11)

vj(s) ≤ vj(s′) ∀vj ∈ Vm (4.12)

Here the set P is the set of all discrete variables and non-monotonic numeric variables,

while Vm is the set of monotonic numeric variables. This is the technique used by Hoffmann

in his paper on Metric-FF [39] (see Section 2.7). However, he did not address the possibility

of having mixed monotonic and non-monotonic variables.

We will use this property in two ways. First, we can discard points in the representation

of the reachable space that will never contribute to a solution. Second, when we come to

states in the search tree that have already been explored, we can bypass them (described

below). Note that two identical states dominate each other, so this idea is a generalization of

the standard technique of ignoring states in the closed list that have already been expanded.

In general an enhanced state includes many states, some of which may dominate others.

If the state corresponding to some r̄′ ∈ R dominates some other r̄m ∈ R, then we can safely

discard r̄m. This can be determined by analyzing the constraint surfaces that support each

extreme point. For a convex hull in d dimensions, each extreme point r̄m must be supported
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by at least d constraint surfaces supp(r̄m). A constraint surface S can be expressed by the

following inequality:

d∑

j=1

wjvj + C > 0 (4.13)

We can now state the following Lemma.

Lemma: Let j be the dimension corresponding to some numeric variable vj , and let

supp(r̄m) = {S1, S2 . . . Sd′} be the constraint surfaces3 supporting the point r̄m. Then if

the following condition on the hyperplane coefficients w holds:

wb
j ≥ 0, b = {1, 2, . . . d′}

there exists a point

r̄′ ⊆ conv(R \ r̄m) : r̄′ . r̄m

This point may or may not itself be a member of R.

Proof : Let r̄′ = r̄m + γvj . This point must satisfy all of the supporting surfaces

supp(r̄m), since by assumption moving in the positive j direction can only contribute to

the left hand sides of Inequality 4.13. Also, by the definition of monotonicity, increasing

the value of vj in a given state cannot invalidate any plans leading from that state. Thus

r̄′ . r̄m. Finally, the value of γ can be increased until the new point intersects some other

constraint surface of the hull. The point of intersection will be on the boundary of the hull,

which implies that it is a convex combination of the other {R \ r̄m}. ¤
If a dominated point r̄m exists in the hull, any generic point p̄ ⊆ conv(R) can be

replaced with a new point p̄′:

p̄ =
∑

i

λiāi

∑

i

λi = 1 λi ≥ 0 (4.14)

p̄′ =
∑

i6=m

λir̄i + λmr̄′
∑

i

λi = 1 λi ≥ 0 (4.15)

And it must be the case that p̄′ . p̄. Therefore we may safely discard the point r̄m from

our representation of the reachable space of the state, and in so doing we will not discard

any solutions. This technique can significantly reduce the number of points required to

3note that d′ ≥ d.
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represent the reachable numeric space of an enhanced state. For convenience we make the

following definition:

Definition Relevant Hull: for a given set of monotonic variables Vm, the relevant

points of R are the extreme points of R that are supported from the above in every mono-

tonic dimension, i.e. the set of supporting hyperplanes includes a coefficient wj < 0 for all

j : vj ∈ Vm. The relevant hull (denoted convr) is the convex set of the relevant points.

The intuition for this is simply that only the upper bounds for monotonic variables

are worth taking into account. These upper bounds are caused by constraint surfaces with

wj < 0. In the Rovers domain, the energy value the rover has when it enters a state where

RECHARGE is applicable does not matter; only the maximum energy value it can achieve

is relevant. Note that this modified definition of the hull is used in both the expansion

function EXPAND ALL described above, and in the closed list checking scheme described

below.

Enhanced State Closed List

An essential component of heuristic search is maintaining a list (the closed list) of states

which have already been visited. When a new state is created, it is checked against the

states in the closed list. If the new state is dominated by some state in the closed list, it

should not be expanded. For discrete variables it makes sense to check if every variable has

the same value in both states.

In numeric planning, this process becomes more difficult. It is possible to check states

exactly, but since the numeric variables can in principle take on an infinite range of values,

the benefit of checking the closed list will be much reduced.

Fortunately, the definition of state domination given above extends naturally to the

case of enhanced states. An enhanced state se dominates s′e if the discrete variables are

identical, and

convr(R) = convr(R ∪R′) ⇐⇒R ⊇ R′ (4.16)

Where R and R′ are the reachable spaces associated with se and s′e respectively. As

indicated this can easily be checked by adding together all the points in R and R′ and

recomputing the hull. In this way the criterion for discarding states because they have

75



4.9 EXPERIMENTAL RESULTS

already been explored becomes much more general and so many more enhanced states can

be safely discarded.

4.8 Full Planning System

The concepts relating to reduced search with enhanced states presented above consti-

tute the main contribution of this Chapter. In order to incorporate these ideas into a full

planning system, we have developed the Convex Hull Causal Graph Planer (CHCGP). This

system performs a reduced search, using a modified form of the Causal Graph heuristic [23].

It is important to note that the reduced search technique can be used in conjunction with

any heuristic function that can be modified to take into account numeric constraints and

effects. Thus it would be possible, for example, to develop a version of Metric-FF that uses

reduced search. The implementation of CHCGP is described in Appendix A.

4.9 Experimental Results

In this section we briefly compare CHCGP to Metric-FF. We compare our planner to

Metric-FF for several reasons. While it is probably not considered the state of the art, the

planners that outperform it on numeric domains use a different formulation of the problem

(LPG [51]) or are hybrid systems such as SGPlan [16]. SGPlan was the top performer in the

most recent International Planning Competition [15] and uses Metric-FF as a subplanner.

When the Curse of Affluence as described above is relevant to a problem, and when

the techniques described in this chapter are applicable, CHCGP performs much better than

Metric-FF. These domains were constructed to be as simple as possible and to illustrate

the advantage that CHCGP enjoys over other heuristic search planners. We do not argue

that the problems are particularly realistic, but certain aspects of real-world domains will

bear some resemblance to the types of situations described here.

We show results which illustrate the validity of our technique in certain cases. We do

not show results on the standard domains for two reasons. Our current implementation of

CHCGP is not highly optimized (techniques such as helpful actions and caching remain to

be implemented). For the most part, the standard domains do not satisfy the conditions

for reduced search to be useful. One exception is Rovers, where reduced search simply

means increasing the fuel variable to its maximum value when a state is entered where the
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recharge action is applicable. This simple technique helps a surprising amount. The second

exception is Settlers. Here the problem is that there are simply too many numeric variables,

so convex hull computations will grind to a halt.

See Appendix B for a more detailed description of the domains discussed in this section,

including domain file PDDL.

4.9.1 T-Logistics. This is the problem described in Figure 4.1. There is a set of

locations in the form of a “T”. The single truck starts at the intersection of the T. The goal

is to deliver packages to both edges of the T. There are two identical packages: one starts

in the truck, and the other is waiting at the base of the T. The truck requires fuel to move,

and fuel can only be obtained at the initial location. The height of the T is fixed at 10,

while the width is a parameter.

Figure 4.8 shows the performance of Metric-FF and CHCGP on this domain, as the

width of the top of the “T” is increased. This problem illustrates the Curse of Affluence. In

order for the problem to be solved, the truck must move to the base of the T to obtain the

second package. However, these states have a lower heuristic values than the states at the

top. The addition of the fuel variable creates an unlimited number of low heuristic states

at the top of the T.

For CHCGP the domain is just like standard logistics. All states which are identical

except for different fuel values are compressed into a single enhanced state.

4.9.2 Toll Chain. In this domain a car moves through a series of links in a chain.

To move across each link, a resource “toll” must be paid. The toll is simply one unit of

each resource. The goal is simply to get to the end of the chain. The difficult aspect of this

problem is that the resources can be produced only at the first location of the chain. Two

parameters can be used for this domain: the length of the chain (shown), and the number

of resources, fixed at three in these experiments.

Figure 4.9 shows the performance of Metric-FF and CHCGP on the Toll Chain domain,

as the length of the chain is increased. CHCGP does very well. At the beginning of the

search, it creates a large enhanced state representing all values that could be reached by

various production actions. At every step, the enhanced state is updated to take into account
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Figure 4.8. Performance curves for Metric-FF and CHCGP on the T Logistics
problem. The parameter being modified is the width of the upper segment of the
T.

the cost of the toll. Thus the search space is compressed into a number of enhanced states

equal to the length of the chain.

Metric-FF, on the other hand, never knows how many resources should be obtained in

advance, before leaving the initial location. It must search across the chain until it reaches

a toll it cannot pay, then go all the way back up the chain.

4.9.3 Shortcut Trap. This domain again considers a chain of states. A “goal-silo”

location exists at every other link in the chain. Each goal silo requires a certain number of

resources to satisfy, and the goal of the problem is to satisfy the requirements for one goal

silo. Resources can be produced, but after producing a resource the agent cannot move

any further (in other words, it cannot produce some amount of a resource, then realize the

amount is insufficient and move on). Also, there is a limit on how many resources can be

produced. The resource requirements for goal silos are chosen randomly, but in such a way

that the total required value is fixed. The first goal silo has a total requirement of 50, and

the requirement for every subsequent silo is one less.

We call this domain “shortcut trap” because if the agent tries to take a shortcut by

satisfying the requirements for an early goal silo, for which the resource requirement exceeds
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Figure 4.9. Performance curves for Metric-FF and CHCGP on the Toll Chain
problem, as the length of the chain is increased.

the production limit, it will fall into a large dead end region (a trap). Figure 4.10 shows

the performance of Metric-FF and CHCGP on this domain, as the production limit changes

(note the right side of the graph shows low production limits).

CHCGP performs quite well on this domain. Because the production actions are pure

translational, the dead end regions are collapsed into a single enhanced state. Therefore it

moves along the chain, checking if the requirements for each goal silo can be satisfied, until

it finds one that can be.

The performance of Metric-FF is quite interesting and can be understood as follows.

On the easy problems, where the production limit is high, the optimizations of FF allow

it to find a goal quickly. The seemingly hard problems with a low production limit are

actually easier for Metric-FF, because the size of the dead end trap regions are much smaller.

Therefore Metric-FF does the worst on the middle problems, where each dead-end region is

very large. It should be noted that if the number of resource types is increased, Metric-FF

breaks down badly. This is for a similar reason: the size of the dead end regions increase

exponentially with more variables.
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Figure 4.10. Performance curves for Metric-FF and CHCGP on the Shortcut Trap
problem, as the production limit is decreased. Note that low production limit values
are on the right of the graph.

4.9.4 Accumulation. In this domain there are several types of resources which

can be traded evenly for one another. The initial state 120 total units distributed equally

between N types (for these experiments N=4). The goal is to activate a set of goal flags,

which can be done by achieving a certain threshold of one resource (the threshold varies

in our experiments). Once the necessary level of some resource has been achieved and the

goal flag set, it can be traded away for the next resource and so on until all the goal flags

are obtained. The numeric version of h+ does not reward states which have accumulated

a large amount of one commodity at the expense of the others. Essentially this domain

is a numeric version of the linked state logistics problem, where the heuristic does not

discriminate between states along the chain.

The domain is quite easy in reality. CHCGP solves it after a number of state expansions

equal to the number of variables in the domain. Metric-FF solves the problem quickly after

accumulating the required amount of a given resource; the issue is just getting to that point.

It can succeed on instances with small numbers of variables.

4.9.5 Pressurized Blocks World. Pressurized Blocks World is a simple variant of

the standard domain. Each block has an associated variable called “pressure”. The pressure
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Figure 4.11. Performance curves for Metric-FF and CHCGP on the Accumulation
problem as the threshold for goal flag achievement is increased.

variables all start at zero and can be increased (but not decreased) if the block is on the

table and clear. To place one block on top of another, the one block must have greater

pressure than the other. There are thus two natural variants. In the “simple” version of

the problem, the higher block must have greater pressure. In the “hard” version, the lower

block must have greater pressure. The hard version is hard because in order to successfully

create a tower of blocks, the agent must reason about the future and pressurize a base block

sufficiently to allow many other blocks to be stacked above it.

Unfortunately a comparison is not currently possible due to an implementation bug

in Metric-FF. Note that in this domain the variables are not monotonic, and so inverted

variables must be introduced (see Section 2.7). Additionally, Metric-FF’s state domination

scheme will only be able to prune a state if it is exactly identical to other states in the

closed list.

On this domain, the limiting factor for CHCGP is the complexity of convex hull com-

putations large numbers of blocks. The problem includes one numeric variable per block,

so the run time starts to increase dramatically for problems with about 8 blocks. It is

likely that refined techniques can decrease the required number of convex hull operations;
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see Section 4.10 below. In Tables 4.1 and 4.2 we have listed the times to completion for

the problems CHCGP was able to solve within 5 minutes. 13 out of 35 problems in the

standard set were solved (note that the problem files have the same initial state and goals

as those in the standard set - the only difference is the addition of pressure functions).

Table 4.1. Time to completion and number of hull points in final enhanced state
for solved Simple Pressurized Blocks-World problems.

Problem Time(s) # Hull Pts
blocks4-1 0.12 5
blocks4-2 0.11 5
blocks5-0 0.24 6
blocks5-1 0.19 6
blocks5-2 0.57 6
blocks6-0 3.71 7
blocks6-1 0.35 7
blocks6-2 1.05 7
blocks7-0 4.36 8
blocks7-1 2.66 8
blocks7-2 5.31 8
blocks8-0 85.56 9
blocks8-1 3.76 9

Table 4.2. Time to completion and number of hull points in final enhanced state
for solved Hard Pressurized Blocks-World problems.

Problem Time(s) # Hull Pts
blocks4-1 0.17 5
blocks4-2 0.16 5
blocks5-0 0.36 6
blocks5-1 1.15 6
blocks5-2 1.81 6
blocks6-0 5.22 7
blocks6-1 5.25 7
blocks6-2 6.58 7
blocks7-0 62.03 8
blocks7-2 7.64 8

4.10 Discussion

Planning in numeric domains raises a variety of issues, not all of which can be solved.

In this Chapter we have identified two specific problems, the Curse of Poverty and the Curse
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of Affluence, and showed a technique for solving the latter in some cases. Any heuristic

search planner that attempts to handle numeric domains will face these types of issues.

The technique of reduced search with enhanced states is not tied to our implementation in

CHCGP: it can be used in any heuristic search planner. The only requirement is to find

a suitable modification to the state evaluation, so it can be applied to enhanced states.

The experimental results demonstrate that in certain domains reduced search can produce

significant performance improvements relative to traditional heuristic search.

We posit three criticisms which could be levelled at this approach:

• Over-reliance on pure translational operators.

• High computational costs associated with calculating convex hulls.

• Potential failure of post-processing step.

We address these in turn, starting with the first. It is certainly true that the technique

relies strongly on the existence of pure translational operators. However, these operators

can be used to represent quite natural structures. Consider the following two examples:

pooled variables and derived variables.

The first type occurs when many numeric variables are all connected to one another

and actually represent the same underlying resource. In this case, in order to increase one

variable another must be decreased. A situation like this could occur in financial problems

where the agent must allocate dollars to various projects. It could be the case that moving

the money around does not change the rest of the problem state (i.e., the actions that move

money have no propositional effects).

Derived variables occur when one resource can only be obtained by consuming some

other resource. This might happen in a computer manufacturing problem, where in order

to construct a computer a CPU, hard drive, motherboard, etc must be “consumed”. It

might also happen in purchasing problems where dollars can be converted into resources.

Regarding the second potential criticism: there is reason to believe that significant

reductions in computational complexity can be made by refining the technique. For example,

the representation of the reachable space does not need to include the minimal number of

points possible. Extraneous points in the representation do not break the algorithm, they

merely require more memory to maintain. Therefore it is not necessary to perform convex
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hull recomputations at every step. Optimizing the tradeoff between the cost of convex hull

recomputations and increased memory cost of representing the hull could yield significant

performance benefits. Furthermore, it may be that approximation techniques, in which

one high-dimensional hull is broken apart into several lower-dimensional hulls, will allow

significant performance improvements without giving up too much in terms of completeness.

With regards to the potential failure of the post-processing algorithm, a case can be

made that the shortcoming is with the planning language and not the technique. While

there are problems where operator applications are intrinsically discrete, there are also many

problems where allowing continuous valued arguments would be more natural. For example

in the Rovers domain, a rover can be recharged once for 20 units of energy, twice for 40

units, and so on, but it cannot be recharged by 37 units or 65.3 units in the standard PDDL

formalism.

There are many comparisons that can be made between the reduced search method

given in this section and related planning techniques. Broadly speaking, the technique can

be considered a method for dimensionality reduction, and is thus related to other planning

systems which apply such methods. It also involves a method for discarding dominated

points. SGPlan [16], a recently successful planning system, involves discarding nodes based

on the evaluation of a discrete space Lagrangian function. The domination criteria used

in SGPlan differ significantly from ours. In SGPlan, the Lagrangian takes into account all

constraints involved in the problem. If a node is not a local minimum of this function, it can

be safely discarded in preference for a neighbor. The value of the Lagrangian changes as the

search progresses, as some constraints begin to appear more difficult to satisfy than others.

Our method uses only numerical constraints to discard nodes. However, this limitation

allows us to discard entire regions of the search space, since every point in the convex hull

of an enhanced state corresponds to many actual states.
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CHAPTER 5

Conclusion

The purpose of this research has been to critically examine the concept of heuristic search

planning, identify problems with the technique, and attempt to solve those problems.

5.1 Limitations of the Relaxed Plan Heuristic

The first half of this thesis dealt primarily with problems arising from a popular heuris-

tic evaluation function called the relaxed plan heuristic (h+). This evaluator works by

calculating the length of the relaxed plan from the state under examination to the goal.

Because in the relaxed problem operators have no delete effects, a relaxed plan can be found

in polynomial time. This heuristic gives a good tradeoff between rapidity of evaluation and

value of the information provided.

As with any heuristic, there are certain cases in which it gives systematically bad

estimates. This was illustrated vividly in the simple domain called Push-Block (Figure 3.3).

The problem in this domain (and many others) is actions that bring one goal condition closer

push another goal condition further away. Thus the heuristic does not favor applying the

action. Such conflicting goal conditions are called rival. Rival goal conditions create large

regions of states with identical heuristic value. When such a region is encountered, the

planner can only proceed by exhaustively searching the states.

5.1.1 RRT-Plan. The planning system described in Chapter 3 was inspired by the

concept of Rapidly-exploring Random Trees (RRTs). This data structure and associated

algorithm was originally intended to be used for mobile robot path planning. The RRT

expansion algorithm is highly effective at growing the tree through the state space. Because
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of this rapid growth, the tree eventually comes close enough to the goal that a simple local

search can succeed. There were several difficulties in translating the RRT concept into the

discrete search space. It is problematic to find nearest neighbors, to sample randomly from

the reachable space, and to connect a known point to a target point.

By using an alternate method of selecting random target states, much improved results

were obtained. The reason for the improvement relates to the concept of artificial goal

orderings. These are distinct from natural goal orderings in that the latter are necessary,

while the former are acceptable: the planning problem can be solved by breaking it down

into smaller pieces, and dealing with each piece in sequence. Often it is the case that

many artificial goal orderings can be imposed on a given planning problem. This suggests

the following analogy. In path planning, RRTs can succeed on large problems if solutions

are abundant. In discrete planning, RRT-Plan can succeed on large problems in which

acceptable artificial goal orderings are abundant.

Once such an artificial goal ordering is imposed, the problem becomes much easier,

because rival goals no longer compete with one another. The heuristic function (often) gives

information sufficient to achieve any individual goal, and so the full problem is reduced to

solving several easy problems sequentially.

The results given in Chapter 3 show that RRT-Plan has good performance relative to

the state of the art. On several domains (Blocks-World, DriverLog, Depot, Pipesworld and

Push-Block) RRT-Plan achieves consistently better results than FF. RRT-Plan also does

significantly better than LPG on at least two domains (FreeCell and Push-Block), though

it also does worse on one domain (MPrime). An additional important point about RRT-

Plan is that it can be modified to work with any heuristic search planner. Therefore new

heuristic functions (such as the Causal Graph heuristic) can potentially be used to improve

the performance of RRT-Plan as well.

5.2 Limitations of Heuristic Search in Numeric Domains

The second half of this thesis dealt with problems that arise when attempting to apply

heuristic search techniques to numeric planning problems. Numeric planning is undecidable

under very basic assumptions [30]. Thus it should not be imagined that the two issues
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discussed here are the only ones that must be faced by numeric heuristic search planners.

However, they are general problems which occur in a variety of domains.

5.2.1 Two Curses. This work has identified two general issues for heuristic plan-

ning in numeric domains, which we call “curses”. These pose significant difficulties for

traditional heuristic search planners. The Curse of Poverty is caused by the problem of

undetected resource shortfalls. The Curse of Affluence is caused by the blowup of the state

space caused by extraneous resources.

If solving a numeric planning problem requires some resource to be conserved, in order

to solve it efficiently a heuristic search planner must prune states that have an insufficient

quantity of the resource. This could be done if a lower bound on the quantity required

to reach the goal could be found. The Curse of Poverty is that such lower bounds are

difficult to obtain. Part of the problem is that lower bounds are often not defined for single

variables, but rather for combinations of variables. This is illustrated in by the Two Rovers

problem (Section 4.3), in which the relevant lower bound is on the maximum of the two

rovers’ energy levels.

In some domains (e.g. Rovers and Settlers [14]) there are numeric operators that have

no effect other than to increase the value of some variable. Thus in order to avoid turning

a single state into a potentially infinite region of successor states, the agent must cap the

number of times such an operator is applied. Again, this is hard to do because it is hard

to estimate the amount of a resource that will be required to reach the goal. The Curse

of Affluence refers to the difficulty of limiting the potentially infinite blowup in the state

space caused by numeric variables.

5.2.2 Reduced Search and Enhanced States. As a way of addressing the Curse

of Affluence, a new search scheme was presented in Chapter 4. This technique, known as

reduced search, proceeds in the same way as normal search except that pure translational

operators are removed. These operators are often responsible for situations in which the

Curse of Affluence appears, because they can be applied an unlimited number of times.

In a reduced search, normal states are replaced by enhanced states. An enhanced state

represents a region of numeric values which can be achieved by insertion of pure translational
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operators into the reduced plan leading to the state. Thus its size and shape is determined

by the history of the reduced search.

As the reduced search proceeds, it is necessary to expand, update, and query the

reachable space in various ways. An operator with numeric constraints is only applicable

if some point in the reachable space satisfies the constraints. When applying a general

operator with numeric effects, the reachable space must be appropriately updated. When

new pure translational operators become applicable, the reachable space must be expanded

to take these into account.

There are many ways to represent the reachable space. Under the assumption that

effects and constraints are linear, the reachable space may be approximated very closely as

a convex hull. For this representation, we need only maintain the extreme points of the

hull. This representation satisfies the requirements for updating and querying the space

in an intuitive way. Also, other researchers [21, 22] have developed advanced convex hull

computation techniques which can be leveraged.

Of course, if the shape of the reachable space becomes complex, maintaining the rep-

resentation can become computationally expensive. To be specific, computing the hull is

exponential in D/2, where D is the number of dimensions of the space. In cases where the

reachable space is large but relatively low-dimensional, the compression of the full state

space thus achieved should more than make up for the additional costs. Furthermore, sev-

eral additional techniques are employed to keep these costs to a minimum. Primarily, the

notion of the relevant hull was introduced, which can significantly reduce the number of

points that must be maintained by exploiting monotonicity on a per-variable basis.

The experimental results given in Chapter 4 demonstrate that there are problems that

can be solved using the reduced search techniques of CHCGP, but cannot be solved by

Metric-FF, which is a leading example of a heuristic search planner for numeric domains.

5.3 Future Work

5.3.1 Rapidly-exploring Dissimilarity Trees. At the outset of the development

of RRT-Plan, the goal was to exploit the power of Rapidly-exploring Random Trees to solve

large problems with many solutions. The initial idea was to choose target states by sampling

choosing random sets of propositions. As the work progressed, a different approach began to
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look like it would be more effective. This was to choose a target state by sampling randomly

from the goal atoms. While this yielded good results on many problems, a significant degree

of the elegance and power of the original idea was lost.

This change of approach was motivated by several deep concerns. However, it may be

possible to overcome these issues and create an implementation of RRT-Plan which is more

faithful to the original RRT concept. To see how this might work, consider the process for

selecting nodes for expansion in the RRT growth algorithm. A point is selected from the

space at random, and its nearest neighbor in the tree is found. This strategy ensures that

the nodes at the fringes of the tree are selected with the greatest probability. This can be

stated in a more abstract way: the nodes that are selected for expansion are the ones which

are maximally dissimilar from the rest of tree. This fact ensures that the tree grows rapidly

throughout the state space.

Therefore, when translating the RRT algorithm into a new problem area, it should be

sufficient to define a new measure of similarity. Given this measure, a simple process will

suffice to expand the tree:

• Select the node in the tree with the least similarity to the other nodes,

• Expand outward from that node in the direction of the maximum dissimilarity.

Here, the expansion process is no longer random (a similar idea was introduced for

continuous domains by [52]). However, it should retain the property of expanding through-

out the space. Of course, everything depends on the quality of the similarity measure. A

good measure would cause the tree to expand in interesting directions, while a bad measure

would cause the tree to become constricted in one region of the space.

5.3.2 Generalized Reduced Search. Chapter 4 introduced the concept of re-

duced search. This technique depends on a particular definition of “simple” operators,

that are then left out of the reduced search and inserted in the postprocessing stage. The

definition used determines the form of the corresponding enhanced states. We discussed

a specific form of reduced search, in which pure translational operators are simple, and

enhanced states are represented by convex hulls.
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Other definitions of operator simplicity can be explored. These definitions must be

made with care, so that the resulting enhanced states can be represented compactly. Con-

sider the following extreme examples. If we define every operator in the problem to be

simple, then the first enhanced state created will be exactly the reachable space of the

entire problem. On the other hand if we allow only operators with no preconditions and

a single add effect, then the enhanced states will show that it is always possible for the

corresponding proposition to be made true. While these examples are not particularly

interesting, it is reasonable to believe that suitable definitions can result in significant per-

formance improvement.

Helmert has recently incorporated this idea into Fast Downward [23]. His realization

was that variables which were truly at the bottom of the Causal Graph, and which had

fully connected DTGs (see Section 2.8), could be ignored in the search. Since every value

for the variable can be achieved, a post-processing step can easily insert the correct set of

operators into the full plan whenever a specific precondition is required. Helmert refers to

this as safe abstraction. This technique corresponds to identifying simple operators as those

that only have preconditions and effects on variables at the base of the causal graph.

Thus an interesting line of future work is to examine various ways of defining simple

operators, and exploring the impact these have on the planning process. It may be that

single operators will not be sufficiently simple, but sequences of operators can be found

which result in simple effects (by canceling out most of each other’s effects, but leaving

something left over).

5.4 Summary

Discrete planning is a difficult enterprise, as demonstrated by the theoretical results of

Bylander [1] and Helmert [30] discussed in Section 2.2. Because of this difficulty, it is clear

that there are many domains which can never be efficiently solved by a planning system.

However, it is also clear that there are wide categories of problems which can be solved.

LetA stand for the set of domains that are tractable in principle, i.e., the set of problems

that can be solved in polynomial time by some algorithm (possibly one designed specifically

for the domain). Let B stand for the set of domains that can be solved efficiently by current
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domain-independent planning systems. Then the goal of discrete planning research is to

enlarge B to include as many domains in A as possible.

This thesis contributes to the above project in several ways. First, several simple

and tractable problems were identified that could not be solved efficiently by standard tech-

niques. These domains involved either the existence of rival goals, or the Curse of Affluence.

We expanded B by developing two planning techniques. The first was an algorithm called

RRT-Plan, which is very effective at finding artificial goal orderings. A problem is generally

made easier by imposing an artificial goal ordering, assuming a valid one can be found.

The second system was called CHCGP, which used the method of reduced search. Reduced

search can effectively compress the search space when there are pure translational operators

in the domain. While these techniques will not work on every problem, it can be hoped

that they will be incorporated into the standard set of discrete planning tools.

One recurring theme in this research is the distinction between discrete valued (propo-

sitional) variables and continuous numeric variables. Intuitively, it would seem that numeric

variables are more difficult to deal with, since adding them causes the search spaces to be-

come infinite. However, we can observe that sometimes numeric variables are in fact easier

to handle than discrete ones. The enhanced state techniques discussed in Chapter 4 illus-

trate one set of conditions under which this observation is true. Similarly, the continuous

space RRT algorithm is more effective than our version of it for discrete planning.

These notes provide one possibility for future extensions of automated planning. Given

the right set of assumptions, continuous planning might be a more promising and practical

direction for the field to take.
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Convex Hull Causal Graph Planner

A.1 CHCGP - Convex Hull Causal Graph Planner

The Convex Hull Causal Graph Planner (CHCGP) is a numeric planning system that

employs reduced search as described in Chapter 4. It uses a modified version of the Causal

Graph heuristic [23] to evaluate enhanced states. Note that the techniques described in

Chapter 4 do not rely on this particular implementation or heuristic function.

A.2 Design Goals

The above observations motivated the development of the planning system described

in this chapter. This system is based on Fast Downward by Helmert [23]. In modifying

Fast Downward, three design goals were established:

• The performance of the new planner should not be meaningfully degraded relative

to the original system on non-numeric problems.

• The system attempts to deal with the Curse of Affluence by conducting a re-

duced search through enhanced states. These enhanced states represent regions

of reachable numeric values (Section 4.5).

• The system attempts to deal with the Curse of Poverty by tracking resource

consumption within DTG traversals.



A.4 NUMERIC CAUSAL GRAPH HEURISTIC

A.3 Virtual Purchase Flags

The causal graph heuristic is based on the recursive calculation of costs to change a

variable from one value to another. For example costv(d, d′) gives the cost to change variable

v from d → d′. These costs are then propagated through to the costs of the CG successors

of v. In order to modify this technique to take numeric variables into account, we must

simply define some way of obtaining these cost functions.

To do this, for every numeric variable vj , we introduce a pair of binary variables

{v+
j , v−j }. These variables represent the fact that a variable has been increased or decreased

in the heuristic estimate. Thus the DTGs for these variables have exactly two states. Every

operator which can potentially increase (decrease) vj has a corresponding edge in the DTG

of v+
j (v−j ). These variables are called virtual purchase flags because they indicate whether

a numeric variable has been “purchased”, i.e., whether a cost has been paid to change it.

The purchase flag has a two-state DTG, and only contains transitions leading from 0

to 1. The number of transitions in this DTG is equal to the number of operators that could

increase or decrease a given numeric variable (this is determined in the preprocessing stage,

see Section 4.4). To take into account non-constant effects, and assignment effects that

may or may not increase the variable, the purchase flag DTG is constructed dynamically

depending on the current state (note that the current state is the one being evaluated, as

opposed to the local states referred to in A.1).

A.4 Numeric Causal Graph Heuristic

Given the notion of virtual purchase flags as defined above, our modifications to the

CG heuristic will be simple (Figure A.1, the original is given in Figure 2.8). There are three

functions invoked by this modified heuristic that must be explained.

SATISFIES(. . .) merely checks if the given local state satisfies a constraint. The func-

tion is optimistic, in that it returns true if any point in the associated hull satisfies the

constraint. Importantly, the algorithm checks only one constraint at a time. Determining

if a convex hull satisfies one linear constraint can be done simply by checking each ex-

treme point. The function APPLY EFFECTS evaluates the effects of the given operator

for each point in the hull, and makes the appropriate modifications. This is just the numeric

equivalent of updating the local state to take into account the effects of the operator. The
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function COMPUTE COSTS(Π, s, v, d)
Let V ′ be the set of immediate predecessors of v in the pruned CG of Π.
DTG := CONSTRUCT DTG(v, s)
costv(d, d) := 0
costv(d, d) := ∞ for all d′ ∈ Dv \ {d}
local stated := s restricted to V ′
unreached := Dv

while unreached contains a value d′ ∈ Dv with costv(d, d′) < ∞ do
Choose such a value d′ ∈ unreached minimizing costv(d, d′).
unreached := unreached \ {d′}
for each transition t in DTG leading from d′ to some d′′ ∈ unreached do

transition cost := 0
cond set := cond(t)
for each constraint C of op(t) do

if not SATISFIES(local stated′ , C) then
cond set := cond set + (virtualvar(C), 1)

end if
end for
for each pair v′ = e′ in cond set do

e := local state(v′)
call COMPUTE COSTS(Π, s, v′, e)
transition cost+ = costv′(e, e′)

end for
if costv(d, d′) + transition cost < costv(d, d′′) then

costv(d, d′′) := costv(d, d′) + transition cost
local stated′′ := local stated′

for each pair v′ = e′ in cond set do
local stated′′(v′) := e′

end for
for each numeric effect E of op(t) do

APPLY EFFECT(local stated′′ , E)
end for

end if
end for

end while

Figure A.1. Modified Causal Graph heuristic for problems without multi-variable
constraints. Compare to the original COMPUTE COST algorithm, Figure 2.8.

subroutine CONSTRUCT DTG returns the standard DTG if the variable is discrete, or the

virtual purchase flag DTG if it is numeric.

The heuristic evaluator only takes into account the cost of achieving the preconditions

of a single operator that increases or decreases a numeric variable, not the number of times

it must be applied to satisfy the constraint. In this sense, the heuristic can be thought of
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as assuming that numeric operators are pure geometric, and calculating the distance to the

goal in the reduced search, not the full search. This is in keeping with both the overall

design of the planner and the idea that it is preferable to underestimate goal distances.

There are some subtleties about this technique that should be noted. The important

points are that:

• If the local states satisfy a constraint, nothing is added to the cond set. Therefore

no cost is incurred, and the purchase flags are not set.

• Resource consumption is tracked through DTG traversals, through the action of

APPLY EFFECTS on the local states.

• In any given DTG traversal, the cost of increasing or decreasing a numeric variable

is only paid once.

The second property above provides a loose lower bound on the resource consumption

required to reach the goal. If the required consumption of a resource within one DTG

traversal is greater than is available in the state, it will be assigned an infinite heuristic

value and pruned (assuming the resource cannot be produced).

A.5 Multi-Variable Constraints

Figure A.1 shows the action of the heuristic in cases where all constraints in the problem

involve single variables. This is often a valid assumption, but it is possible to provide for

the general case.

The difficulty now is that constraints can be satisfied by changing different variables.

This is analogous to an OR precondition the discrete variables, and it will be handled in

basically the same way.

When constructing the initial DTGs at the outset of the search, N copies of of each

transition with a multivariable constraint are made, where N is the number of variables in

the constraint. Each copy corresponds to a different variable that is added to the cond set

in the DTG traversal. In other words, the virtualvar(C) statement returns a different

variable for each copy.

The intuition here is that the constraint can be satisfied by changing any one of the

relevant variables. It does not need to be paid for multiple times. Thus the DTG algorithm
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will attempt each transition, and keep the one corresponding to the least expensive variable

to modify.

One additional problem with multi-variable constraints is that they could cause cyclic

causal graphs. Consider a discrete variable vA the DTG for which has a multivariable

constraint involving vB and vC . There are three possibilities. If vA is above the others,

then the constraint should be considered. If vA is below the other two, the constraint should

be ignored (attempting to satisfy it might result in an infinite loop). The third case, where

vA is between vB and vC in the CG, causes some puzzlement. It is possible to address

the constraint by looking only at the lower variable. However, this would tend to make

constraint harder to ameliorate, because there are fewer variables available to change. We

decided on a simple fix: only consider the constraint if the highest variable it involves is

below the variable being evaluated.

A.6 Inserting Numeric Variables in the Causal Graph

In the discrete case, a causal graph arc exists between two variables v, v′ if some operator

o ∈ O has an effect on v′ and a precondition or effect on v. Note that the CG as defined

in this way must then be pruned to be used in the heuristic calculation. The question now

arises as to how to extend this definition of causal graph arcs to the numeric case. The

simplest thing to do is merely expand the condition above to include constraints as well as

preconditions and numeric effects as well as discrete effects. This will work for the most

part.

However, consider the following case. In the Rovers domain there are many operators

which have a numeric constraint and an effect involving energy, and a precondition and effect

involving some other variable (say, the location of the rover). Here it seems more natural to

put the energy variable lower than the Rover location variable in the CG, because it seems

appropriate to think of the energy variable’s role in the operator as primarily a constraint,

and not as an interesting effect. The näıve definition we used above will not discriminate

between the two variables: since both are involved in a precondition and both are involved

in effects of the operator, the CG pruning algorithm will have no reason to place one above

or below the other. To do this, we modify the pruning algorithm so that it detects resource

variables like energy and pushes them upstream in the pruned CG.
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A.7 Comments

Our attempt to handle the Curse of Poverty resulted in the technique described regard-

ing resource consumption tracking within DTGs. While better than nothing, this technique

is far from satisfactory. This method is able to prune states only when the required re-

source availability is significantly too large. This is because the method can only track

consumption within a single DTG traversal.

In some cases, this will be sufficient. Unfortunately, in most cases the consumption of a

resource will be spread out through multiple DTG traversals. Consider a Logistics problem

with several packages and only one truck. Let V denote the location of the truck, and let

{v1, v2, . . . vn} be the values V must move through to satisfy the preconditions for moving

around the packages. Furthermore let {r1, r2, . . . rn−1} be the fuel costs associated with

moving V through this set of values. Then the total fuel cost required is just the sum of the

{ri}. However, each DTG traversal only calculates one value of fuel consumption. Because

the traversals are required to be isolated from one another (i.e., we cannot use information

from the first traversal to modify the outcome of the second), the method described above

prunes states only if:

fuel(S) < max
i

ri

The reason information from the traversals must be kept isolated is that violating

this rule would require many more calls of the COMPUTE COSTS routine, and therefore

dramatically degrade the performance of the heuristic evaluator.
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Planning Domains

This Appendix describes several new domains that have been developed as part of this

research, including PDDL definitions. Additionally, informal descriptions are given of the

standard benchmark domains discussed in the document.

B.1 New Domains

B.1.1 Push-Block. This simple domain involves a set of blocks moving around on

a grid. The block locations are represented by propositions such as OCCUPIED(x, y). The

blocks can be pushed vertically or horizontally. The goal specifies a certain set of locations

that must be occupied by blocks.

The interesting feature of this domain is that the goals are often rival. The case often

occurs that the most direct way to achieve one goal requires moving a block away from

another goal. This is the situation illustrated in Figure 3.3. The PDDL code for this

domain is given in Figure 1.1. The problems described in Chapter 3 were generated by

choosing starting locations and goal locations at random for N blocks, where N is between

1 and 20.

B.1.2 T-Logistics. This is the problem described in Figure 4.1. There is a “T”

formation of locations. The single truck starts at the intersection of the T. The goal is

to deliver packages to both edges of the T. The truck begins with a single package, and a

second package is waiting at the base of the T. The truck requires fuel to move, and fuel

can only be obtained at the initial location.



B.1 NEW DOMAINS

(define (domain push-block)

(:requirements :strips :typing)

(:types xcoord ycoord)

(:predicates

(occupied ?x - xcoord ?y - ycoord)

(above ?ya - ycoord ?yb - ycoord)

(right ?xa - xcoord ?xb - xcoord)

)

(:action PUSH-LEFT

:parameters (?xa - xcoord ?xb - xcoord ?y - ycoord)

:precondition

(and

(right ?xa ?xb)

(occupied ?xa ?y)

(not (occupied ?xb ?y))

)

:effect

(and

(occupied ?xb ?y)

(not (occupied ?xa ?y))

)

)

(...)

)

Figure B.1. The Push-Block domain. Only the Push-Left action is shown; other
directions are exactly analogous. Predicates above and right encode adjacency re-
lationships.

B.1.3 Accumulate. This domain has a set of N resources. Initially, a total of 120

units is divided equally between the various resources. The agent may trade resources one

for one. There are a set of goal flags corresponding to each resource, which can be achieved

when a threshold T of that resource is accumulated (T is the same for all resources). Once

a goal flag is achieved, the corresponding resource can be traded away.

Because there are goals associated with each resource, and accumulating one type of

resource requires trading away another, the goals are rival. At the outset, the modified

h+ heuristic does not discriminate between states with greater or lesser quantities of any

resource. However, once one goal flag has been achieved, the corresponding resource is no

longer needed and h+ gives good goal estimates.
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B.1.4 Toll Chain. In this domain a car moves through a series of links in a chain.

To move across each link, a “toll” in the form of a resource cost is required. There are three

resources. The toll is one of each resource (more complex tolls can be imagined and may

have interesting implications, but for the current purposes simpler is better). The resources

may be produced only at the initial state of the chain. The goal is to get to the end of the

chain.

Two parameters of interest are the length of the chain, and the number of production

actions that are allowed. If an insufficient number of production actions are available, the

problem is unsolvable.

B.1.5 Shortcut Trap. This domain again considers a chain of states. A “goal-silo”

location exists at every other link in the chain. Each goal silo requires a certain number of

resources to satisfy, and the goal of the problem is to satisfy some goal silo. Resources can

be produced, but after producing a resource the agent cannot move any further (in other

words, it cannot produce some amount of a resource then realize the amount is insufficient

for the current goal silo and move on to the next). The total resource requirements for goal

silos decrease at a constant rate the further away they are from the initial state.

Therefore, in order to solve the domain efficiently, the agent must somehow know that

the early goal silos require too much resources and move on without stopping. The amount

of initial resource available is a parameter, as is the resource requirement for the first goal

silo.

B.1.6 Pressurized Blocks-World. This domain is identical to traditional Blocks-

World, with the addition of a single variable called “pressure” associated with each block.

There is a single action called PRESSURIZE which increments the pressure value for a

block. This operator is applicable when the block is ON-TABLE and CLEAR.

There are two varieties of this domain, referred to as “simple” and “hard”. In the

simple version, in order to STACK (A B), block A must have greater pressure than block

B. In the hard version, the opposite must be true. The latter version is called hard because

the planning system must somehow “know” in advance how high a stack of blocks will

eventually become in order to adequately pressurize the block at the base.
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B.2 Previous Domains

Note that Blocks-World and Logistics are discussed in Section 2.1. The following three

domains are discussed in the document, so we describe them in some detail here. These

domains are taken from IPC3 [14]. More recent planning competitions haven’t introduced

many new numeric planning domains, focusing instead on new aspects of the formalism.

B.2.1 DriverLog. This domain is a variant of Logistics. There are now drivers as

well as trucks and packages, and all three types may have goal destinations. A truck must

have a driver in order to move. There are also now two types of links between locations:

highways which can be driven but not walked across, and paths which can be walked but

not driven on.

B.2.2 Rovers. This domain seeks to model rover robots moving around on the

surface of Mars. There are a collection of data types that must be obtained - soil samples,

rock samples, and images. The data must be sent back to Earth for analysis through the

lander. A rover can only have one soil or rock sample in its store at a time. Locations

(called waypoints) can be visible from one another, and this visibility has implications for

taking images and transmitting data.

The main interest of the domain for this work is that there is a numeric version in which

each rover has a single energy variable (alternately fuel). Many of the actions performed by

a rover require varying amounts of energy. There is also a RECHARGE operator which is

applicable at certain locations. This operator is qualifies as pure translational (see Chapter

4).

B.2.3 Settlers. This rather complex domain involves gathering resources, and

constructing buildings and vehicles. It is also similar to Logistics in that it involves moving

resources around in vehicles, which can only traverse certain links. Locations have various

properties which determine what kinds of resources can be gathered there. Some resources

can be harvested from nature and others must be manufactured out of other resources.

There are a set of buildings that can be built, with various costs. Some buildings allow

resources to be manufactured.

Interestingly, many of the operators in this domain are pure translational as defined

in Chapter 3. One example is FELL-TIMBER which requires a cabin (discrete variable)
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and then allows any amount of timber to be produced. Another example is MAKE-IRON

which consumes ore and coal to produce iron, but has no propositional effects and so can

be applied as many times as the ore and coal supplies allow.
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(define

(domain easyTLog)

(:requirements :strips :fluents)

(:predicates

(link ?a ?b) (pos ?a) (package ?p) (truck ?t)

(at ?t ?a) (in ?p ?t) (package-at ?a) (fuel-dump ?a)

)

(:functions (fuel ?t))

(:action drive

:parameters (?t ?a ?b)

:precondition

(and (at ?t ?a) (link ?a ?b) (truck ?t)

(>= (fuel ?t) 1))

:effect

(and (at ?t ?b) (not (at ?t ?a)) (decrease (fuel ?t) 1))

)

(:action load-package

:parameters (?t ?p ?a)

:precondition

(and

(package ?p) (truck ?t) (at ?t ?a)

(at ?p ?a) (package-at ?a)

)

:effect

(and (in ?p ?t) (not (at ?p ?a)) (not (package-at ?a)))

)

(:action deliver-package

:parameters (?t ?p ?a)

:precondition

(and (package ?p) (truck ?t) (at ?t ?a) (in ?p ?t))

:effect

(and (at ?p ?a) (not (in ?p ?t)) (package-at ?a)))

(:action refuel

:parameters (?t ?a)

:precondition

(and (truck ?t) (fuel-dump ?a) (at ?t ?a))

:effect (and (increase (fuel ?t) 1) )

)

)

Figure B.2. The T-Logistics domain. The main difference between T-Logistics
and standard Logistics is that here the packages are identical, and there is also an
unlimited fuel variable.
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(define (domain vargame)

(:requirements :strips :fluents)

(:predicates

(achieved ?goal)

(numvar ?v)

(goalvar ?g ?v)

)

(:functions

(value ?var)

(goalthresh)

)

(:action trade

:parameters (?fr ?to)

:precondition

(and

(numvar ?fr)

(numvar ?to)

(> (value ?fr) 0)

)

:effect

(and

(increase (value ?to) 1)

(decrease (value ?fr) 1)

)

)

(:action achieveGoal

:parameters (?g ?v)

:precondition

(and

(goalvar ?g ?v)

(>= (value ?v) (goalthresh))

)

:effect (achieved ?g)

)

)

Figure B.3. The Accumulate domain. The goal threshold and the number of
variables are parameters that are modified to produce the different problems.
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(define

(domain tollChain)

(:requirements :strips :fluents)

(:predicates

(at ?col)

(good ?good)

(canbuild ?col)

(col ?colA)

(link ?colA ?colB)

)

(:constants resA resB resC)

(:functions

(quant ?good)

(numbuilds)

)

(:action move-horz

:parameters (?colA ?colB)

:precondition

(and

(at ?colA)

(link ?colA ?colB)

(>= (quant resA) 1)

(>= (quant resB) 1)

(>= (quant resC) 1)

)

:effect (and

(at ?colB)

(not (at ?colA))

(decrease (quant resA) 1)

(decrease (quant resB) 1)

(decrease (quant resC) 1)

)

)

(:action produce

:parameters (?good ?col)

:precondition

(and

(good ?good)

(> (numbuilds) 0)

(canbuild ?col)

(at ?col)

)

:effect

(and

(increase (quant ?good) 1)

(decrease (numBuilds) 1)

)

)

)

Figure B.4. The Toll Chain domain. The required values for each link are chosen
randomly between one and three. Production of resources can only occur at the
initial location.
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B.2 PREVIOUS DOMAINS

(define

(domain easyhTrap)

(:requirements :strips :fluents)

(:predicates

(at ?loc) (link ?locA ?locB) (goal-silo ?loc)

(goal-achieved) (location ?loc)

(resource ?res) (move-phase)

)

(:functions (quant ?res) (valreq ?res ?loc) (numbuilds))

(:constants resA resB resC resD resE)

(:action move

:parameters (?locA ?locB)

:precondition

(and (move-phase) (at ?locA) (link ?locA ?locB))

:effect

(and (at ?locB) (not (at ?locA)))

)

(:action manufacture

:parameters (?res)

:precondition (and (not (move-phase)) (> (numbuilds) 0))

:effect

(and

(not (move-phase))

(resource ?res)

(increase (quant ?res) 1)

(decrease (numbuilds) 1)

)

)

(:action sat-location

:parameters (?loc)

:precondition

(and

(goal-silo ?loc)

(at ?loc)

(>= (quant resA) (valreq resA ?loc))

(>= (quant resB) (valreq resB ?loc))

(>= (quant resC) (valreq resC ?loc))

(>= (quant resD) (valreq resD ?loc))

)

:effect (goal-achieved)

)

)

Figure B.5. The Shortcut Trap domain. The required values for the goal silos are
chosen randomly but must add up to a predetermined total value, which decreases
the further away one moves from the initial state. Goal silos occur at every other
link on the chain.
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(define (domain BLOCKS)

(:requirements :strips :fluents)

(:predicates (on ?x ?y) (ontable ?x) (clear ?x)

(handempty) (holding ?x))

(:functions (pressure ?block))

(:action pick-up

:parameters (?x)

:precondition (and (clear ?x)

(ontable ?x) (handempty))

:effect

(and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))

(:action put-down

:parameters (?x)

:precondition (holding ?x)

:effect

(and (not (holding ?x)) (clear ?x)

(handempty) (ontable ?x)))

(:action pressurize

:parameters (?x)

:precondition (ontable ?x)

:effect (and (ontable ?x) (increase (pressure ?x) 1))

)

(:action stack

:parameters (?x ?y)

:precondition

(and (holding ?x) (clear ?y)

(> (pressure ?x) (pressure ?y)))

:effect

(and (not (holding ?x)) (not (clear ?y))

(clear ?x) (handempty) (on ?x ?y) )

)

(:action unstack

:parameters (?x ?y)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect

(and (holding ?x)

(clear ?y)

(not (clear ?x))

(not (handempty))

(not (on ?x ?y)))))

Figure B.6. The Pressurized Blocks-World domain. This figure shows the simple
version. The complex version is obtained by flipping the direction of the inequality
in the STACK action.
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