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Abstract

This paper describes a technique for theprobabilistic
self-localization of a sensor network based on noisy
inter-sensor range data. Our method is based on a num-
ber of parallel instances of Markov Chain Monte Carlo
(MCMC). By combining estimates drawn from these
parallel chains, we build up a representation of the un-
derlying probability distribution function (PDF) for the
network pose. Our approach includes sensor data incre-
mentally in order to avoid local minima and is shown
to produce meaningful results efficiently. We return a
distribution over sensor locations rather than a single
maximum likelihood estimate. This can then be used
for subsequent exploration and validation.

Introduction
Advances in computing hardware are making the deploy-
ment of sensor networks practical for a variety of control and
information gathering purposes. The components of such
networks can include emplaced motion sensors, emplaced
cameras, robots, or even cell phones. For many sensor net-
work applications, self-calibration is seen as a critical issue
(Correal & Patwari 2001). The goal is that the network be-
comes capable of automatically configuring itself to its en-
vironment in order to carry out its assigned task.

In this paper we present an algorithm for inferring aprob-
abilistic representation of a sensor network pose. This prob-
lem of self-localization in sensor networks is recognized as
a key requirement for many network applications (Akyildiz
et al. 2002) and can be considered an important step in the
overall goal of developing self-adapting and self-configuring
networks.

Our method uses an iterative Markov Chain Monte Carlo
(MCMC) based algorithm to estimate a probability distribu-
tion function (PDF) for the network pose based on a mea-
surement model for the collected range data. At each itera-
tion, range data from those sensors best localized are incor-
porated into the algorithm. The final result of our algorithm
is a particle representation of the PDF describing the posi-
tion of each sensor. This stands in contrast to most previ-
ous self-localization work, which returns a single maximum
likelihood estimation for the location of each sensor.
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By determining the PDF, our method indicates the de-
gree of certainty by which each sensor has been localized.
This can be useful when dealing with the non-Gaussian and
multi-modal distributions that can arise when only range
data is available. The estimate of localization certainty can
be used by a self-configuring system to determine how ad-
ditional resources should be used in order to improve local-
ization accuracy;i.e. through the use of actuators, mobile
components, or the additional deployment of sensors. Even
if adaptation is not the goal, the certainty information can
aid higher level applications relying on the metric localiza-
tion data. For example, a tracking application might take
into account the certainty of each sensor’s position when
attempting to reconcile conflicting sensor data regarding a
target location.

In addition, by providing a probabilistic estimate of sen-
sor locations, our technique yields information that could
be utilized in an effort to recover a more complete repre-
sentation of the environment. For example, there are tech-
niques for inferring the physical topology of a sensor net-
work (Marinakis, Dudek, & Fleet 2005). This topology in-
formation identifies physical inter-sensor connectivity from
the point of view of an agent navigating the environment
(as opposed to a description of the network’s wireless com-
munication connectivity.) Our probabilistic self-localization
technique could be used to complement a topology inference
algorithm. By considering both the metric and connectivity
information of the surrounding environment, further infor-
mation regarding obstructions and motion corridors could
be inferred. For example, two spatially proximal nodes that
were not topologically adjacent would suggest a barrier at a
particular location, perhaps an interior wall or a river (inan
outdoor deployment).

In this work we assume the existence of a powerful net-
work component that is capable of running a computation-
ally sophisticated algorithm. It has been well established
that the Gibbs and MCMC algorithms can be computed us-
ing distributed computational frameworks (Rosenthal 2000).
Therefore, in this paper we restrict our attention to the under-
lying inference and algorithmic issues related to the geomet-
ric constraint problem and for future work leave the task of
distributing the algorithm using established methods. Note
that the assumption of a hierarchical arrangement of network
components based on computational power holds true for



several real world sensor networks, especially in control and
data collection systems (Mainwaringet al. 2002) (Wanget
al. 2003). For example, a typical network might contain a
number of resource-limited sensors that pass messages us-
ing a wireless multi-hop protocol to a more powerful single-
board “gateway” computer which communicates to the out-
side world using a wireless Ethernet connection. In such an
example, the gateway computer could periodically collect
inter-sensor range data and update its network pose estimate
using a version of our algorithm.

Related Work
The majority of self-localization efforts to date have focused
on recovering the relative locations of the sensors in situa-
tions where GPS locators are too expensive, not available, or
otherwise impractical (Capkun, Hamdi, & Hubaux 2001).
Localization efforts are usually based on methods for esti-
mating the distances between sensors. Common techniques
include the use of received communication signal strength
in radio networks (Bulusu, Heidemann, & Estrin 2000), or
time-of-arrival ranging using ultrasound (Niculescu & Nath
2003). These techniques typically have limited accuracy and
localization algorithms must be able to handle some degree
of noise in the range data (Mooreet al. 2004). Many ap-
proaches assume that several of the sensors in the network
have a known location and act as beacons or anchor nodes
for their neighbors (Patwariet al. 2003).

While much of the research conducted on sensor networks
is based on developing distributed, computationally efficient
algorithms appropriate for networks of low-powered sensor
platforms, recently there has been a shift towards more com-
plex approaches incorporating advanced probabilistic tech-
niques and graphical models (Ihleret al. 2005) (Paskin,
Guestrin, & McFadden 2005). While practical implemen-
tation is a concern, many efforts employ computationally
sophisticated techniques in the processing of distributedob-
servations. This is especially true for sensor networks made
up of vision-based sensors (Rahimi, Dunagan, & Darrell
2004) (Javedet al. 2003).

Many self-calibration problems in sensor networks have
some relation to the simultaneous localization and map-
ping (SLAM) problem in mobile robotics. Generally, the
solutions for SLAM and related problems employ a com-
plex probabilistic framework and are computationally in-
tensive. Examples of sensor network applications employ-
ing SLAM-like techniques include the work of Reklietiset.
al (Rekleitis, Meger, & Dudek 2005) in their use of an
extended Kalman filter for the self-calibration of a hybrid
robot/camera-network system, and Coates, who employs a
particle filter for distributed state estimation (Coates 2004).

Ihler et al. (Ihler et al. 2005) also consider the proba-
bilistic sensor network self-localization problem, although
employing a different approach than in our work. Conceptu-
ally, their method constructs a graphical model that captures
the conditional independence of the various range estimates
and then solves the graphical model using a stochastic ver-
sion of belief propagation. Although the computational bur-
den of this approach is distributed among the various net-
work components, there is a heavy communication cost for

this distribution in terms of overall bandwidth and message
throughput. Additionally, the computational responsibility
of each individual sensor is significant and could be chal-
lenging to implement without a floating point processor and
only limited amounts of RAM. In short, it is unclear whether
this technique is practical for certain sensor networks, such
as those containing low-powered, resource-limited sensors.

Our self-localization technique is capable of extracting
usable localization information from poor quality sensor
data. we believe that there are network configurations in
which the low bandwidth requirement, scalability, and com-
putational efficiency of this technique will outweigh those
of existing solutions.

Problem Description
The problem we are trying to solve is to determine a PDF for
the location of each sensori in a network, givenN sensors
(including a number of beacons of known position), inter-
sensor range dataR, and a measurement modelL which
characterizes the error in the distance estimates. The range
dataR consists of a (possibly incomplete) matrix whererij

represents the distance estimate between nodei and j as
measured by nodei.

Using the measurement model and the available inter-
sensor range data, we can then construct a model that returns
the likelihoodp(dij |R,L) for any distancedij between sen-
sorsi andj as determined by sensori. In the case of a range
data estimate taken by sensori, this is simplyp(dij |rij , L).
However, in the case of missing measurements due to lim-
ited communication range, obstacles in the environment, or
various other problems, the likelihood can be replaced with
a distribution based on prior assumptions. For example, if
communication signal strength is used for range estimates,
the absence of a signal suggests a distance greater than some
minimum value. In this case, a uniform distribution over a
range of distance values might be appropriate.

For any network poseX, wherexi gives the position of
sensori, we can evaluate its likelihood given our range data
and measurement model:

p(X|R,L) =

N
∏

i=1

N
∏

j=1

p(dij |R,L)

wheredij is the Euclidean distance between sensorsi andj
as determined by their locationsxi andxj .

The problem is to provide a usable estimate of the PDF
over all possible posesX. In traditional sensor-network self-
localization, algorithms generally return an estimate of the
maximum likelihood pose of each sensor. However, noise in
the distance measurements dictates that any specific location
estimate is actually a sample of a PDF, and the certainty of
the measurement differs from node to node.

To build a PDF for the pose of a network we must search
over a very high dimensional space for areas of high prob-
ability. In the case of accurate range data, the problem be-
comes that of embedding a weighted graph, which has been
shown to be NP-hard (Saxe 1979). There can be multiple
(or infinite) realizations explaining a specific set of edge
lengths. In the version of the problem with non-accurate



edge data, these realizations correspond to different arrange-
ments of the nodes that adequately explain the measure-
ment data but result in substantially different pose estimates.
Given perfect sensor fusion these cases should occur less of-
ten if there are large quantities of range data collected from a
single region. However, in practice, alternate realizations of
local groupings of sensors complicate the problem and lead
to local minima.

Iterative MCMC
Our approach is to employ MCMC to build up an estimated
PDF of the network pose. We run parallel instances of the
Markov Chain, each instance, ormacro particle, represent-
ing a single network pose estimate. We combine the esti-
mates from each instance of the Markov Chain in a descrip-
tion of a PDF for the pose of the network.

We use an incremental approach of incorporating sensor
information in order to avoid local minima as best as possi-
ble. The algorithm maintains a sub-group of nodes whose
range data are used for localization. Sensors are incremen-
tally added to the localizing sub-group based on the variance
of their position estimates as maintained by each particle or
instance of the Markov Chain.

For ease of implementation, we assume the existence of a
number of beacon nodes at known locations. However, it is
possible to compute the relative sensor positions using our
technique without the use of beacon nodes by specifying a
preferred reference frame. For example, without loss of gen-
erality, one sensor can be forced to the origin, another to the
horizontal axis, and a third to the positive vertical direction.

The full description of the algorithm is as follows:

1. Initialize Algorithm: Initialize a localizing nodes sub-
groupLocNodes to contain the beacon nodes of known
position. Initialize a non-localizing nodes sub-group
NonLocNodes to include all the non-beacon nodes. Ini-
tialize M particles each maintaining a single estimate
Xm = {xm1 . . . xmN} for each sensor in the network.

2. Update Particles Using Localized Sensors: For each par-
ticle’s estimate of the network poseXm update the posi-
tion estimate using MCMC with only the range data col-
lected from those sensors inLocNodes. Each particle
initializes the Markov Chain with its previous belief of
the network pose.

3. Add to Localizing Sensors: For each sensori, compute
the varianceVi of its position estimates{x1i . . . xMi} as
maintained by each particle. Add thek sensors with the
lowestV values toLocNodes

4. Iterate Until Done: Iterate over steps 2 to 3 until all sen-
sors have been inserted intoLocNodes. The resultingM
network position samples are now used to represent a PDF
describing the positions of the sensors.

At each iteration the algorithm maintains a reasonable
representation of the PDF given the sensor information in-
corporated up to that point. The algorithm depends on the
manner of drawing representative pose samples, and on the
manner of analyzing the variance of those samples in order
to assess their accuracy.

In order to draw representative samples of the sensor lo-
cations, we maintain a separate Markov Chain for each par-
ticle. We construct the Markov Chain using the Metropolis
algorithm, a popular method of MCMC sampling. The num-
ber of particles used during the algorithm effects its ability to
maintain a sufficient representation of the spatial probability
distribution function for each sensor. Additional samplesof
the PDF can be drawn from the Markov Chain maintained
by any single particle, however, these samples could share
a common bias. Multiple particles, each randomly initial-
ized, are necessary in order to represent the more complex
distributions.

Given the current state in the Markov ChainX, specified
by the combined location of each sensor in our network, we
propose a symmetric transition to a new stateX ′ by altering
up toQ ≤ N of the sensor positions (in this work we set the
value ofQ to N ). The new poseX ′ is a stochastic function
based on the current poseX. A small amount of normally
distributed noise is added to a subset of sensors. This new
pose is then accepted or rejected based on the acceptance
probability:

α = min

(

1,
p(X ′|R,L)

p(X|R,L)

)

whereR is the observed range data andL is the measure-
ment model.

Although technically a new Markov Chain is employed
during each iteration of the algorithm, the burn-in time is
minimal since each particle maintains its position estimate
from the last iteration and uses it to initialize the chain. The
additional range data added during each iteration re-shapes
the target distribution; in most cases this extra information
should help to further concentrate the PDF. The old local-
ization estimate should be close enough to the new peak or
peaks in the probability landscape that the MCMC should
quickly approach the new steady-state distribution and af-
terwards provide meaningful localization samples. In this
work, we run the Markov-Chain for a fixed number of pro-
posals during each iteration of the algorithm.

A variance metric is used to quantify the certainty of a
sensor’s position based on the variance of theM position
samples provided by each of the particles. The average Eu-
clidean distance of each position estimate from the mean of
the distance estimates is used as a metric.

Our approach can be considered an enhanced Gibbs sam-
pler. The distinguishing differences are the iterative inclu-
sion of data, the parallel communicating instantiations of
the Markov Chain, and the less restrictive proposals. All
these enhancements are designed to help the process con-
verge quickly while avoiding local minima in the domain
of this particular geometric constraint problem. In the next
section we will compare our approach to a standard Gibbs
sampler and further investigate the performance of the algo-
rithm.

Results from Simulation
To evaluate the algorithm, a simulation was constructed
based on a 2-D grid model of the environment. Sensors and
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Figure 1: Example of localization results from a network of
40 sensors using 4 beacons and 50 particles. The squares
indicate the beacon nodes and circles mark the true location
of the sensors. a) The initial localization estimates using
beacon data only. b) Intermediate results incorporating data
from the sensors indicated by the arrows. c) The final esti-
mates incorporating all sensor data.
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Figure 2: Plot of error as a function of Markov Chain pro-
posals averaged over 20 trials on networks of 4 beacons and
40 randomly distributed sensors. A sensing range of 30 units
was used in this comparison. The Random Order MCMC
algorithm is the same as the Iterative MCMC algorithm, but
includes sensor data in random order.

beacons were distributed on a 100x100 grid. Four beacon
nodes were placed near the centre of the grid, one in each
quadrant, and the remaining sensors were distributed ran-
domly within the area. Each sensor collected distance esti-
mates to all neighboring sensors within some finite sensing
range. Inter-sensor range data were drawn from a normal
distribution with a mean equal to the true distance and a
standard deviation equal to the square-root of the true dis-
tance.

The algorithm was provided with the beacon locations,
the beacon range data, the un-localized sensor range data,
and an accurate measurement module. The resulting sensor
localization estimates were assessed based on the mean Eu-
clidean distance between the particle estimates and the true
sensor location:

SensorErri =

∑M

m=1
d(xmi, x

′

i)

M

wherex′

i is the true location of the sensor andd(a, b) returns
the Euclidean distance betweena andb. Figure 1 shows an
example of the localization algorithm on a 40 sensor net-
work.

Assessment of Algorithm Performance
Our method compares favorably to other sampling based ap-
proaches (Figure 2). It both converges faster than a standard
Gibbs sampler and returns a more accurate result. Perfor-
mance of the algorithm depends on incorporating the sensor
data in a manner that bootstraps each new Markov Chain
with likely pose values. For example, consider the extreme
case of including the data of an isolated sensor for which
there exists no connecting range estimate to any member of
the localizing group. Clearly this information is not useful
in refining the position of this node relative the the localizing
group. Additionally, this type of sensor data can cause the
algorithm to become trapped at a local minimum since iso-
lated groups of network components can develop that have
settled into a high likelihood arrangement of arbitrary orien-
tation and offset. Ultimately, it can be difficult for the algo-
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Figure 3: Results from 200 trials of the algorithm on net-
works of 4 beacons and 40 randomly distributed sensors us-
ing an unlimited sensing range. a) Plot of final error out-
put from the algorithm after including all sensor data as a
function of the initial error calculated based on beacon data
alone. b) Histogram of final sensor error across all networks
(8000 sensors represented). c) Histogram comparing the er-
ror for the most poorly localized sensor in each network for
the initial estimate using only beacon data and the final re-
sult. Vertical and horizontal axis for a) and the horizontal
axis for b), and c) displays error in terms of distance units
(simulation grid is of size 100x100).
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Figure 4: Average network error over 20 trials for different
sized networks (confined to a 100x100 grid) with 4 beacon
nodes. Error is displayed in terms of distance units and error
bars show one standard deviation.
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Figure 5: Final maximum sensor error averaged over 20 net-
works as a function of the total number of MCMC proposals
divided by the number of sensors in the network.

rithm to reconcile such a group with the absolute positions
of other sensors as dictated by the beacon nodes.

With a large sensing range, the algorithm was consistently
able to utilize the noisy range data collected from the un-
localized sensors to improve the final network pose estimate
over that of the initial estimate using beacon data alone (Fig-
ure 3(a)). For example, in 200 trials of the algorithm on net-
works of 4 beacons and 40 randomly distributed beacons,
the final average Euclidean sensor error was reduced to a
0.31 proportion of the initial results obtained using beacon
data only. The final average sensor error was2.34 and the
average particle variance was2.83. Additionally, there was
a high level of consistency in the performance of the algo-
rithm (Figure 3(b)). The final Euclidean error of the most
poorly located sensor in each network was less than5 units
on a100x100 grid for 98 per cent of the networks (Figure
3(c)). Furthermore, since a separate location estimate is pro-
vided for each particle used, poorly localized sensors should
be identifiable based on the variance of their position esti-
mates.

The performance of the algorithm improves as the density
of sensors in the region increases (Figure 4). The higher
sensor density results in multiple range estimates to any one
sensor which are combined to reduce bias. Additionally, in
our model, range estimates are of higher quality at shorter
range.



Performance appeared to level off when the total number
of proposals used in the MCMC increased beyond a certain
threshold. This threshold appears to be proportional to the
number of sensors in the network over the trials we have
evaluated (Figure 5). If this empirical observation holds un-
der broader circumstances, then the rate of change in the
variance between the macro-particles could be used as the
terminating condition of the algorithm, and the computa-
tional time required would be:

T ∝ (MN)CMCMC

whereN is the number of sensors,M is the number of par-
ticles, andCMCMC is the constant computing power neces-
sary to evaluate a single MCMC proposal.

In the worst case,CMCMC is proportional toQN , which
corresponds to each sensor having a valid range estimate to
every other sensor. Recall thatQ specifies the maximum
number of sensor locations that can be shifted in a new pro-
posal, (in standard GibbsQ is always one). However, under
realistic conditions, each sensor will have some range be-
yond which distance estimates to other sensors are impos-
sible or meaningless. Therefore, under ranged conditions
a single MCMC proposal evaluation will be proportional to
some range constant based on the ranging method employed,
the environment, and the density of sensors:

T ∝ KMQN

whereK is the range constant.

Conclusion and Future Work
In this paper we have demonstrated and verified, through nu-
merical simulations, an algorithm for the self-localization of
a sensor network based on noisy inter-sensor range data. Un-
like most previous related work, our method returns a repre-
sentation of the PDF describing the position of each sensor
in the network. This information indicates both probable lo-
cations for the sensor and the degree of certainty by which it
has been localized.

Future work will look at improving the practicality of the
algorithm. We would like to explore run time optimization
techniques, such as dividing larger networks into multiple
regions, evaluating each region separately and then merging
the final result. Also of interest is determining when a net-
work has been localized to some degree based on an analy-
sis of the final pose samples returned by the algorithm. This
could allow the algorithm to terminate when a network has
been adequately localized, or could be used to flag localiza-
tion problems.
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