Learning Network Topology from Simple Sensor Data

Dimitri Marinakis, Philippe Gigere, and Gregory Dudek

Centre for Intelligent Machines, McGill University,
3480 University St, Montreal, Quebec, Canada H3A 2A7
{dmari nak, phil g, dudek}@i mntgill.ca
http://www. cimnegill.ca

Abstract. In this paper, we present an approach for recovering a topologagal m
of the environment using only detection events from a deployed seetgork.
Unlike other solutions to this problem, our technique operatesnaestamp free
observational daté:e. no timing information is exploited by our algorithm except
the ordering. We first give a theoretical analysis of this version of tbblpm,
and then we show that by considering a sliding window over the obsersation
the problem can be re-formulated as a version of set-covering. Véemrévo
heuristics based on this set-covering formulation and evaluate them witbraum
ical simulations. The experiments demonstrate that promising resultsoaio- b
tained using a greedy algorithm.
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1 Introduction

In this paper we consider the problem of learningtibgology of a network of sensors
through the exploitation of motion in the environment. Wease that an individual
sensor is capable of detecting the passage of an agent khitsdigcal region, but is un-
able to generate a reliable signature. Our approach usestit@ned observational data
returned from our network to infer the topological relagbips between the sensors.

We will illustrate the problem with a simplified example. Big 1(a) depicts a sen-
sor network distributed within an indoor environment. Letassume that the network
has been deployed for some purpose, such as surveillartteequires knowledge of
the inter-node connectivity in order to fulfill its functioBuring some initial calibration
period the network collects observations of agents passire@ach sensor (Figure 1(b)).
The problem we are trying to solve is how to use these colliecbservations to con-
struct the topological description of the network shown igufe 1(c). This type of
network might arise if wireless cameras were deployed in &kplace environment.

In this work, we assume not only that the agents moving thahghenvironment
are indistinguishable, but that there are no temporal diu@scan be used to aid the
inference process. In other words, the detection eventsoarectly ordered but are not
time-stamped. Therefore, when our inference algorithm is employed, the{stamp
data can be discarded or simply not collected in the firsteplacorder to exploit timing
information in the observational sequence some model aftagetion in the environ-
ment needs to be either constructed based on prior assumaptiolearned from the
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Fig. 1. An example of a sensor network which we wish to calibrate. a) The origithddoc de-
ployment. b) An Example of agent motion exploited by the calibration pgasThe desired
topological connectivity map of the network.

data. Our technique, however, allows the correct edgeigridph to be inferred while
avoiding the prior domain knowledge or algorithmic comations involved in con-

structing an adequately accurate motion model. By emptpgisliding window over

the observations, we will show that the problem can be rexfitated as a version of
the well understood set-covering problem and accuratdtsasan be obtained without
timing information.

The ability of a surveillance or monitoring system to auttiozly determine the
connectivity parameters describing its environment iguifer a number of reasons.
Although the topology information can be manually enteradrdy installation, more
detailed parameters such as the relative connectivitpgtineoetween links are difficult
to determine, and a change in the environment or networkdu@gjuire re-calibration.
Once calibrated, the connectivity information could aidcomventional target track-
ing and additional monitoring activities. For example, bganstructing trajectories, a
vehicle monitoring network distributed about a city couklfhmake decisions about
road improvements which might best alleviate congestiomddition, the topological
information could be combined with relative localizati@thniques [1] [2] [3] [4] to
recover a more complete representation of the environment.

2 Background

Although the topological mapping problem has been well @qad in mobile robotics
[5] [6] [7] [8], most sensor network related investigatidmave been more recent [9]
[10] [11] [12]. The outcome is generally a graph where vesicepresent embedded
sensors in the region and edges indicate navigability.

Ellis, Markis, and Black [9] approached the topology infeze problem in the con-
text of camera-based sensing. Their technique exploitpdeah correlations in obser-
vations of agents’ movements. They outlined an approachhiaiwthey first identified
entrance and exit points in camera fields of view to generategh from video data.
They then used a thresholding technique to look for peakisartemporal distribution
of travel times between entrance-exit pairs; a clear peglgesting that the cameras



Learning Network Topology 3

are linked. This approach requires a large number of obSens but does not rely on
object correlation across specific cameras. Thus, the metho be used to efficiently
produce an approximate network connectivity graph.

Marinakis and Dudek [11] [12] have recently presented at&wido the topological
inference problem that is based on a stochastic versioneoExpectation Maximiza-
tion algorithm. Their approach uses only detection eventa the deployed sensors and
is based on reconstructing plausible agents trajectdRiesults presented from simula-
tions and experimental data suggest that their techniquobupes accurate results under
a variety of conditions and compares well to other apprasche

When the observation are information-poor, topology iniesethrough trajectory
reconstruction has much in common with the data associatioiplem in multi-object
tracking and similar statistical techniques are employed. example, in [13], event
detections alone were used for the tracking of multipleatrgising Markov Chain
Monte Carlo (MCMC). Similarly, [14] approached a traffic nitmming problem using
limited sensor data observations through a stochasticlgagrgpproach.

A key observation regarding all of the approaches menticatsale is that their
performance will suffer if temporal information is removiedm the observations. Ellis,
Markis, and Black rely explicitly on this temporal data, Vetthe approaches employing
probabilistic frameworks [11] [13] [14] exploit the delayformation to aid in the data
association problem.

In the remainder of this paper, we consider the problem ofisglthe topology
inference problem, relying only on the ordering of the tigninformation in the obser-
vational data. We discuss theoretical aspects of thisaeii the problem and present
an algorithm for its solution. It is our hope that conceptssgnted here can be incorpo-
rated into more general techniques for topology infereacesed in their own right.

3 Problem Definition

We formulate the problem of learning the network topologyttesinference of a di-
rected grapiG = (V, E), where the vertice¥” = v; represent the locations where
sensors are deployed, and the edfes ¢; ; represent the connectivity between them;
an edgee; ; denotes a path from the position of senspto the position of sensar;.
The sources of motion in the sensor network are modeled as samberN of agents
moving asynchronously through the graph. Each agent gierseaa observation every
time it visits a vertex. This corresponds to an agent passéay a particular sensor
which then detects the presence of motion in its region.

The input to the problem is an ordered list of observations {o; }, each of which
is identifiably generated by one of the sensaesieacho; € [1,V]. The goal is to find
the correct underlying grapf explaining this observational sequence.
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4 Algorithm Formulation

4.1 Smallest Graph is Correct Answer

The key idea behind our approach is to find thallest' graph that successfully ex-
plains the observed data. Leaving aside for the moment tivalémplementation de-
tails, let us consider this idea in more depth by proposiegettistence of an algorithm
A that takes as an input the assumed number of agéhis the environment and the
observational sequence and returns as an output the sngaied consistent with the
observations.

Our algorithmA considers each of the possible trajectories that could kenthy
theseN’ agents given the observational sequence and then seledtajettory set that
requires the smallest number of inter-vertex traversaig. digorithm then returns the
graph populated only with edges that correspond to the-irgegtex traversals required
by this chosen trajectory set.

The concept that the simplest solution explaining the dagrabably the correct
solution has been used successfully in a different versfaime topology inference
problem [12]. The principle, known as Occam’s razor, stdtegresented with a choice
between indifferent alternatives, then one ought to séfhecsimplest one.” The concept
is a common theme in computer science and underlies a nurhappmaches in Al;
e.g. hypothesis selection in decision trees and Bayesian filrsqil5]. We will show in
the next section that under certain assumptions, we care phat an algorithm trying
to find the smallest graph will return the correct answer.

4.2 Correctness of the Smallest Graph Assumption

In this section we present a proof that the smallest gi@mionsistent with the obser-
vations is the correct solutiafd,. given the following assumptions:

1. There are an infinite number of observatiafs,

2. The motion of each of the agents is random.

3. The true number of agents in the systéms fixed and bounded by the number
assumed by the algorithiy i.e N <= N'.

4. The transit time between nodes is un-bounded.

5. There are no self-referential connections in the truplyr@,; i.e. no agent may
trigger two observations by one passage through the rediarsingle sensor.

4.3 Proof of Smallest Graph

First, we will prove that there exist no graph smaller tlignthat can explain the ob-
served data, given the above stated assumptions. This & lapshowing that it is
possible to have sequences generated-pyhat cannot be explained by this smaller
graphG~.. In other words(’, is not consistent with the observations, and by definition
cannot be a solution.

! The graph with the smallest number of edges.
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Fig. 2. Example of removing edge AB from grajgh., (shown partially on top), to create graph

G, (shown partially below).
| |
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Fig. 3.a) The correct grapti’. b) an incorrect graph

Let us consider a grap/, created by removing a single edge frafp, as in figure
2. In this case, we remove the eddgd3 from graphG.. Let us now create a valid
observational sub-sequene= ABABABAB...AB which was created in truth by
a single agent traversing back and forth on the edd@e The only way agents in a
graphG’, could generate this observational sequence would be if saméber of them
were ‘stationed’ at nod&’, and some number ‘stationed’ at nodeand alternatively
one agent fromX traversed the edge td, and then one fron¥ traversed the edge
to B. However, if the length|O| of the observational sub-sequen@es larger than
the maximum possible number of agen¥s, then there will not be enough agents in
G, to generat®. Therefore, the edgd B must be present in any consistent solution.
Applying this to all the edges i/, we see that a solution that can explain all the
transitions must have at least all the edge& in Consequently, the smallest consistent
graph is the correct graph..

Note that this analysis requires that there be both an iafinitnber of observations
and random motion on the part of the agents in order to allah sery rare observa-
tional sequences to exist. However, this concept holds hedth formality to very large
sequences of observations. It becomes less likely for engmapuccessfully explain an
observation sequence while missing portions of the reglhlges the number of obser-
vations increases.

4.4 Impact of Estimated Number N < N’ of Agent on SolutionG

In the following sections, we will show the impact of the nusnlvV of agent used to
find a solution. More precisely, we will show that if an algbm overestimates the
numberN of agents in the system, it will still give the correct answ&r, but not if it
underestimates it.

Lemma 1 Overestimating the number N of agents while looking for the smallest graph
results in the correct solution.
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To prove this lemma, we will show that a path generated by glesiagent can
be spliced between two agents using a ‘tag team’ method, and yet willsstiield a
the correct grapldZ.. That way, all superflouous agents used in the algorithm ean b
‘hidden’ by splicing a valid path repeatedly.

Let us consider a true sequence of vertex traverSajsnerated by a single agent.
First, without loss of generality, select any vertey,;.. € S as a splicing node. We
can now pair any twairtual agents together to generate this traversal sequérine
the following way. Let one of the virtual agent be initialliaioned atv,p;ce. When
the other virtual agent enters this vertex it will exchanigerole with the first agent,
as in a game of tag team wrestling. The other agent will noweldéhe vertexspice,
generating a sub-sequencetntil it re-entersvy,;.., where again they will switch
roles.

As an example, let us consider the vertex sequéhee ABCDADCDABCBA
generated by a true agent @i, of Figure 3(a.). We choose;,;i.c = C. Now the
vertex sequencé assumed to come from a single agent looks like the following:
ABcdadC D ABcba where capital letters are used for the p&thof agent one, and
small bold letters are used for the pdthof agent two. The individual virtual sequences
P, = ABCDAB and P, = cdadcba are both valid sequences in the correct graph
G..

This analysis shows that we can assume the existence of menésahan the num-
ber that actually generated the observation sequence,tidlmt@duce paths that are
consistent with the correct graph.

Lemma 2 Underestimating the number of agents can result in an incorrect solution.

To prove this lemma, we will simply show that there exist®ast one observational
sequenc® such that underestimating the number of agents createseesfallution. Let
us consider again the graph depicted in figure 3(a.) and lebnsider the motion of
two agents in this graph. Agent one will follow the pattBCDADC, and agent two
will follow the pathdb. By combining the two paths, it is possible to get the seqeenc
of observationsO;=ABd CDAbDC. If we assumed the existence of only one agent,
then the smallest graph that can explain the transit@nss displayed in figure 3(b.)
and is incorrect.

Using the above stated two lemma, we arrive at the followtrgptem (which holds
true given the earlier stated assumptions):

Theorem 1 If the number of assumed agents N/ in the algorithm is equal or greater
than the true number of agents N that generated the observations, then the smallest
graph consistent with the observations will be the correct graph G.. If the number of
assumed agent is smaller than the true number, then there are no guarantees that the
smallest graph consistent with the observations will be the correct graph G...

In the next section, we draw on this theoretical analysis ttivate a pragmatic
approach for topology inference.
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Fig. 4. Example of generating candidate edges for each sliding window positi@window is
moved to the right from a) to d).

5 The Sliding Window Approach

We now present an algorithm for estimating the smallestiplesgraph given an obser-
vation sequence. Our approach is based on the following EEmm

Lemma 3 In any given continuous sequence of Ng > N observations, at least (Ng —
N) transitions between observations correspond to edgesin the correct graph G..

For example, letNg = 4 and N = 3 and the recorded observational sequence be
ABCD. The possible transitions between nodes4f AC, AD, BC, BD andCD.
Since we have one more observation than the number of adéWis;- N = 1), it
means that at least one agent must have generated more thahtbe observations in
this sequence, and therefore at least one of the transiisted above must be validg.
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present inG.. Note that the number of potential transitions generated avsequence
of Ng observations is:
(Ns —1)Ng
2

Our technique is to employ a sliding window of si2g = N + 1 to consider in
turn small continuous subsequences of the entire obsemsdiquencé®. Each of these
subsequences gives rise to a listéf = (N?+ V) /2 candidate edgek;, one of which
must be present in the true solutiGhi. Once the window has moved over the complete
observation sequeneg, there will beK = |O| — Ng lists generated. Figure 4 shows an
example of generating candidate edges using the slidingamirapproach. Motivated
by Theorem 1, our approach is find the smallest graph thatxqaaie at least one edge
in each in each of these candidate lidts; Lo, ... L.

This problem can be shown to be equivalent to the set-cayginblem which
is NP-complete, however, several heuristics can be emglayestimate an optimal
solution. We will consider a two heuristic approaches inrthgt sections.

Np =

5.1 A Greedy Approach

One method of obtaining a solution to the sliding window peat posed above, is to
adopt a greedy approach. This is a standard heuristic ofted with good results for
set-covering problems. In our domain, the greedy algoritrould work as follows:

1. Begin by marking all candidate lisfs, Lo, ...L x unexplained and initialize a list
of edgesF to be empty.

2. Find the edge that is present in the greatest number of currently unengthi
candidate lists.

3. Remove from consideration those candidate lists whiciato edge: by marking
them explained, and addto E.

4. Repeat steps 2 to 3 until all lists are marked explaineturRehe graph corre-
sponding to our list of edgeB as the final solution.

5.2 A Statistical Approach

A statistical approach could also be used to determine thedoedges inG.. The
number of times a given edge has been seen in any candidatedis be tallied up.
Those edges that occur with a frequency greater than somshibid7” could then be
selected.

Let us consider a suitable value for the thresHbldf G. corresponded to a fully
connected undirected graph, the average tally of each edgklwe:

KNy

H= ==
|E|

where N is the number of candidate edges generagdwindow, K is the number
of candidate lists (windows), and| is the number of potential edges in the graph.
ReplacingK with |O| — Ng, Nr with (N? 4+ N)/2, and|E| with V(V — 1), we arrive

at:
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Fig. 5. Example of graphs created using the Delaunay triangulation techniqie:reyde graph
with 12 edges, b) 10 node graph with 20 edges
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Fig. 6. Mean Hamming Error obtained from the two techniques for various ntentifeobser-
vations averaged averaged over 50 randomly produced grapigr {fars show one standard
deviation). Results obtained from 10 node graphs with: a) 12 edgesdi)&

(IO = Ns)(Ns —1)Ns
ViV -1)
Since we expedf . to contain less edges than its fully connected counterpatt,
1 can be expected to be a suitable threshold.

6 Experiments

6.1 Simulator

We have examined the sliding window approach with a numbexperiments con-
ducted in simulation. We have constructed a simulation ttwe takes as input a graph
and the number of agents in the environment and outputsaf bétservations generated
by randomly walking the agents through the environment. Alber of experiments
were run using this simulator on randomly generated plamemected graphs (Figure
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Fig. 7. Results obtained by differing the assumed number of agents for godysie 10 nodes

and 14 edges. a.) Hamming Error as a function of the assumed nainbgents for the greedy
algorithm. Results obtained with 10000 observations generated fronmésaayed averaged over
10 graphs. (Error bars show one standard deviation). b.) MeantitagrError as a function of

observations for an accurate assumption of 4 agents and an oveatestifib agents. Results
averaged over 50 graphs.

5). The graphs were produced by selecting a connected syihgf the Delaunay tri-
angulation of a set of randomly distributed points. For eagberiment, the results were
obtained by considering the Hamming error between the indérderred graph.

6.2 Results

The greedy approach was capable of producing accuratdgesuhoderately sized
graphs with a reasonable number of agents, given an adeguatser of observations.
Although not as accurate on average as the greedy apprbadiatistical approach was
also capable of producing a solution near the true answgur&ié compares the accu-
racy of theses two approaches over 50 randomly producethgEd 0 nodes and two
different edge densities. Note that the accuracy of bothagghes tended to increase
as the number of observations increased. It also appeaaedehser graphs required
larger numbers of observations to obtain the same accueae)than that obtained in
sparser graphs. Additionally, it was observed that thedyrepproach obtained a better
Hamming error on average for less dense graphs. Howeven thiegroportion of the
true graph structure recovered was considered, this effastlessened. For example,
for the experiment shown in figure 6, the Hamming error didithy the true number
of edges in the graph was approximately double for dens@hgrahile the Hamming
error alone was approximately triple.

Unsurprisingly, the accuracy of the statistical approaets wery sensitive to the
value of the threshold selected. Experiments not shownveeifeed that the value fdr'
selected above was generally suitable for graphs of vadeunsities and sizes, although
often better results could be obtained for any specific gtapd through careful tuning.
This approach requires relatively little computationdbefand might have value as a
bootstrapping technique for more complex approaches ssitheaone presented in
[11].
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Fig. 8. Performance of algorithm as a function of the true number of agenthdagreedy algo-
rithm where the assumed number of agents is set to the correct nuResellis averaged over
10 graphs of size 10 nodes and 14 edges; (error bars show odarstaeviation). a.) Hamming
Error obtained with 10000 observations. b.) Number of observatiemsired to obtain a result
with a Hamming error of 2 or less.

As predicted by theorem 1, the effect of over-estimatingrtimber of agents in
the environment was indeed less detrimental than that acféraestimating the number
of agents. Figure 7 shows the result of assuming various awsntf agents in one
situation for the greedy approach. As the over-estimatioreiases, the required number
of observations needed to solve the problem also increases.

The problem of topology inference becomes more difficult asmagents are added
to the system. Figure 8 shows the correspondingly poordomeance obtained with
the greedy approach on the same set of graphs with obsersagenerated from dif-
ferent numbers of agents. Even if the correct number of ageriknown, we suspect
that less information is available as the number of agemt®ases. As the size of the
sliding window increases, so does the number of candidagjesedenerated by each
sliding window. Therefore, the ratio of known correct toonect edges decreases, and
hence, more observations are needed to obtain the sameierebr.

7 Conclusion

In this paper, we have described a way of learningttpelogy of a sensor network,
using only event ordering information. We presented a #geal analysis of the prob-
lem, and re-formulated it as a set-covering problem. Twohodt were presented to
solve this problem, one based on statistics, and one basadsheing window tech-
nigue. We explored the effectiveness of both approachesdirnumerical simulations
for various test cases. Our work demonstrates the promisesadipproach for topology
inference.

In future work, we hope to extend some of our theoretical ltesMve would be
interested in furthering our understanding regarding tinagsict of the number of agents
in the system since this value tends to dilute the infornmagiained per each observa-
tion. This effort would entail deriving a relationship fdret information gained in the
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context of the sliding window approach. Additionally, it uld be of interest to find an

analytical relationship between the number of observatieeded to solve a problem
and the corresponding density of agents in the systenthe ratio of agents to edges
in the true graph. On a different level, we would like to apihig findings presented in
this paper to the version of the problem where timing dataglable and compare it

to other established methods.

Acknowledgments. We would like to acknowledge Ketan Dalal for his helpful arsid
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References

1. Sawvides, A., Han, C., Strivastava, M.: Dynamic fine-grainedlipation in ad-hoc networks
of sensors. In: 7th annual international conference on Mobile ctingpand networking,
Rome, Italy (2001) 166-179

2. Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributdiark localization with noisy
range measurements. In: Proc. of the Second ACM Conferencentnedtied Networked
Sensor Systems (SenSys '04), Baltimore (2004)

3. Marinakis, D., Dudek, G.: Probabilistic self-localization for sensatworks. In: AAAI
National Conference on Atrtificial Intelligence, Boston, Massachus2ii3g)

4. lhler, A.T., Fisher Ill, J.W., Moses, R.L., Willsky, A.S.: Noammetric belief propagation
for self-calibration in sensor networks. |IEEE Journal of Selected#\ie Communication
(2005)

5. Shatkay, H., Kaelbling, L.P.: Learning topological maps with weaklloclometric infor-
mation. In: IJCAI97, San Mateo, CA (1997) 920-929

6. Choset, H., Nagatani, K.: Topological simultaneous localization argpmg (SLAM): to-
ward exact localization without explicit localization. IEEE Transactions obdgcs and
Automation17(2) (2001) 125 - 137

7. Remolina, E., Kuipers, B.: Towards a general theory of topolbgieas. Artif. Intell.1521)
(2004) 47-104

8. Ranganathan, A., Dellaert, F.: Data driven MCMC for appearéiased topological map-
ping. In: Proceedings of Robotics: Science and Systems, Cambti&gfe(2005)

9. Makris, D., Ellis, T., Black, J.: Bridging the gaps between camdrasEEE Conference on
Computer Vision and Pattern Recognition CVPR 2004, Washington DC 2004

10. Rekleitis, 1., Meger, D., Dudek, G.: Simultaneous planning localimaoad mapping in a
camera sensor network. Robotics and Autonomous Systems (RA®glI@pecial issue on
Planning and Uncertainty in Robotics (2006)

11. Marinakis, D., Dudek, G.: A practical algorithm for network topglagference. In: IEEE
Intl. Conf. on Robotics and Automation, Orlando, Florida (2006)

12. Marinakis, D., Dudek, G.: Topological mapping through distribupessive sensors. In:
International Joint Conference on Artificial Intelligence, Hyderalbadia (2007)

13. Songhwai Oh, Phoebus Chen, M.M., Sastry, S.: Instrumentirdess sensor networks for
real-time surveillance. In: Proc. of the International Conference @ooRcs and Automa-
tion. (2006)

14. Pasula, H., Russell, S., Ostland, M., Ritov, Y.: Tracking manyotdjeith many sensors. In:
1JCAI-99, Stockholm (1999)

15. Michell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)



