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Abstract. In this paper, we present an approach for recovering a topological map
of the environment using only detection events from a deployed sensor network.
Unlike other solutions to this problem, our technique operates ontimestamp free
observational data;i.e. no timing information is exploited by our algorithm except
the ordering. We first give a theoretical analysis of this version of the problem,
and then we show that by considering a sliding window over the observations,
the problem can be re-formulated as a version of set-covering. We present two
heuristics based on this set-covering formulation and evaluate them with numer-
ical simulations. The experiments demonstrate that promising results can be ob-
tained using a greedy algorithm.
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1 Introduction

In this paper we consider the problem of learning thetopology of a network of sensors
through the exploitation of motion in the environment. We assume that an individual
sensor is capable of detecting the passage of an agent through its local region, but is un-
able to generate a reliable signature. Our approach uses thecombined observational data
returned from our network to infer the topological relationships between the sensors.

We will illustrate the problem with a simplified example. Figure 1(a) depicts a sen-
sor network distributed within an indoor environment. Let us assume that the network
has been deployed for some purpose, such as surveillance, and requires knowledge of
the inter-node connectivity in order to fulfill its function. During some initial calibration
period the network collects observations of agents passingby each sensor (Figure 1(b)).
The problem we are trying to solve is how to use these collected observations to con-
struct the topological description of the network shown in Figure 1(c). This type of
network might arise if wireless cameras were deployed in a workplace environment.

In this work, we assume not only that the agents moving thoughthe environment
are indistinguishable, but that there are no temporal cluesthat can be used to aid the
inference process. In other words, the detection events arecorrectly ordered but are not
time-stamped. Therefore, when our inference algorithm is employed, the time-stamp
data can be discarded or simply not collected in the first place. In order to exploit timing
information in the observational sequence some model of agent motion in the environ-
ment needs to be either constructed based on prior assumptions, or learned from the
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Fig. 1. An example of a sensor network which we wish to calibrate. a) The originalad-hoc de-
ployment. b) An Example of agent motion exploited by the calibration process. c) The desired
topological connectivity map of the network.

data. Our technique, however, allows the correct edges in the graph to be inferred while
avoiding the prior domain knowledge or algorithmic complications involved in con-
structing an adequately accurate motion model. By employing a sliding window over
the observations, we will show that the problem can be re-formulated as a version of
the well understood set-covering problem and accurate results can be obtained without
timing information.

The ability of a surveillance or monitoring system to automatically determine the
connectivity parameters describing its environment is useful for a number of reasons.
Although the topology information can be manually entered during installation, more
detailed parameters such as the relative connectivity strength between links are difficult
to determine, and a change in the environment or network would require re-calibration.
Once calibrated, the connectivity information could aid inconventional target track-
ing and additional monitoring activities. For example, by reconstructing trajectories, a
vehicle monitoring network distributed about a city could help make decisions about
road improvements which might best alleviate congestion. In addition, the topological
information could be combined with relative localization techniques [1] [2] [3] [4] to
recover a more complete representation of the environment.

2 Background

Although the topological mapping problem has been well explored in mobile robotics
[5] [6] [7] [8], most sensor network related investigationshave been more recent [9]
[10] [11] [12]. The outcome is generally a graph where vertices represent embedded
sensors in the region and edges indicate navigability.

Ellis, Markis, and Black [9] approached the topology inference problem in the con-
text of camera-based sensing. Their technique exploits temporal correlations in obser-
vations of agents’ movements. They outlined an approach in which they first identified
entrance and exit points in camera fields of view to generate agraph from video data.
They then used a thresholding technique to look for peaks in the temporal distribution
of travel times between entrance-exit pairs; a clear peak suggesting that the cameras
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are linked. This approach requires a large number of observations, but does not rely on
object correlation across specific cameras. Thus, the method can be used to efficiently
produce an approximate network connectivity graph.

Marinakis and Dudek [11] [12] have recently presented a solution to the topological
inference problem that is based on a stochastic version of the Expectation Maximiza-
tion algorithm. Their approach uses only detection events from the deployed sensors and
is based on reconstructing plausible agents trajectories.Results presented from simula-
tions and experimental data suggest that their technique produces accurate results under
a variety of conditions and compares well to other approaches.

When the observation are information-poor, topology inference through trajectory
reconstruction has much in common with the data associationproblem in multi-object
tracking and similar statistical techniques are employed.For example, in [13], event
detections alone were used for the tracking of multiple targets using Markov Chain
Monte Carlo (MCMC). Similarly, [14] approached a traffic monitoring problem using
limited sensor data observations through a stochastic sampling approach.

A key observation regarding all of the approaches mentionedabove is that their
performance will suffer if temporal information is removedfrom the observations. Ellis,
Markis, and Black rely explicitly on this temporal data, while the approaches employing
probabilistic frameworks [11] [13] [14] exploit the delay information to aid in the data
association problem.

In the remainder of this paper, we consider the problem of solving the topology
inference problem, relying only on the ordering of the timing information in the obser-
vational data. We discuss theoretical aspects of this version of the problem and present
an algorithm for its solution. It is our hope that concepts presented here can be incorpo-
rated into more general techniques for topology inference,or used in their own right.

3 Problem Definition

We formulate the problem of learning the network topology asthe inference of a di-
rected graphG = (V,E), where the verticesV = vi represent the locations where
sensors are deployed, and the edgesE = ei,j represent the connectivity between them;
an edgeei,j denotes a path from the position of sensorvi to the position of sensorvj .
The sources of motion in the sensor network are modeled as some numberN of agents
moving asynchronously through the graph. Each agent generates an observation every
time it visits a vertex. This corresponds to an agent passingnear a particular sensor
which then detects the presence of motion in its region.

The input to the problem is an ordered list of observationsO = {ot}, each of which
is identifiably generated by one of the sensors;i.e. eachot ∈ [1, V ]. The goal is to find
the correct underlying graphG explaining this observational sequence.
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4 Algorithm Formulation

4.1 Smallest Graph is Correct Answer

The key idea behind our approach is to find thesmallest1 graph that successfully ex-
plains the observed data. Leaving aside for the moment the actual implementation de-
tails, let us consider this idea in more depth by proposing the existence of an algorithm
A that takes as an input the assumed number of agentsN ′ in the environment and the
observational sequence and returns as an output the smallest graph consistent with the
observations.

Our algorithmA considers each of the possible trajectories that could be taken by
theseN ′ agents given the observational sequence and then selects the trajectory set that
requires the smallest number of inter-vertex traversals. The algorithm then returns the
graph populated only with edges that correspond to the inter-vertex traversals required
by this chosen trajectory set.

The concept that the simplest solution explaining the data is probably the correct
solution has been used successfully in a different version of the topology inference
problem [12]. The principle, known as Occam’s razor, states, “if presented with a choice
between indifferent alternatives, then one ought to selectthe simplest one.” The concept
is a common theme in computer science and underlies a number of approaches in AI;
e.g. hypothesis selection in decision trees and Bayesian classifiers [15]. We will show in
the next section that under certain assumptions, we can prove that an algorithm trying
to find the smallest graph will return the correct answer.

4.2 Correctness of the Smallest Graph Assumption

In this section we present a proof that the smallest graphG consistent with the obser-
vations is the correct solutionGc given the following assumptions:

1. There are an infinite number of observations,O.
2. The motion of each of the agents is random.
3. The true number of agents in the systemN is fixed and bounded by the number

assumed by the algorithmA; i.e. N <= N ′.
4. The transit time between nodes is un-bounded.
5. There are no self-referential connections in the true graph Gc; i.e. no agent may

trigger two observations by one passage through the region of a single sensor.

4.3 Proof of Smallest Graph

First, we will prove that there exist no graph smaller thanGc that can explain the ob-
served data, given the above stated assumptions. This is done by showing that it is
possible to have sequences generated byGc that cannot be explained by this smaller
graphG′

c. In other words,G′

c is not consistent with the observations, and by definition
cannot be a solution.

1 The graph with the smallest number of edges.
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Fig. 2. Example of removing edge AB from graphGc, (shown partially on top), to create graph
G

′

c
, (shown partially below).

Fig. 3.a) The correct graphGc b) an incorrect graph

Let us consider a graphG′

c created by removing a single edge fromGc, as in figure
2. In this case, we remove the edgeAB from graphGc. Let us now create a valid
observational sub-sequenceO = ABABABAB...AB which was created in truth by
a single agent traversing back and forth on the edgeAB. The only way agents in a
graphG′

c could generate this observational sequence would be if somenumber of them
were ‘stationed’ at nodeX, and some number ‘stationed’ at nodeZ, and alternatively
one agent fromX traversed the edge toA, and then one fromZ traversed the edge
to B. However, if the length,|O| of the observational sub-sequenceO is larger than
the maximum possible number of agentsN ′, then there will not be enough agents in
G′

c to generateO. Therefore, the edgeAB must be present in any consistent solution.
Applying this to all the edges inGc, we see that a solution that can explain all the
transitions must have at least all the edges inGc. Consequently, the smallest consistent
graph is the correct graphGc.

Note that this analysis requires that there be both an infinite number of observations
and random motion on the part of the agents in order to allow such very rare observa-
tional sequences to exist. However, this concept holds withless formality to very large
sequences of observations. It becomes less likely for a graph to successfully explain an
observation sequence while missing portions of the real graph as the number of obser-
vations increases.

4.4 Impact of Estimated NumberN ≤ N
′ of Agent on SolutionG

In the following sections, we will show the impact of the number N of agent used to
find a solution. More precisely, we will show that if an algorithm overestimates the
numberN of agents in the system, it will still give the correct answerGc, but not if it
underestimates it.

Lemma 1 Overestimating the number N of agents while looking for the smallest graph
results in the correct solution.
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To prove this lemma, we will show that a path generated by a single agent can
be spliced between two agents using a ‘tag team’ method, and yet will still a yield a
the correct graphGc. That way, all superflouous agents used in the algorithm can be
‘hidden’ by splicing a valid path repeatedly.

Let us consider a true sequence of vertex traversalsS generated by a single agent.
First, without loss of generality, select any vertexvsplice ∈ S as a splicing node. We
can now pair any twovirtual agents together to generate this traversal sequenceS in
the following way. Let one of the virtual agent be initially stationed atvsplice. When
the other virtual agent enters this vertex it will exchange its role with the first agent,
as in a game of tag team wrestling. The other agent will now leave the vertexvsplice,
generating a sub-sequence ofS until it re-entersvsplice, where again they will switch
roles.

As an example, let us consider the vertex sequenceS = ABCDADCDABCBA
generated by a true agent inGc of Figure 3(a.). We choosevsplice = C. Now the
vertex sequenceS assumed to come from a single agent looks like the following:
ABcdadCDABcba where capital letters are used for the pathP1 of agent one, and
small bold letters are used for the pathP2 of agent two. The individual virtual sequences
P1 = ABCDAB andP2 = cdadcba are both valid sequences in the correct graph
Gc.

This analysis shows that we can assume the existence of more agents than the num-
ber that actually generated the observation sequence, and still produce paths that are
consistent with the correct graph.

Lemma 2 Underestimating the number of agents can result in an incorrect solution.

To prove this lemma, we will simply show that there exists at least one observational
sequenceO such that underestimating the number of agents creates a false solution. Let
us consider again the graph depicted in figure 3(a.) and let usconsider the motion of
two agents in this graph. Agent one will follow the pathABCDADC , and agent two
will follow the pathdb. By combining the two paths, it is possible to get the sequence
of observations:O1=ABdCDAbDC . If we assumed the existence of only one agent,
then the smallest graph that can explain the transitionsO1 is displayed in figure 3(b.)
and is incorrect.

Using the above stated two lemma, we arrive at the following theorem (which holds
true given the earlier stated assumptions):

Theorem 1 If the number of assumed agents N ′ in the algorithm is equal or greater
than the true number of agents N that generated the observations, then the smallest
graph consistent with the observations will be the correct graph Gc. If the number of
assumed agent is smaller than the true number, then there are no guarantees that the
smallest graph consistent with the observations will be the correct graph Gc.

In the next section, we draw on this theoretical analysis to motivate a pragmatic
approach for topology inference.
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Fig. 4. Example of generating candidate edges for each sliding window position. The window is
moved to the right from a) to d).

5 The Sliding Window Approach

We now present an algorithm for estimating the smallest possible graph given an obser-
vation sequence. Our approach is based on the following lemma:

Lemma 3 In any given continuous sequence of NS > N observations, at least (NS −
N) transitions between observations correspond to edges in the correct graph Gc.

For example, letNS = 4 andN = 3 and the recorded observational sequence be
ABCD. The possible transitions between nodes areAB, AC, AD, BC, BD andCD.
Since we have one more observation than the number of agents,(NS − N = 1), it
means that at least one agent must have generated more than one of the observations in
this sequence, and therefore at least one of the transitionslisted above must be valid;i.e.
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present inGc. Note that the number of potential transitions generated with a sequence
of NS observations is:

NT =
(NS − 1)NS

2

Our technique is to employ a sliding window of sizeNS = N + 1 to consider in
turn small continuous subsequences of the entire observation sequenceO. Each of these
subsequences gives rise to a list ofNT = (N2+N)/2 candidate edgesLi, one of which
must be present in the true solutionGc. Once the window has moved over the complete
observation sequenceO, there will beK = |O|−NS lists generated. Figure 4 shows an
example of generating candidate edges using the sliding window approach. Motivated
by Theorem 1, our approach is find the smallest graph that can explain at least one edge
in each in each of these candidate lists:L1, L2, ...LK .

This problem can be shown to be equivalent to the set-covering problem which
is NP-complete, however, several heuristics can be employed to estimate an optimal
solution. We will consider a two heuristic approaches in thenext sections.

5.1 A Greedy Approach

One method of obtaining a solution to the sliding window problem posed above, is to
adopt a greedy approach. This is a standard heuristic often used with good results for
set-covering problems. In our domain, the greedy algorithmwould work as follows:

1. Begin by marking all candidate listsL1, L2, ...LK unexplained and initialize a list
of edgesE to be empty.

2. Find the edgee that is present in the greatest number of currently unexplained
candidate lists.

3. Remove from consideration those candidate lists which contain edgee by marking
them explained, and adde to E.

4. Repeat steps 2 to 3 until all lists are marked explained. Return the graph corre-
sponding to our list of edgesE as the final solution.

5.2 A Statistical Approach

A statistical approach could also be used to determine the correct edges inGc. The
number of times a given edge has been seen in any candidate list could be tallied up.
Those edges that occur with a frequency greater than some thresholdT could then be
selected.

Let us consider a suitable value for the thresholdT . If Gc corresponded to a fully
connected undirected graph, the average tally of each edge would be:

µ =
KNT

|E|

whereNT is the number of candidate edges generatedper window, K is the number
of candidate lists (windows), and|E| is the number of potential edges in the graph.
ReplacingK with |O| −NS , NT with (N2 + N)/2, and|E| with V (V − 1), we arrive
at:
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(a) (b)

Fig. 5. Example of graphs created using the Delaunay triangulation technique: a)10 node graph
with 12 edges, b) 10 node graph with 20 edges
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Fig. 6. Mean Hamming Error obtained from the two techniques for various numbers of obser-
vations averaged averaged over 50 randomly produced graphs. (Error bars show one standard
deviation). Results obtained from 10 node graphs with: a) 12 edges b) 20edges

µ =
(|O| − NS)(NS − 1)NS

V (V − 1)

Since we expectGc to contain less edges than its fully connected counterpart,T =
µ can be expected to be a suitable threshold.

6 Experiments

6.1 Simulator

We have examined the sliding window approach with a number ofexperiments con-
ducted in simulation. We have constructed a simulation toolthat takes as input a graph
and the number of agents in the environment and outputs a listof observations generated
by randomly walking the agents through the environment. A number of experiments
were run using this simulator on randomly generated planar,connected graphs (Figure
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Fig. 7. Results obtained by differing the assumed number of agents for graphsof size 10 nodes
and 14 edges. a.) Hamming Error as a function of the assumed numberof agents for the greedy
algorithm. Results obtained with 10000 observations generated from 4 agents and averaged over
10 graphs. (Error bars show one standard deviation). b.) Mean Hamming Error as a function of
observations for an accurate assumption of 4 agents and an over-estimate of 5 agents. Results
averaged over 50 graphs.

5). The graphs were produced by selecting a connected sub-graph of the Delaunay tri-
angulation of a set of randomly distributed points. For eachexperiment, the results were
obtained by considering the Hamming error between the true and inferred graph.

6.2 Results

The greedy approach was capable of producing accurate results in moderately sized
graphs with a reasonable number of agents, given an adequatenumber of observations.
Although not as accurate on average as the greedy approach, the statistical approach was
also capable of producing a solution near the true answer. Figure 6 compares the accu-
racy of theses two approaches over 50 randomly produced graphs of 10 nodes and two
different edge densities. Note that the accuracy of both approaches tended to increase
as the number of observations increased. It also appeared that denser graphs required
larger numbers of observations to obtain the same accuracy level than that obtained in
sparser graphs. Additionally, it was observed that the greedy approach obtained a better
Hamming error on average for less dense graphs. However, when theproportion of the
true graph structure recovered was considered, this effectwas lessened. For example,
for the experiment shown in figure 6, the Hamming error divided by the true number
of edges in the graph was approximately double for denser graph, while the Hamming
error alone was approximately triple.

Unsurprisingly, the accuracy of the statistical approach was very sensitive to the
value of the threshold selected. Experiments not shown hereverified that the value forT
selected above was generally suitable for graphs of variousdensities and sizes, although
often better results could be obtained for any specific graphtype through careful tuning.
This approach requires relatively little computational effort and might have value as a
bootstrapping technique for more complex approaches such as the one presented in
[11].
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Fig. 8. Performance of algorithm as a function of the true number of agents forthe greedy algo-
rithm where the assumed number of agents is set to the correct number.Results averaged over
10 graphs of size 10 nodes and 14 edges; (error bars show one standard deviation). a.) Hamming
Error obtained with 10000 observations. b.) Number of observations required to obtain a result
with a Hamming error of 2 or less.

As predicted by theorem 1, the effect of over-estimating thenumber of agents in
the environment was indeed less detrimental than that of under-estimating the number
of agents. Figure 7 shows the result of assuming various numbers of agents in one
situation for the greedy approach. As the over-estimation increases, the required number
of observations needed to solve the problem also increases.

The problem of topology inference becomes more difficult as more agents are added
to the system. Figure 8 shows the correspondingly poorer performance obtained with
the greedy approach on the same set of graphs with observations generated from dif-
ferent numbers of agents. Even if the correct number of agents is known, we suspect
that less information is available as the number of agents increases. As the size of the
sliding window increases, so does the number of candidate edges generated by each
sliding window. Therefore, the ratio of known correct to incorrect edges decreases, and
hence, more observations are needed to obtain the same levelof error.

7 Conclusion

In this paper, we have described a way of learning thetopology of a sensor network,
using only event ordering information. We presented a theoretical analysis of the prob-
lem, and re-formulated it as a set-covering problem. Two methods were presented to
solve this problem, one based on statistics, and one based ona sliding window tech-
nique. We explored the effectiveness of both approaches through numerical simulations
for various test cases. Our work demonstrates the promise ofthis approach for topology
inference.

In future work, we hope to extend some of our theoretical results. We would be
interested in furthering our understanding regarding the impact of the number of agents
in the system since this value tends to dilute the information gained per each observa-
tion. This effort would entail deriving a relationship for the information gained in the
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context of the sliding window approach. Additionally, it would be of interest to find an
analytical relationship between the number of observations needed to solve a problem
and the corresponding density of agents in the system;i.e. the ratio of agents to edges
in the true graph. On a different level, we would like to applythe findings presented in
this paper to the version of the problem where timing data is available and compare it
to other established methods.
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