Topology Inference for a Vision-Based Sensor Network

Dimitri Marinakis, Gregory Dudek
Centre for Intelligent Machines, McGill University
3480 University St, Montreal, Quebec, Canada H3A 2A7
{dmarinak,dudek } @cim.mcgill.ca

Abstract

In this paper we describe a technique to infer the topol-
ogy and connectivity information of a network of cameras
based on observed motion in the environment. While the
technique can use labels from reliable cameras systems, the
algorithm is powerful enough to function using ambigu-
ous tracking data. The method requires no prior knowl-
edge of the relative locations of the cameras and oper-
ates under very weak environmental assumptions. Our ap-
proach stochastically samples plausible agent trajectories
based on a delay model that allows for transitions to and
from sources and sinks in the environment. The technique
demonstrates considerable robustness both to sensor er-
ror and non-trivial patterns of agent motion. The output
of the method is a Markov model describing the behavior
of agents in the system and the underlying traffic patterns.
The concept is demonstrated with simulation data and ver-
ified with experiments conducted on a six camera sensor
network.

1. Introduction

In this paper we consider the problem of learning the
connectivity information of a network of cameras with non-
overlapping fields of view based on non-discriminating ob-
servations. Our purpose is to reconstruct the topology of
the network. By ‘topology’ we are referring to the physical
inter-sensor connectivity from the point of view of an agent
navigating the environment (Figure 1).

In our approach, we attempt to recover correspondences
between cameras by exploiting motion present in the envi-
ronment. The method is based on reconstructing agent tra-
jectories that best explain the observational data and using
these trajectories to determine likely network parameters.
We assume that the sensors are un-discriminating and report
only that they have detected something but do not provide a
description or signature. More detailed sensor information
could be probabilistically incorporated into the algorithm

OY\'v"”

(@) (b)

Figure 1. Example of a sensor network layout
(a) and corresponding topology (b).

making the problem easier.

We demonstrate our approach experimentally with a six
camera network. The system automatically calibrates itself
based solely on motion detection. It is able to infer a con-
nectivity graph of the environment and inter-vertex delay
times both with a high degree of accuracy.

The ability of a surveillance or monitoring system to au-
tomatically determine the connectivity parameters describ-
ing its environment is useful for a number of reasons. Al-
though the topology information can be manually entered
during installation, more detailed parameters such as inter-
camera delay distributions are difficult to determine, and a
change in the environment or network would require re-
calibration. Once calibrated, the connectivity information
could aid in conventional target tracking and additional
monitoring activities. For example, by reconstructing tra-
jectories, a vehicle monitoring network distributed about a
city could help make decisions about road improvements
which might best alleviate congestion. In addition, the topo-
logical information could be combined with relative local-
ization techniques [11, 8] to recover a more complete rep-
resentation of the environment.

2 Background

Motion in the environment can be exploited to calibrate a
network of cameras. Most efforts using this technique have
focused on sensor self-localization. Stein [13], for exam-
ple, considered recovering a rough planar alignment of the
location and orientation of the individual cameras. Using a
least-median-of-squares technique, he determined the cor-
respondence between moving objects in pairs of cameras.
His approach, however, required some overlap in the field
of view of the cameras.

Similarly, Fisher [4] looked at estimating the rela-
tive orientation and location of cameras but with non-
overlapping fields of view by exploiting the motion of dis-
tant moving objects such as stars. The objects were assumed
to have well-behaved linear or parabolic trajectories, and it
was necessary that the observed objects could be uniquely
identified across separate cameras.

In a more recent effort, Rahimi, Dunagan, and Darrell
[10] described a simultaneous calibration and tracking al-
gorithm that uses a velocity extrapolation technique to self-
localize a network of non-overlapping cameras based on the
motion of a single target. Their work avoided the difficult
problem of associating observations with different targets
by assuming only one source of motion.

Connectivity information or network topology can be re-
covered by exploiting motion in the environment. In con-
trast to this paper, current efforts either address a slightly
different problem than the one we are interested in [5] or
they employ considerably different methods [6, 3].

In order to track multiple agents across disjoint fields of
view, Javed et al. [5] first calibrated the connectivity in-
formation of their surveillance system using observational
data. To learn the probability of correspondence (transition
probabilities) and inter-camera travel times (delay distribu-
tions), they assumed a training period in which the data
association between observations and agents was known.
Given this observation ownership information, they em-
ployed a Parzen window technique that looks for correspon-
dences in agent velocity, inter-camera travel time, and the
location of agent exit and entry in the fields of view of the
camera.

Focusing on camera network calibration, Ellis, Makris
and Black [6, 3] presented a technique for topology recov-
ery based on event detection only. In their approach, they
first identified entrance and exit points in camera fields of
view and then attempted to find correspondences between
these entrances and exits based on video data. Their tech-
nique relies on exploiting temporal correlation in observa-
tions of agent movements. The method employs a thresh-
olding technique that looks for peaks in the temporal distri-
bution of travel times between entrance-exit pairs; a clear
peak suggesting that a correspondence exists. The tech-

nique gave promising results on experiments carried out on
a six camera network. Although it requires a large number
of observations, the method does not rely on object corre-
lation across specific cameras. Thus, the approach can be
used to efficiently produce an approximate network con-
nectivity graph but when the network dynamics are com-
plex or the traffic distribution exhibits substantial variation,
it would appear the technique will have difficulty.

In previous work [7], we presented and verified,
through numerical simulations, a network topology infer-
ence method based on constructing plausible agent tra-
jectories. The technique employed a stochastic Expecta-
tion Maximization (EM) algorithm, an established statis-
tical method for parameter estimation of incomplete data
models [2] [15] that has been applied to many fields in-
cluding multi-target tracking [9] and mapping in robotics
[1, 12].

Although we verified the MCEM approach through nu-
merical simulations, there were some difficulties in success-
fully applying the technique to real world situations. First,
the fundamental algorithm made unrealistic assumptions re-
garding agent motion. Second, some significant systems-
level infrastructure was needed in order to conduct experi-
ments on a hardware.

In this paper, we present a new practical algorithm for
topology inference that is robust to observational noise and
non-trivial agent motion. This is achieved with a new delay
model that allows motion to sources and sinks in the envi-
ronment. We demonstrate the success of the approach both
with simulations and with an experiment conducted on a six
camera-based sensor network.

3 Problem Description

We formalize the problem of topology inference in terms
of the inference of a weighted directed graph which cap-
tures the connectivity relationships between the positions
of the sensors’ nodes. The motion of multiple agents mov-
ing asynchronously through a sensor network region can be
modeled as a semi-Markov process. The network of sen-
sors is described as a directed graph G = (V, E), where
the vertices V' = wv; represent the locations where sensors
are deployed, and the edges E = e; ; represent the con-
nectivity between them; an edge e; ; denotes a path from
the position of sensor v; to the position of sensor v;. The
motion of each of the N agents in this graph can be de-
scribed in terms of their transition probability across each
of the edges A,, = {a;;}, as well as a temporal distribution
indicating the duration of each transition D,,. The obser-
vations O = {o;} are a list of events detected at arbitrary
times from the various vertices of the graph, which indicate
the likely presence of one of the IV agents at that position at
that time.

The goal of our work is to estimate the parameters de-
scribing this semi-Markov process. We assume that the
agents’ probabilistic behavior is homogeneous; i.e. the mo-
tion of all agents are described by the same A and D. In
addition, we must make some assumptions about the distri-
bution of the inter-sensor (i.e. inter-vertex) transition times.
We make the assumption that the delays in moving between
one sensor and another can be described by a windowed
normal distribution. We will show later, however, that we
can relax this assumption in some situations.

Given the observations O and the number of agents N,
the problem is to estimate the network connectivity param-
eters A and D, subsequently referred to as 6.

4 Topology Inference Algorithm

In this section we will briefly describe the fundamental
topology inference algorithm that takes non-discriminating
observations and returns inferred network parameters. The
technique assumes knowledge of the number of agents in
the environment and attempts to augment the given obser-
vations with an additional data association that links each
observation to an individual agent. (See Marinakis, Dudek,
and Fleet [7].)

4.1 Monte Carlo Expectation Maximization

We use the EM algorithm [2]. to solve the connectivity
problem by simultaneously converging toward both the cor-
rect observation data correspondences and the correct net-
work parameters. We iterate over the following two steps:

1. The E-Step: which calculates the expected log likeli-
hood of the complete data given the current parameter
guess:

Q0,00 = E[logp(o, Z|9)\0,9<i—1>}

where O is the vector of binary observations collected
by each sensor, and Z represents the hidden variable
that determines the data correspondence between the
observations and agents moving throughout the sys-
tem.

2. The M-Step: which then updates our current parame-
ter guess with a value that maximizes the expected log
likelihood:

0 = argmax Q(@7 G(i_l))
]
We employ MCEM [15] to calculate the E-Step because

of the intractability of summing over the high dimensional
data correspondences. We approximate Q(6,6~1) by

drawing M samples of an ownership vector (™) = {I™}
which uniquely assigns the agent i to the observation o; in
sample m:

60 = argmax

Z log p(L™,0|0)

where L") is drawn using the previously estimated §(—1)
according to a Markov Chain Monte Carlo sampling tech-
nique, explained in the next section.

At every iteration we obtain M samples of the ownership
vector L, which are then used to re-estimate the connectiv-
ity parameter 6 (the M-Step). We continue to iterate over
the E-Step and the M-Step until we obtain a final estimate
of 6. Atevery iteration of the algorithm the likelihood of the
ownership vector increases, and the process is terminated
when subsequent iterations result in very small changes to
0.

In general, we make the assumption that the inter-vertex
delays are normally distributed and determine the maximum
likelihood mean and variance for each of the inter-vertex
distributions along with transition likelihoods. In a subse-
quent section, we will describe how we occasionally reject
outlying low likelihood delay data and omit it from the pa-
rameter update stage.

4.2 Markov Chain Monte Carlo Sampling

We use Markov Chain Monte Carlo sampling to assign
each of the observations to one of the agents, thereby break-
ing the multi-agent problem into multiple versions of a
single-agent problem. In the single agent case, the observa-
tions O specify a single trajectory through the graph which
can be used to obtain a maximum likelihood estimate for 6.
Therefore, we look for a data association that breaks O into
multiple single agent trajectories. We express this data as-
sociation as an ownership vector L that assigns each of the
observations to a particular agent.

Given some guess of the connectivity parameter 6, we
can obtain a likely data association L using the Metropolis
algorithm; an established method of MCMC sampling [14].
From our current state in the Markov Chain specified by our
current observation assignment L, we propose a symmetric
transition to a new state by reassigning a randomly selected
observation to a new agent selected uniformly at random.
This new data association L’ is then accepted or rejected
based on the following acceptance probability:

!
S (1M>

p(L,0]0)
However, the acceptance probability « can be expressed
in a simple form since the trajectories described by L’ dif-
fer from those in L by only a few edge transitions. Consider

L as a collection of ordered non-intersecting sets containing
the observations assigned to each agent L = (T3 UT,U. ..U
Tn), T, = {w;i} where w;j, refers to the edge traversal
between vertices j and k. The probability of a single agent
trajectory is then the product of all of its edge transitions.
Therefore a proposed change that reassigns the observation
o, from agent y to agent x must remove an edge traversal
w from T, and add it to T’;. Only the change in the trajec-
tories of these two agents need be considered since all other
transitions remain unchanged.

In between each complete sample of the ownership vec-
tor L, each of the observations are tested for a potential
transition to an alternative agent assignment. This testing
is accomplished in random order and should provide a large
enough spacing between realizations of the Markov Chain
that we can assume some degree of independence in be-
tween samples. The resulting chain is ergodic and reversible
and should thus produce samples representative of the true
probability distribution.

S Delay Model

In this section we present a re-working of the fundamen-
tal topology inference algorithm that allows for the tran-
sition of agents to and from sources and sinks in the en-
vironment. This makes the algorithm more robust both to
shifting numbers of agents in the environment and to agents
that pause or delay their motion in between sensors. Ad-
ditionally, assuming the existence of sources and sinks, we
can recover their connectivity to each of the sensors in our
network.

High Probability Gaussian Fit Delay Data

@ "Through Traffic" @

\ i

.. Source/Sink A
g Node o

Low Probabability Uniformly Fit Delay Data

Figure 2. Algorithm delay model.

In addition to maintaining a vertex that represents each
sensor in our network, we introduce an additional vertex
that represents the greater environment outside the moni-
tored region: a source/sink node. A mixture model is em-
ployed during the E-Step of our iterative EM process in
which we are evaluating potential changes to agent trajec-
tories. An inter-vertex delay time is assumed to arise from
either a Gaussian distribution or from a uniform distribution
of fixed likelihood (Figure 2).

Accept Zone Data not used for

Parameter Updates

Probability

Delay Time

Figure 3. Graphical description of the SSLLH
Parameter.

During the M-Step, in which we use the data generated
by M samples of the observation vector L to update our
network parameters, the data assigned to the Gaussian dis-
tribution are assumed to be generated by “through-traffic”.
They are used to update our belief of the inter-node delay
times and transition likelihoods. However, the data fit to
the uniform distribution are believed to be transitions from
the first vertex into the sink/source node and then from the
sink/source node to the second vertex. Therefore, they are
not used for updating inter-vertex delay parameters of the
two nodes, but rather are used only for updating the belief
of transitions to and from the source/sink node for the asso-
ciated vertices.

The delay model provides robustness to noise by dis-
carding outliers in the delay data assigned to each pair of
vertices and explaining their existence as transitions to and
from a source/sink node. The key to this process is deter-
mining whether or not a delay value should be considered
an outlier. This is implemented through a tunable parame-
ter, called Source Sink Log Likelihood (SSLLH), that de-
termines the threshold probability necessary for the delay
data to be incorporated into parameter updates (Figure 3).
The probability for an inter-vertex delay is first calculated
given the current belief of the (Gaussian) delay distribution.
If this probability is lower than the SSLLH then this motion
is interpreted as a transition made via the source/sink node.
The delay is given a probability equal to the SSLLH, and
the transition is not used to update the network parameters
associated with the origin and destination vertices.

The value assigned to the SSLLH parameter determines
how easily the algorithm discards outliers and, hence, pro-
vides a compromise between robustness to observational
noise and a tendency to discard useful data.

6 Simulation Results
6.1 The Simulator

We have developed a tool that simulates agent traffic
through an environment represented as a planar graph. Our
simulation tool takes as input the number of agents in the
system and a weighted graph where the edge weights are
proportional to mean transit times between the nodes. All
connections are considered two ways; i.e. each connection
is made up of two uni-directional edges. The output is a list
of observations generated by randomly walking the agents
through the environment. Inter-node transit times are deter-
mined based on a normal distribution with a standard devi-
ation equal to the square root of the mean transit time.!

Two types of noise were modeled in order to assess per-
formance using data that more closely reflects observations
collected from realistic traffic patterns. First, a ‘white’ noise
was generated by removing a percentage of correct obser-
vations and replacing them with randomly generated spu-
rious observations. Second, a more systematic noise was
generated by taking a percentage of inter-vertex transitions
and increasing the Gaussian distributed delay time between
them by an additional delay value selected uniformly at ran-
dom. The hope is that small values of both these types of
noise simulate both imperfect sensors and also the tendency
for agents to stop occasionally in their trajectories; e.g. to
talk, use the water fountain, or enter an office for an period.

A number of experiments were run using the simula-
tor on randomly generated planar, connected graphs. The
graphs were produced by selecting a sub-graph of the De-
launay triangulation of a set of randomly distributed points.

For each experiment, the results were obtained by com-
paring the final estimated transition matrix A’ to the real
transition matrix A. A graph of the inferred environment
was obtained by thresholding A’. The Hamming error was
then calculated by measuring the distance between the true
and inferred graphs normalized by the number of directed
edges m in the true graph:

1
HamFE = — E
amErr» (m)

Aqj EA,aé] cA’

[thr(aij) — thr(a;j)]Q

where thr(a) = [a;; — 0].2
6.2 Performance Results

When operating with noise-free data the results show
that problems involving a limited number of agents were
easy to solve given an adequate number of observations
(Figure 4). For example, the topology of 95 per cent of

Negative transit times are rejected.
2 A threshold value of @ = 0.1 was selected for our experiments.

Graph Gount
Graph C

imber Directed Edges Jumber Directed Edges

(@ (b)

Figure 4. Histogram of Hamming error per
edge using the simulator 100 randomly pro-
duced graphs with 12 nodes and 4 agents (a)
and 12 nodes and 10 agents (b).

the generated 12 node graphs was perfectly inferred with
zero Hamming error for simulations with 4 agents. Gener-
ally, the algorithm converged quickly, finding most of the
coarse structure in the first few iterations and making incre-
mentally smaller changes until convergence.

Under noisy conditions (Figure 5), the performance of
the algorithm depended somewhat on the value assigned to
the SSLLH parameter. When assigned a high SSLLH value,
the mixture approach for modeling delays was very success-
ful at minimizing the effects of noise. Even when 10 per
cent of the delay times were uniformly increased, the Ham-
ming error of the inferred transition matrix was still quite
low (Figure 5(a)). The reduction in error for inferred mean
delay times was especially dramatic (Figure 5(b)).

The performance of the algorithm under conditions of
moderate error reflect the ability of the new algorithm to
successfully identify and discard low probability transitions
and explain them as transitions to the source/sink node (Fig-
ure 5(c)). Since the SSLLH parameter can be tuned to the
expected levels of noise in the environment, the new algo-
rithm should be able to deliver better results than the funda-
mental topology algorithm.

7 Experimental Results
7.1 Experimental Setup

In order to test our technique under real-world condi-
tions, we setup an experiment using a network of camera-
based sensors and analyzed the results using our approach.
The sensor nodes were built up of inexpensive PC hard-
ware networked together over Ethernet using custom soft-
ware. A single node consists of a 352x292 pixel resolution
Labtech USB webcam connected to a Flexstar PEGASUS
single board computer (Figure 6). The operating system

Delay Error

Hamming Error / True Number of Directed Edges

—— SSLLH = —inf
-~ SSLLH=-5
SSLLH=-25

e/Sink Node

Data Explained by Sourcs

(b)

o1 015 o 005 01 015
Noise Level Noise Level

(©

Figure 5. Average over 10 graphs using the simulator with 4 agents on 12 node, 48 edge graphs. The
X axis indicates proportion of both white and systematic delay noise. Y axis shows: Hamming error
per edge (a); delay error (b); and ratio of data explained by souce/sink node transitions(c).

Figure 6. A camera-based sensor.

used was Redhat linux based on kernel 2.4. The sensor
nodes contain an Intel Celeron 500Hhz CPU and 128 MB
of RAM. They are disk-less and must netboot from a cen-
tral server which they are connected to either via a wireless
bridge or a standard Ethernet cable.

The software implements a standard client/server archi-
tecture over TCP/IP using linux sockets written in the C
language. Each sensor runs an identical copy of the client
program while a single copy of the server application runs
on a central computer.

The client software implements a motion detector based
on the Labtech webcam. During an initial period, a back-
ground image is captured from the camera and the method
for triggering an event detection is calibrated. An intensity
threshold is calibrated for each colour channel by calculat-
ing the standard deviation from the background based on a
number of captured frames:

0. = C x std{Frmq — Bkgrd, ..., Frm, — Bkgrd}

where C'is a constant determining the sensitivity of the sys-
tem. The sensor then enters an armed state in which cap-
tured frames are compared to the background image, and
any difference exceeding the threshold triggers a detection

(a) (b)

Figure 7. Examples of a background image (a)
and a frame triggering an event detection (b).

event (Figure 7). A frame rate of approximately 10Hz is
obtained. Once triggered, the sensor re-arms itself after a
couple of seconds of inactivity. The background is slowly
updated to account for gradual changes in the scene; e.g.
changes in lighting or a re-positioned object such as a door:

Bkgrd = ax Frm + (1 —) * Bkgrd

Events are transmitted over TCP/IP to a central server
where they are time-stamped and logged for offline analy-
sis. The server is multi-threaded and allows control of the
system through a command line interface. In addition to de-
tection events, the application allows a full resolution cap-
ture of an image or a low-resolution streaming of images
from any sensor to the server.

The experiment was conducted in the hallways of one
wing of an office building (Figure 8). The data were col-
lected during a typical weekday for a period of five hours
from 10:00am to 2:30 pm. In addition to the normal traffic

Figure 8. Six camera sensor network used for
experiment. Triangles represent sensor posi-
tions; circle indicates the location of the cen-
tral server.

is & s 6
Delay in Seconds Delay in Seconds

(@) (b)

Figure 9. Examples of delay distributions for
sensor A to sensor B (a) and sensor D to sen-
sor F (b).

one or two subjects were encouraged to stroll about the re-
gion from time to time during the collection period in order
to increase the density of observations. In total, about 1800
timestamped events were collected.

7.2 Assessment of Results

Ground truth values were calculated in order to assess
the results inferred by the approach. A topological map of
the environment (Figure 10(a)) was determined based on
an analysis of the sensor network layout shown in Figure 8.
Inter-vertex transitions times for the connected sensors were
recorded with a stopwatch for a typical subject walking at a
normal speed (Table 1).

The results obtained by running the new topology infer-
ence algorithm on the experimental data correspond closely
to the ground truth values. Figure 10(b) shows the topo-
logical map obtained by thresholding the inferred transition
matrix. 3

3The number of agents was selected to be an estimate of the most likely

Connection | Timed | Inferred
AB 16 15/16
AC 3 3/3
AD 4 3/3
B,D 15 16/17
B.E 16 15/15
C.E 14 15/14
D,F 5 5/3

Table 1. Comparison of timed and inferred de-
lay times (both ways) between sensors. All
values rounded to nearest second.

Disregarding self-connections, the difference between
the inferred and deduced matrices amounts to a Hamming
error of 1. The inferred connection from D to B was not
given a transition probability large enough to be detected
based on our thresholding technique. However, the oppo-
site edge from B to D was correctly inferred. Of course,
it would be easy to build into the algorithm the assumption
that all edges must be two ways. A strong belief in an edge
in one direction would dictate that the opposite edge must
also exist.

The mean transition times produced by the algorithm are
also consistent to those determined by stopwatch (Table 1.
Some examples of inferred delay distributions are shown in
Figure 9.

Sensor F' marks the only heavily used entrance and
exit to the region monitored by the network. The self-
connection inferred to this node is due to a detected correla-
tion in the delay between exit times and subsequent re-entry
times for agent motion. In fact, this correlation is due to the
tendency of subjects to re-enter the system after roughly the
same time period (e.g. to use the washroom or photocopier).
Therefore, the detection of this connection was actually a
correct inference on the part of the algorithm.

It is interesting to note that two-way connections were
inferred to the source/sink node from both sensors D and
F (Figure 10(c)). It was possible for subjects to pass by
either of these sensors on their way into or out of the mon-
itored region. (The exit to the far right of the area, shown
in Figure 8, was little used.) This demonstrates the func-
tion of the source/sink node as a method for the algorithm
to explain sudden appearances and disappearance of agents
in the system.

number of people in the system at any time (3), the SSLLH paramter was
set to —5, and a threshold value of # = 0.1 was used to obtain the topo-
logical map

Figure 10. Analytical (a), inferred (b) and inferred with source/sink node (c) topological maps.

8 Conclusions and Future Work

In this paper, we have presented an algorithm for learn-
ing the connectivity information of a sensor network based
on a stochastic trajectory sampling. The technique em-
ploys a realistic model of inter-sensor delay distributions
that makes it robust to realistic variations in traffic pat-
terns and observational noise in general. The approach was
demonstrated with simulation data and verified with exper-
iments conducted on a vision-based sensor network.

Future work will look at developing a more sophisti-
cated vision system which produces probabilistically la-
beled tracking data. This additional informaion could be
readily incorporated into the approach and would lead to
more rapid convergence.

Acknowledgements:

We would like to thank Ionnis Rekleitis, Philippe
Giguere, Junaed Sattar, Eric Bourque, Matt Garden and oth-
ers of the Mobile Robotics lab, along with the CIM admin-
istration for their technical help and good ideas. Thank-
you in addition to to Michelle Theberge for the photo, proof
reading, and valuable assistance during the experiment.

References

[1] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun.
Sonar-based mapping with mobile robots using EM. In Proc.
16th International Conf. on Machine Learning, pages 67—
76. Morgan Kaufmann, San Francisco, CA, 1999.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, 39:1-38, 1977.

T. Ellis, D. Makris, and J. Black. Learning a multicamera
topology. In Joint IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and
Surveillance, pages 165171, Nice, France, October 2003.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

R. B. Fisher. Self-organization of randomly placed sensors.
In Eur. Conf. on Computer Vision, pages 146-160, Copen-
hagen, May 2002.

0. Javed, Z. Rasheed, K. Shafique, and M. Shan. Tracking
across multiple cameras with disjoint views. In The Ninth
IEEE International Conference on Computer Vision, Nice,
France, 2003.

D. Makris, T. Ellis, and J. Black. Bridging the gaps between

cameras. In IEEE Conference on Computer Vision and Pat-

tern Recognition CVPR 2004, Washington DC, June 2004.
D. Marinakis, G. Dudek, and D. Fleet. Learning sensor

network topology through monte carlo expectation maxi-
mization. In IEEE Intl. Conf. on Robotics and Automation,
Barcelona, Spain, April 2005.

D. Moore, J. Leonard, D. Rus, and S. Teller. Robust
distributed network localization with noisy range measure-
ments. In Proc. of the Second ACM Conference on Em-
bedded Networked Sensor Systems (SenSys '04), Baltimore,
November 2004.

H. Pasula, S. Russell, M. Ostland, and Y. Ritov. Tracking
many objects with many sensors. In IJCAI-99, Stockholm,
1999.

A. Rahimi, B. Dunagan, and T. Darrell. Simultaneous cali-
bration and tracking with a network of non-overlapping sen-

sors. In CVPR 2004, volume 1, pages 187—194, June 2004.

A. Savvides, C. Han, and M. Strivastava. Dynamic fine-
grained localization in ad-hoc networks of sensors. In 7th
annual international conference on Mobile computing and
networking, pages 166179, Rome, Italy, 2001.

H. Shatkay and L. P. Kaelbling. Learning topological maps
with weak local odometric information. In IJCAI (2), pages
920-929, 1997.

G. P. Stein. Tracking from multiple view points: Self-
calibration of space and time. In Computer Vision and Pat-
tern Recognition, 1999. IEEE Computer Society Conference
on., volume 1, pages 521-527, June 1999.

M. Tanner. Tools for Statistical Inference. Springer Verlag,

New York, 3 edition, 1996.
G. Wei and M. Tanner. A monte-carlo implementation of

the EM algorithm and the poor man’s data augmentation al-
gorithms. Journal of the American Statistical Association,
85(411):699-704, 1990.

