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Abstract. We consider the problem of how two heterogeneous robots can arrange

to meet in an unknown environment from unknown starting locations: that is, the

problem of arranging a robot rendezvous. We are interested, in particular, in allow-

ing two robots to rendezvous so that they can collaboratively explore an unknown

environment. Specifically, we address the problem of how a pair of exploring agents

that cannot communicate with one another over long distances can meet if they

start exploring at different unknown locations in an unknown environment.

We propose several alternative algorithms that robots could use in attempting to

rendezvous quickly while continuing to explore. These algorithms exemplify different

classes of strategy whose relative suitability depends on characteristics of the prob-

lem definition. We consider the performance of our proposed algorithms analytically

with respect to both expected- and worst-case behaviour. We then examine their

behaviour under a wider set of conditions using both numerical analysis and also a

simulation of multi-agent exploration and rendezvous. We examine the exploration

speed, and show that a multi-robot system can explore an unknown environment

faster than a single-agent system, even with the constraint of performing rendezvous

to allow communication.

We conclude with a demonstration of rendezvous implemented on a pair of actual

robots.
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1. Introduction

In this paper, we consider a particular aspect of multi-robot environ-

ment exploration: how to get a pair of robots to meet one another

initially in an unknown environment if they do not know one another’s

starting positions. The problem of robot rendezvous is a key step in

collaborative exploration. We address this problem, once it has been

formally defined, by considering it in several ways spanning closed-form

analysis and real-world experimentation.

In many contexts, multiple-robot systems may be faster or more

powerful than a single robot system. However, there are difficulties

associated with the use of such multi-agent systems. Task division,

synchronisation and coordination are significant problems, as is max-

imising the efficiency of the distributed team. Practical considerations

can further contribute to the complexity of a multi-agent system when

compared with a single agent system.

One example of such a practical limitation is inter-agent commu-

nication. Existing research indicates that multi-agent robot systems

for the majority of real-life applications enjoy substantial speed gains

only with some level of communication (Balch and Arkin, 1994), when

compared with single-agent systems or multi-agent systems that do not

communicate. Many distributed-agent algorithms, for instance dynamic

path-planning, assume and rely upon instantaneous, infinite bandwidth

communication between agents at all times in order to achieve promised

performance levels (Brumitt and Stentz, 1996). However, most exist-

ing hardware agents are only capable of communication over short

∗ This work was carried out while the first author was at McGill University.
† The authors gratefully acknowledge the support of the National Science and

Engineering Research Council.
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distances. Environmental geometry, wireless transmission technology,

power considerations and atmospheric conditions (or water conditions

for underwater agents) all contribute to limitations on communica-

tion range. In the absence of sophisticated satellite receivers or high

power devices, a common constraint for successful communication is

maintaining “line-of-sight” between agents.

Since many realistic robots must be near one another to communi-

cate, this implies they need to be able to rendezvous. In addition, the

agents must be able to merge the maps generated by the exploration

process; if the maps cannot be merged, then each agent must itself ex-

plore the environment to completion, and no task speed-up is achieved.

Under many circumstances, heterogeneous agents must share a common

reference point to be able to merge maps1 - completely independent

maps cannot always be merged reliably. Unless the agents start at

exactly the same place in the environment, they must agree on a place

to meet a priori, and share information. However, choosing a meeting

point reliably, especially in an unknown, unconstrained environment is

difficult.

1.1. Problem Statement

We are interested in multi-robot exploration using range-limited “line of

sight” sensors such as vision or sonar. In practice, the particular sensing

modality has numerous pragmatic implications, a major factor being

the range at which the agents can either recognise one another, or any

landmarks in the environment. In the context of a general rendezvous

strategy, we will initially consider a generic “abstract” sensor that both

1 It is sometimes possible to merge maps using their shapes. However, if the
agents’ sensors are substantially different, or there are spatial ambiguities, the
merging process may fail.
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allows the agents to recognise one another when they are sufficiently

close together and also allows them to evaluate any point in space as to

its suitability as a rendezvous point. We describe how the rendezvous

task can be efficiently accomplished under various assumptions about

the environment and the perceptual abilities of the agents involved.

To restate this more formally, given two heterogeneous robots equipped

with noisy sensors that can be used for mapping, and a sensor that can

be used for computing a local signature of the position in the environ-

ment, how can the robots both explore the map and meet in minimum

time? In the simplest approach to the problem, the rendezvous will have

the agents search through the environment for good meeting points, and

then have them travel to the single best meeting point at a pre-arranged

time. In practice, more complex approaches are required.

The rendezvous task itself is divided into two sub-problems.

1. The first sub-problem is how to choose an appropriate rendezvous

point, given an unknown environment. The ability of the agents to

meet in the environment is a function of their ability to reliably

choose appropriate rendezvous points. For instance, mountain tops

may be a good outdoor rendezvous point.

2. The second sub-problem is that of dealing with confounding factors

in the rendezvous process. One such factor is the difficulty of coming

to an agreement on the location for a rendezvous. Sensor noise may

cause agents to disagree; agents may not have explored the same

regions of space, and therefore may choose different points. An ap-

propriate rendezvous strategy must take into account such asymme-

try between the agents’ exploration. Pre-arranged behaviour must

also account for such asynchronies and allow for missed rendezvous

attempts.
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1.2. Outline

In section 3, we formalise the parameters of the rendezvous problem

that necessitate more than one attempt. In section 4, two classes of

solutions are proposed and then analysed analytically. We simulate

the rendezvous problem at two levels; the first level, section 5, is a

purely algorithmic simulation, simply to test the efficacy of the various

algorithms under the different conditions we describe. In section 6,

we develop a realistic simulation, using spatial metrics and simulated

sensing and motion. Finally, we demonstrate in section 7 the speed-up

possible under multi-agent systems by comparing the running-time of

the multi-agent system versus the single-robot system on a real multi-

robot system.

2. Previous Work

The problem of rendezvous is not a new one; there exists a body

of research in the optimisation and operations research community

involving search problems. Rendezvous is a particular variant of the

search problem, similar to games with mobile hiders, called princess

and monster games (Alpern, 1995). There are many variants of the ren-

dezvous problem itself, involving distinguishable (Alpern and Shmuel,

1995) or indistinguishable agents (Anderson and Essegaier, 1995) and

collaborating or interfering agents. The environment may have focal

points, or may be completely homogeneous.

There are a number of differences between the highly theoretical

approach most prior work takes and the approach used here. In our

work, the environment is not known, and one of the key problems is to
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find the focal points (what we term landmarks). Secondly, in prior work,

the theoretical agents have perfect sensing, synchronisation, etc. Here,

we are dealing with realisable agents, with the concomitant problems

of noise, asynchrony, real-time travel limitations.

However, there is a key similarity between ours and the prior work, in

that communication between agents is prohibited, until the agents are

within a pre-determined line-of-sight range. Indeed, the graph-theoretic

approach reduces this distance to 0 in many cases. It is interesting to

note that one of the algorithms proposed by Alpern (Alpern, 1995) is

equivalent to the first deterministic algorithm we propose in section 3.

2.1. Multi-agent robotics

Balch and Arkin (Balch and Arkin, 1994; Balch and Arkin, 1998)

describe several tasks: consuming, foraging and grazing. The task of

exploration is an example of a grazing task, in that each point in the

environment needs to be covered by at least one robot’s sensors, in order

to acquire a complete representation. Further tasks that have been ad-

dressed in the context of multi-agent systems are box-pushing (Parker,

1994; Donald, 1995), formation holding (Beni and Liang, 1996) and

exploration and mapping (Rekleitis et al., 1997; Cohen, 1996). Like

Donald’s box-pushing and the grazing task, many of these applications

use passive sensing or implicit information to perform their task. There

is a dearth of work in real applications that demand full, active com-

munication that have been implemented on real robots. Rekleitis and

colleagues’ (Rekleitis et al., 1997) work on using multiple robots for ex-

ploration is very much in the spirit of this work, using multiple agents to

overcome limitations in the use of a single robot for exploration. While

their approach overcomes inherent limits in localisation in an unknown
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environment, the goal is to increase the precision of the map acquired.

This work is focussed on increasing the speed of map acquisition.

A comprehensive taxonomy of the different types of multiple-agent

systems, or swarms has been proposed (Dudek et al., 1996), including

the various types of communication available. In addition, the three

possible types of communication were described as

− No communication (“COM-NONE”)

− limited communication (“COM-NEAR”)

− full communication (“COM-INF”)

As the authors point out, COM-INF “is the classical assumption, which

is probably impractical if [the number of agents] � 1.” A modest

understatement, given that radio communication breaks down in many

situations as soon as line-of-sight is lost. Our work makes the assump-

tion of swarms of range-limited communication, instantiated in this

case using a line-of-sight constraint.

There has been considerable work in studying the range of be-

haviour of multiple-agent systems, especially attempting to maximise

efficiency and minimise complexity (Mataric, 1992) (Hara et al., 1992).

Mataric has looked at models of collaborative behaviour between mo-

bile robots (Mataric, 1992), and examined the “emergent behaviour”

properties that result. She also observed that the form of commu-

nication plays an important role in how collaborative actions pro-

ceed. Parker has developed control strategies for heterogeneous mul-

tiple robot systems, and made clear the need for effective communica-

tion (Parker, 1994).

Finally, the problem of map generation from co-operative multi-

agent exploration was discussed and implemented first by Ishioka et
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al. (1996). Their work is a canonical example of the potential applica-

tions of the technique presented in this paper, in which co-operative

heterogeneous robots generated maps of unknown environments. They

did not discuss the problem of rendezvous, but focussed only on how to

merge maps once the rendezvous has occurred. Later work also assumes

rendezvous has occurred (Rao et al., 1996), and the latest work by Fox

et. al. further develops the ideas of detecting rendezvous visually, and

map merging probabilistically (Fox et al., 2000).

While it is clear from the graph-theoretical work that focal points

in the environment are essential to effective rendezvous, it is Kuipers’

selection of distinctive locations in a simple 2-D environment (con-

sidered previously in the context of map-making (Kuipers and Byun,

1991)), that is the basis for the landmarks in this work. The distinctive

locations in that work were determined by active hill-climbing over

the distinctiveness function, that is, by local gradient ascent over some

function of the sensor output. The local maxima in a continuous prop-

erty of the environment allowed for the conversion of a metric environ-

ment representation into a graph-like or topological one (Chatila and

Laumond, 1985; Dudek et al., 1991; Kuipers and Byun, 1991; Shatkay

and Kaelbling, 1997; Thrun, 1998).

3. The Rendezvous Problem

In the simplest, idealised, noise-free case, the robots have a pre-arranged

notion of what constitutes a good rendezvous point. At a pre-arranged

time, the robots go to the best rendezvous point, and wait for the other

robot(s) to arrive. They can then fuse their maps and suitably partition

any remaining exploration to be done.
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This simple strategy can be decomposed into the following four

steps:

1. Travel throughout environment

2. Find good rendezvous locations

3. At the pre-arranged meeting time, choose the best rendezvous lo-

cation

4. Travel to that rendezvous location, and share information with the

other agents

In the following sections, we describe how to choose good rendezvous

locations. We then formalize what can cause a rendezvous attempt to

fail, and how our rendezvous strategies recover from failures.

3.1. Defining Rendezvous Points

In the context of cultural environments, typical notions of good ren-

dezvous locations – we refer to these points as landmarks – generally

rely upon some a priori knowledge of the environment. For instance,

humans often rely upon existing structures such as doors of buildings or

monuments. We would like to avoid assumptions about the availability

of such structures, therefore, we define the notion of distinctiveness,

or landmarkness, as a value defined at every point in the environment,

and use this value to find landmarks. If the distinctiveness is a function

of the agent’s sensor(s), then there is no issue of environmental depen-

dence on the ability to find landmarks — every location is a potential

landmark.

We refer to the scalar measure of suitability of a particular point

(x, y, θ) as its distinctiveness: D(x, y, θ). The position (x, y) and ori-

entation θ of the robot are commonly termed the pose of the robot,
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defined over the configuration space C of the robot. For a pose vector

q we can define D(q) : C → R that maps from the configuration space

of the robot to a real-valued scalar.

The quantity D(q) is implicitly a function of sensor data f(q), so

we have a new distinctiveness function D̂, such that:

D : (x, y, θ) → R (1)

f : (x, y, θ) → S (2)

D̂ : S → R (3)

D = D̂ ◦ f(q) (4)

Some intuitive examples of environmental attributes that might serve

as distinctiveness measures are spatial symmetry, distance to the near-

est obstacle, or altitude (for 3D surfaces – for example humans might

select hill tops). If we choose our the distinctiveness function to be

orientationally invariant, then

D(x, y, θ) = D(x, y) (5)

The possible distinctiveness measures are heavily dependent on the

types of sensors the robots have at their disposal. Because the robot

assigns a value to every point, a good sensing modality is one that allows

the distinctiveness to be defined at any location in the environment,

and for which there exists some metric that can order the resultant

landmarks in the environment in terms of distinctiveness. This ordering

allows the landmarks to be ranked in terms of their likelihood to lead

to a successful rendezvous. By far the most important feature of the

distinctiveness function is that the locations of its extrema should be
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robust with respect to small changes in position, so that these extrema

can be found again later.

It is important to note that the distinctiveness values are only com-

puted for locations actually visited by the robot. By restricting land-

marks to lie along the robot trajectory, we avoid issues of landmark

visibility and viewpoint independence. Consequently, rendezvous loca-

tions need not be recognisable as such from afar, such as a mountaintop

is. We recognise locations as landmarks by actually visiting them.

The function D(x, y) defines a surface across the x− y plane. Land-

marks are defined as the local maxima (or minima, if preferred), of the

distinctiveness surface. Certain generic properties apply to good dis-

tinctiveness functions, independent of the sensing modality. If D(x, y)

is smooth, locally convex, and has few local extrema or inflection points,

then it is easy to find highly stable and mutually agreed-upon extrema.

Landmarks can be found by the robots performing gradient ascent over

D(x, y). However, although this strategy is attractive in principle, we

believe that in many real environments, occlusion, noise, and other

factors may make the “distinctiveness surfaces” highly non-convex and

thus complicate the process.

3.2. Finding Landmarks

One way to identify potential rendezvous points, or landmarks, is to

sample the distinctiveness surface uniformly across the space, and then

identify the maxima in the surface off-line. However, the task of locating

landmarks for rendezvous cannot always dictate the robot trajectory.

Although we are developing the technique of multi-agent rendezvous

for exploration, we would like to generalise rendezvous to any multi-

agent system. The constraints of some tasks may not allow the agent
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to suspend execution of the primary algorithm in order to follow the

distinctiveness surface, hunting for landmarks. As a result, the agents

must be able to identify landmarks during the execution of any task.

We therefore impose two constraints on the distinctiveness func-

tion - the function must be trajectory-independent and orientation-

independent. For example, the “Northern-most” point in the already-

explored environment is a poor choice. If the explored area of each

robot is circular, then two robots will only have the same “northern-

most” point if the environment is highly constrained or if the explored

regions are very similar. In Figure 1, we see that despite having rel-

atively similar explored regions, the robots will choose quantitatively

different landmarks. If the landmarks are separated substantially, either

by distance or by some obstacle such as a wall, a rendezvous at these

landmarks will fail.

Northern-most Points

Figure 1. An example of the effect of choosing a poor measure of distinctiveness.
Even though the two robots have relatively similar explored regions, the best
landmark each chooses is different enough to cause rendezvous difficulties.

Similarly, an orientation-dependent distinctiveness function will give

very different values for a robot looking down a corridor, as opposed to

a robot looking at a wall. Unfortunately, most immediately obvious dis-

tinctiveness functions are orientation-dependent, especially those that

use the sonar rings found on most mobile robots. The solution we
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have chosen is to sample the distinctiveness function at pre-determined

orientations.

There still remains an issue of spatial sampling — as the agents

travel through the environment they must sample the distinctiveness

function sufficiently often to be able to specify the landmarks accu-

rately. Coarse sampling can lead to incorrectly estimating a peak’s

height, or even failing to observe a good landmark entirely. One possible

solution is to sample the distinctiveness surface along the trajectory as

finely as possible. However, since the distinctiveness sampling is a func-

tion of the task-dependent trajectory, the problem is independent of the

distinctiveness function and must be addressed in some other manner.

Possible solutions to this problem will be discussed with rendezvous

algorithms.

3.3. Inter-agent Differences and Sensor Noise

In addition to using the same distinctiveness function, the agents must

compensate for differences in their perceptions of the environment. In

order for two robots to agree on a good landmark, they must have sim-

ilar perceptions of the environment or be able to convert their percepts

into a common intermediate form. In the extreme case of two agents

with dramatically different sensing modalities, there is essentially no

way for them to rendezvous based on the recognition of environmen-

tal characteristics. Sensor noise can play a similarly problematic role.

We model this aspect of the problem by parameterising the extent to

which the two agents can reliably obtain the same measurement of

distinctiveness at the same location.

We consider the base case, D(x, y), to be “ground truth” with re-

spect to the distinctiveness that should be measured by all the agents.
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However, D(x, y) is a function of the sensors the agents use:

Si(x, y) = S(x, y) + ηi(x, y) + λi (6)

Di(x, y) = D(Si(x, y)) (7)

where S(x, y) is the ideal perception of the environment by the given

sensor, in the absence of any noise. S1(x, y) is Agent 1’s perception of

the environment at position (x, y) that encapsulates the agent’s sys-

tematic error η(x, y) over the measurement at that position; λi is that

agent’s random sensor noise.

For the purposes of modelling the inter-agent differences, we model

λ and η as scalars, and collapse them into one error term. With full

generality, we can consider one of the agents as the reference perceiver

(the arbiter of good taste) with a percept D1(x, y) = D(x, y) while

the other robots obtain a sensor measurement which can be viewed as

noisy with respect to that of the first robot:

Di(x, y)−D1(x, y) = δ̂iη̂i(x, y) + δ̂iD1(x, y) (8)

Di(x, y) = (1− δ̂i)D1(x, y) + δ̂iη̂i(x, y) (9)

where η̂i(x, y) is all stochastic and systematic noise processes of each

robot, and δ̂i specifies the extent to which the two robots (Di and D1)

sense (or perceive) the same thing. If both robots have exactly the

same perceptions of the environment we have δ̂ = 0. In the context

of this formalism, η̂(x, y) combines both intrinsic sensor noise and any

differences in the type of sensor used. Note that the for the purposes of

modelling differences in sensor measurement across agents, the η̂ and

δ̂ parameters can be treated as a single parameter, δ.
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4. Rendezvous Strategies

In the ideal case, the obvious choice is the “best” landmark, i.e., the

point in the environment that has the largest known maximum of the

distinctiveness function. For a variety of reasons, this simple strategy

proves to be difficult or impossible to achieve in practice. Therefore,

strategies must be developed to accommodate the various confounding

factors that make the rendezvous problem challenging in practice.

4.1. Formal Parameters of the Rendezvous Problem

In order to estimate the effectiveness of alternative strategies for ren-

dezvous, we have identified key attributes that must be formalised.

Important attributes of the rendezvous problem are:

− Sensor noise — the distinctiveness measures observed by the two

robots are unlikely to be identical. This is expressed by the δ(x, y)

term of Equation 9.

− Landmark Commonality — the extent of overlap between the

spatial domains of the agents.

In the ideal case, the agents will share all landmark knowledge.

More likely is that the robots have explored partially-overlapping

areas, and will have some different landmarks d that are not in the

common region, of a total set of n landmarks.

− Synchronisation — the level of synchronisation between the agents.

If the agents do not agree on the rendezvous time, there is a

probability that the rendezvous will be missed. Also, if an agent

fails to arrive at the landmark because there of travel delays, the
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rendezvous will fail. The probability that a rendezvous is missed

is modelled by the parameter j.

− Landmark Cardinality — the number n of points considered for

rendezvous by each agent.

If there is exactly one landmark, then the rendezvous algorithm

cannot make any attempt to compensate for variations in the

problem parameters. In this extreme case, the problem is “solved”

simply by revisiting that one landmark. At the other extreme, if

every point visited is considered as a landmark, the algorithm may

be swamped, preventing it from exploiting its abilities to find the

other agents.

It is assumed that if the agent roles are asymmetric that there is an

a priori agreement of which agent will play which role. Furthermore,

we assume that all agents share some notion of synchronisation —

that is, all agents can agree on when rendezvous attempts should be

made, however, this synchronisation may be noisy. A third assumption

is that all agents have the same landmark set cardinality — they all

attempt rendezvous over the same number of landmarks (even if they

are not using identically the same landmarks in their sets). Finally, it

is assumed that all agents are performing the same task, and using the

same rendezvous strategies.

4.2. Landmark Selection Algorithms

Looking to biology, some simple algorithms for related problems are

observed. One common strategy has one agent (e.g., a child lost at

the zoo) wait to be found while other agents (e.g., desperate parents)

cover the space, performing search. Another equally naive but much
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less common strategy has agents moving from landmark to landmark

randomly until a rendezvous occurs.

We have developed two main classes of algorithm: deterministic and

probabilistic. The deterministic class of algorithm creates a list of all

possible combination of landmarks and specifies the order in which

the landmarks should be visited. There is no random aspect to the

landmark visit sequence, and therefore the algorithms will generate

the same sequence of landmark visits for a given landmark set. The

probabilistic class of algorithm does not generate an a priori ordering

of landmarks, but simply generates probabilities for landmarks being

visited at any proposed rendezvous.

4.2.1. Deterministic Algorithms

− Sequential – One agent picks a landmark and waits there for the

other agent, which visits every landmark in turn. If the second

agent has visited every landmark without encountering the first

agent, the first agent moves to another landmark it has not yet

visited.

The active agent cycles through all its landmarks, before returning

to the beginning of the set. The passive agent remains at a landmark

for n cycles, where n is the size of the landmark set, before moving to

the next landmark. This generates a list of all pair-wise combinations

of landmarks, sorted by distinctiveness. This strategy gives the agents

asymmetric roles with respect to one another. The extension from a

single pair of agents to an arbitrary number of agents can be easily

accomplished by evenly dividing the agents into two classes of active

and passive agents.
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− Smart-sequential – Each pairwise combination of landmarks known

to a robot is assigned a “goodness” value. This value is the product

of the distinctiveness of the pair. The list of landmark pairs is

sorted by this product, and one side of each pair is discarded,

leaving an ordered list of n2 landmarks from a set of n. The robot

then visits the landmarks in this order.

The smart-sequential strategy takes into account the fact that the

landmarks may be mis-ordered across agents: that is, one agent’s sorted

list will not quite match the other’s, and that the relative mis-orderings

are likely to be small (that is, one list can be regarded as an almost-

sorted version of the other). The landmark orderings can be thought

of as being “perturbed” rather than grossly misordered across agents.

Consequently, it may make more sense to revisit highly distinct land-

marks long before considering landmarks with relatively low distinc-

tiveness. This leads to an increased probability of meeting even with

substantial asynchrony between agents, or with high-valued landmarks

that are unique to one agent. The smart-sequential method is tanta-

mount to guessing where the other robot might be, given relatively

similar, but not identical, landmark rankings.

4.2.2. Probabilistic Algorithms

The probabilistic algorithms use different probability functions to ac-

commodate different parameters of the problem space. The landmarks

are sorted with respect to their distinctiveness and then assigned a

likelihood of visitation pi for landmark i as a function of its rank in

the sorted list, i.e., pi = f(i). The algorithm probabilistically selects a

landmark to visit, using pi for each landmark. For example,
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− Exponential – The likelihood of visiting the i− th best landmark

is ∝ ei. This function has the effect of emphasising the relatively

highly distinct landmarks, at the cost of landmarks with relative

low distinctiveness.

− Random – On each attempted visit, each robot selects a landmark

at random and goes there.

The particular exponential function used in the simulations was

Pi = ρeτ(D1−Di) (10)

τ =
.25log(.001/D1)

D1
(11)

where Di is the distinctiveness of landmark i and Pi is the probabil-

ity of visiting that landmark. ρ is a normalisation constant to ensure

that the probabilities for the landmark set sum to 1.0, and τ is a user-

definable decay constant for tuning the exponential function response.

The constants in these formulae were chosen empirically.

4.3. Analytical Results

We can make an analytical assessment of the bounds on the perfor-

mance of the deterministic rendezvous algorithms, compared to the

random algorithm baseline. We examine the performance of the algo-

rithms in the limit of high heterogeneity and noise, δ = 1, such that no

common ordering between agents of the same landmarks can be reliably

determined. The first assessment is the algorithmic time complexity,

i.e., the expected time to rendezvous, for the three algorithms in the

limit of δ = 1. For a landmark set of size n, the failure probability of

any single, random rendezvous attempt is Punsuccessful = n−1
n and if
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the asynchrony rate is accounted for, then the failure probability rises

to Punsuccessful = n−1
n j.

These facts give rise to table I. The first column refers to the case

in which both robots having the same set of landmarks. The second

column considers the scenario where the robots may fail to get to the

appointed landmark at the same time (or fail to notice one another).

This probability is the asynchrony, j. The third column deals with the

case where d of each robot’s n landmarks are not in the other robot’s

landmark set.

Table I. Expected case behaviour. The columns denote the
ideal case, the case where the asynchrony j 6= 0 and the case
where the landmark sets are not identical, but each agent has d
non-common landmarks.

Algorithm Simple Async. < 100% Comm.

Random 1
log2( n

n−1
)

1
log2( n

n−1
)+log2j

1
log2( n

dn−d )

Sequential n/2 n
2

+ j
−1

log j n
2

+ d
n

−1

log d
n

Smart-seq. n n+ j
−1

log j n+ d
n

−1

log d
n

In the deterministic sequential algorithm, the expected time of the

simplest case (identical landmark sets, no asynchrony), is very straight-

forward. One agent sits at a landmark, and the other agent visits

every landmark in turn until they meet — on average n/2 landmarks.

However, in the presence of asynchrony, additional sweeps of all n

landmarks will have to be performed. To find the expected number,

k such additional sweeps, we use 0.5 = jk noting that each extra sweep

i of k will reduce the probability of failure, and k such sweeps must

reduce the probability of failure to 50%. Thus, on average j
−1

log j sweeps

during the rendezvous will fail due to asynchrony. Similarly, for non-
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identical landmark sets, additional sweeps of n landmarks will have to

be performed on average d
n

−1

log dn times.

5. Numerical Simulation

Unfortunately, the analytical description of the algorithms given above

does not provide a realistic picture of the the performance of the algo-

rithms, as this bound will rarely, if ever, be attained in practice. The

agent difference, λ, will likely not be extremal. Therefore, more useful

than the analysis in the limit of high noise is the performance of the

algorithm under conditions of worsening noise, especially under differ-

ent conditions of disjoint landmark sets and asynchrony. We therefore

use a numerical analysis technique to examine the algorithm under a

range of conditions.

5.1. Experiment Design

Two agents were modelled as having already explored an unknown

area, and having collected a set of n landmarks. The distinctiveness

values of the ordered landmarks were generated with a function, f(x)

where x was the landmark index. f(x) was a linear function for the

results given here, although other functions were examined. Random

noise δ as developed in equation 9 was then applied to the two sets. The

appropriate rendezvous strategy was then used to generate a sequence

of landmarks for the two agents, with a maximum length of n2. The

sequences were terminated at the first position with the same landmark,

and the running time was considered to be the length of the sequences.
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The landmark set is generated by a distinctiveness distribution model

F (i), with a range of values, [0,max(F (i)]. The noise was then modelled

as a percentage δ of full scale:

Di = F (i) +Random(0 : δ ·maxF (i)) (12)

The random function was a uniform random function in the range

[0 : δ ·maxF (i)]. The distinctiveness values Di were then re-normalised

into the range max(F (i)).

We use the time to successful rendezvous as a measure of the al-

gorithm’s success. The length of the sub-sequences until rendezvous is

used as a measure of time until successful rendezvous. Again, without

noise, the deterministic algorithms (sequential and smart-sequential)

are guaranteed to generate sequences of length one, that is, meet on

the first try. By generating a sequence for each algorithm under dif-

ferent conditions, (varying δ, the asynchrony j, and the landmark set

commonality d), we can measure the time to rendezvous under the

various conditions.

It should be noted that the parameter space of this problem is

substantial, and therefore not all aspects of the problem were explored.

Only the more relevant and interesting aspects of the problem space

are presented here.

5.2. Experimental Results

Each trial determined the number of rendezvous attempts, or iterations,

needed to achieve rendezvous under different conditions. Measurements

were taken at 14 values of δ, where each measurement was made 1000

times; these 1000 trials gave a mean number of iterations to rendezvous

for a particular algorithm and a particular value of δ.
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5.3. Base case: Time as a function of Noise
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Figure 2. Baseline Performance - Time to Rendezvous as a function of Noise-level δ

The baseline simulation shows the performance of four algorithms

in the face of increasing noise. The size of the landmark set is 50

landmarks, asynchrony j is 0, and the landmark sets have 100% com-

monality. The four algorithms are the deterministic sequential and

smart-sequential algorithms, and weighted probabilistic distributions

with exponential and linear probability functions. Figure 2 shows that

the sequential algorithm is the best performer, especially in the face

of high noise (i.e., δ > 0.2) , which concurs with the analytical result.

Clearly, exponential is a very fragile rendezvous scheduling function,

failing catastrophically with noise, δ > 0.2.

5.4. 50 % Asynchrony

In the face of asynchrony, however, the algorithms exhibit less intuitive

behaviour. Asynchrony, again, is the probability that a particular ren-

dezvous at a mutually agreed place and time actually occurs. The sim-

ulation (which created landmark sequences) implemented asynchrony

as the probability that a particular sequence element could be used.

Even if the pair of landmark sequences contained the same landmark
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at identical positions, the sequence may not have terminated there,

because the asynchrony probability prevented the first pair of matching

landmarks in sequence from being compared, as if the robots had failed

to rendezvous successfully despite attempting to do so at the same

location at the same time.
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Figure 3. Performance with 50% Asynchrony rate

Figure 3 shows the performance of the algorithms given a 50%

asynchrony rate, or a 50% probability of successfully making a ren-

dezvous. In this case, the smart-sequential and exponential algorithms

out-perform the sequential strategy, because the sequential form suffers

from having to visit every other landmark before being able to return

to the landmark that failed on a particular iteration, whereas the other

two algorithms can return to landmarks relatively quickly. However,

once noise dominates the values, (δ > 0.5) the sequential algorithm

outperforms the other algorithms because it does not rely heavily on

particular landmark values — it is not returning to the same landmark

over and over again.

5.5. 80 % Asynchrony

Even more interesting in the case of very high (80%) asynchrony, Figure

4 shows that the exponential probabilistic function outperforms the
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Figure 4. Performance with 80% Asynchrony rate

deterministic algorithms in the face of low noise (0.5 < δ < 0.25), but

again fails rapidly in the case of high noise (δ > 0.25). The exponential

algorithm essentially forces the robot to return to the same landmark

over and over again, which is the correct strategy when asynchrony is

high. However, when noise is high, the odds that the recurrent landmark

is the wrong one increase, and the deterministic algorithms, which do

not return to the same landmark as often, perform better.

5.6. 75 % Landmark Commonality
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Figure 5. Performance with non-identical landmark sets, and 50% Asynchrony rate

Finally, Figure 5 shows performance for maps with only 75% of the

landmarks in common and 50% asynchrony. The performance with non-
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identical landmark sets (akin to non-isomorphic maps) is very similar to

performance under low- to medium-asynchrony. The smart-sequential

algorithm performs better with low noise because it can return to land-

marks faster than sequential, but in the case of high noise (δ > 0.35),

returning to landmarks too frequently can be costly, and the sequential

algorithm again dominates.

5.7. Experimental conclusions

The sequential strategy is simple and relatively immune to sensor noise

because it does not rely heavily on the relative rankings of landmarks.

However, it is sensitive to asynchrony. If the two robots have the same

ordered landmark sets but suffer from synchronisation problems and

hence miss meetings at commonly-selected landmark, n rendezvous

attempts must occur before an identical pair of landmarks occurs in

the visit sequence.

Smart-sequential has its domain of superiority where the agent dif-

ferences (e.g. noise) are low, but not negligible, or where the landmark

sets are not identical. Although it is not a probabilistic strategy as

such, it essentially groups landmarks together into types of high prob-

ability through low probability, in attempt to “guess” where the other

agent(s) might be. Smart-sequential also does not perform well under

conditions of high noise or high asynchrony. It suffers under conditions

of high noise, because it relies upon a reasonable, if not 100% accurate

knowledge of the distinctiveness surface; as noise destroys the accuracy

of that measurement process, the estimates based on that knowledge

become poorer.

The exponential algorithm proves to have a surprising domain of

superiority in the low-noise, high-asynchrony case. When a rendezvous
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fails due to simply a missed attempt, the optimal behaviour is to retry

the attempt regularly; it is this behaviour the exponential algorithm

excels at.

6. Physically-based Simulation

Although the numerical analysis of section 5 encapsulated a number of

practical issues with parameters such as sensor noise, our analysis did

not address the problems of space. We therefore next simulate mobile

robots in a two-dimensional environment. These experiments have two

goals; the first is to determine the behaviour of the various rendezvous

algorithms under different experimental conditions. The second goal is

to determine the speed-up of the exploration of two robots performing

rendezvous, when compared with a single robot.

6.1. Experimental Method

Figure 6 shows the map used for these experiments The first test suite,

the baseline algorithm performance. In each set of 25 trials, one agent

was started at the same point every trial, the A in Figure 6, and the

other agent was put at one of 5 locations, the circles labelled 1-5 in

Figure 6, for 5 trials per location. The trials were conducted for 15

values of δ.

The agents are modelled as idealised Nomad 200 robots with perfect

(noise-free) sensing abilities and odometry.2 The agents explore the

unknown environment for a pre-determined length of time; at the end

2 While we did have the ability to simulate the sonars using a more realistic sonar
simulator, it was not exploited in these experiments.
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Figure 6. The map for the simulated experiments, with the starting positions
marked as circles. One agent always started from the position labelled ’A’, whereas
the other agent started 5 times at each of the positions marked with numbers.

of this length of time the agents attempt rendezvous. The agents then

take the n best landmarks seen so far, and use these for the rendezvous

algorithm. Each agent is running the same rendezvous algorithm; where

the algorithms demand asymmetrical agents, the agents are assigned

roles randomly ab initio.

However, this simplistic description hides several complex issues, the

first of which is choosing an appropriate distinctiveness function.

6.1.1. The Distinctiveness Function

Recall from section 3 that we would like a distinctiveness function that

is smooth, robust, and which has few local extrema over the exploration

space. Our choice of a distinctiveness function in the following exper-

iments was inspired by human experience; we would like the function

to peak in wide-open areas that correspond to large rooms, foyers, etc.

We can measure the “openness”, R, of any point in the environment

simply by summing the range returned by each sensor:

R(x, y) =
n∑

i=1

R(x, y, θi) (13)
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We measure the asymmetry, A, of each point by summing the ab-

solute difference of diametrically-opposed pairs of sensors. If each pair

of sensors measures the same, then the asymmetry falls to 0.

A(x, y) =

n/2∑

i=1

| R(x, y, θi)−R(x, y, θi+n/2) | (14)

Combining the openness and the asymmetry gives

D =

∑64
n=1Ri∑32

n=1 | Ri −Ri+32 |
(15)

6.1.2. Landmark Distributions in Space

Ideally, only landmarks which are not mutually visible should be kept

in the landmark set, otherwise two landmarks (which are in reality dis-

tinctiveness maxima along the trajectory) may in fact be very proximal

to one another. While this does not in principle break the rendezvous

process, if the environment is large, or the area of the environment

common to the agents is relatively small, then the time to rendezvous

may become unreasonably large. Since the goal is to have the agents

rendezvous in minimum time, it is undesirable for the agents to spend

time visiting points in the environment that are close together.

There are a number of ways of dealing with this problem, for exam-

ple using a sensor to test line-of-sight, or actually travelling between

landmarks to test if the line-of-sight path is clear. Since the task that we

are performing is exploration and an occupancy grid map is available,

we use this map to test for mutual visibility.
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6.1.3. Accurate Peak Measurement

The method described in section 6.1.2 suffices for eliminating mul-

tiple landmarks that are associated with the same structure in the

distinctiveness surface. However, there still remain the issues of accu-

rately recognising the distinctiveness peaks, and even more importantly,

measuring the peak height accurately.

If the agents share the same trajectories through the environment,

then this issue simply one of sensor differences. Such a situation would

occur, for instance, if the agents were employing Voronoi diagrams or

freeway methods for navigation. While there will in practice be some

positional error across agents, this will largely be due to sensor error

and can be encapsulated in the sensor model. However, if the primary

task does not involve navigation along mandated trajectories, then it

is likely that the agents will, while capturing the same peaks in the

distinctiveness, have very different perceptions of the height of the

peaks, as Figure 7 demonstrates. 3

In practice, the measurement of landmarks can be refined by per-

forming gradient ascent over the distinctiveness surface at each poten-

tial landmark. This could be done during the landmark acquisition pro-

cess, but no longer decouples the primary task (e.g. exploration) from

rendezvous. The agents could re-visit each landmark before rendezvous,

3 This is, of course, a sampling problem. However, given the prevalence of high-
frequency information in the distinctiveness surface, undersampling is inevitable
without serious increases in mechanical complexity. In the worst case scenario, if
the agents drastically undersample the distinctiveness surface, they will not only
mis-measure the distinctiveness peaks, but miss some peaks altogether. If the dis-
tinctiveness function is also used for the primary task (as it is in this research, as
the sonar is used both for the distinctiveness measurements as well as generating
the map), the primary task must be aware that rendezvous is being performed,
and must be willing to relinquish control of its sensors to the landmark acquisition
process. This requires some coupling between the landmark acquisition process and
the primary task, but the coupling can be eliminated if necessary by giving the
rendezvous process a separate sensor.
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2nd Robot Trajectory

1st Robot Trajectory

2nd Robot’s Landmark
1st Robot’s Landmark

Figure 7. Two agents exploring the distinctiveness surface. Because of the nature of
the exploration algorithm, one agent passes directly over top of the peak, and thus
measures its height correctly. The other agent passes first to one side, and then the
other, retaining only the higher of the two maximal measurements, never measuring
the peak correctly at its maximum height.

but this would add a mechanical complexity to the rendezvous process.

For an environment that has many, widely separated landmarks, this

will be unacceptable.

The method chosen for the simulation and real robot experiments

is to refine the landmarks during the rendezvous process. This has the

advantage that the rendezvous process and primary task are decoupled

as in the previous method, but the additional mechanical complexity is

low, as in the first method. The disadvantage is that the visit sequence

must be recomputed in the majority of cases if a deterministic algorithm

is being used. Furthermore, if the measurements are completely wrong,

the measurement may not be corrected until after a substantial number

of iterations.

Figure 8 shows the result of the hill-climbing operation.
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Figure 8. The result of the landmark refinement process. The grey filled circles are
the initial peak estimates, acquired during the exploration process. The white circles
are the final positions of the landmarks. The box is the best landmark.

6.2. Modelling Noise, Landmark Commonality and

Asynchrony

In the experiments using the simulation of robot exploration and ren-

dezvous, a noise term η(x, y) was added to every point in space using

the same model as in 5. Modelling the landmark commonality, d, and

asynchrony, j, explicitly as in that section was impractical. The land-

mark commonality parameter is a reflection of the degree to which the

trajectories of the agents overlap; this parameter is a function of the

trajectories, not the inverse. Similarly, the asynchrony is a function

of environmental and robot characteristics; it is extremely difficult to

extract the appropriate characteristics from the single parameter.

However, the simulation did model these characteristics indirectly.

The landmark commonality parameter was set by altering the size of

the bounded world, and altering the time allowed between rendezvous

attempts. Asynchrony was modelled using a radio communication sim-

ulator. The simulator had a locking mechanism that prevented the

robots from moving to the next landmark, until both had made a
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communication request. By allowing the locking mechanism to operate

probabilistically, the parameter j could be included in the simulation.

6.2.1. Simulating Rendezvous

The simulation of detecting other robots and achieving rendezvous

was implemented using simulated radio communication. Requests were

made by each robot to the radio simulator, and the simulator then de-

termined, based on its knowledge of the complete map and the current

positions of the two simulated robots within the map, whether or not

the robots were mutually visible (line-of-sight), and whether they were

in radio range of one another (13.5 m 4).

6.3. Experimental Results

There were three main experiments performed on the simulated ex-

ploration and rendezvous, and each was a variant of a test of the

rendezvous algorithm performance vs. noise. Each data point is the av-

erage of 25 trials. The trial was terminated at 100 rendezvous attempts

if the agents had not achieved rendezvous by then.

6.3.1. Baseline Performance

Figure 9 demonstrates the performance of the 4 main algorithms, in the

face of increasing noise. The size of the landmark set is 10 landmarks

and asynchrony j is 0. In order to have the agents have as close to 100%

landmark commonality as possible, the simulation explored for 600 sec-

onds - this proved to be sufficient for the agents to have explored almost

4 This number for the radio range was based on the radius of the smallest robot
we used, the RWI B12. 13.5m is one hundred B12 diameters.
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all of the space. The four algorithms are sequential, smart-sequential

and the probabilistic functions exponential and random.
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Figure 9. Baseline Performance - Time to Rendezvous as a function of Noise-level
δ = [0, 500].

At the highest noise level in Figure 9, the noise is 80% of the highest

noise-free peak in the environment; however, certain algorithmic char-

acteristics manifest themselves. For example, sequential continues to

out-perform all other algorithms.

6.3.2. Disjoint Exploration Areas

This is the second of the three experiments performed using the simu-

lated exploration and rendezvous for the explicit case of disjoint land-

mark sets, representing areas of the environment explored by only one

agent.

Figure 10 shows an example of the exploration carried out by two

agents in this environment. Clearly, the two agents have explored the

majority of the environment, and yet the overlapping areas of their

trajectories is fairly minimal. This is the first experiment where the

speed-up of the algorithms can be tested; the results of the speed-up

of the algorithms will be in section 6.4.
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a. First agent’s trajectory b. Second agent’s trajectory

Figure 10. Two example trajectories through a larger space. The circles indicate
landmarks. Notice that the rendezvous occurred successfully, even though a large
part of the trajectories were unique to the agent.

Figure 11 demonstrates the performance of the rendezvous algo-

rithms in the face of both increasing noise and incomplete exploration.

The size of the landmark set is 10 landmarks and asynchrony j is 0.
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Figure 11. Non-Identical Landmark sets - Time to Rendezvous as a function of
Noise-level, Low Noise δ = [0, 50].

Notice that smart-sequential is no longer the best algorithm, even in

this low noise region of the parameter space. The ability of the smart-

sequential algorithm to guess the location of the other agent is damaged

by the incomplete knowledge that results from disjoint landmark sets.
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6.3.3. Asynchrony

In this final experiment, we tested the ability of the agents to ren-

dezvous under conditions where the robots would sometimes fail to

meet successfully, even when at the same location. We are partic-

ularly interested in the low-noise region of the parameter space, as

the numerical analysis indicated that the exponential algorithms per-

formed best under these conditions. As Figure 12 indicates, the supe-

rior performance of the stochastic algorithms is present in the spatial

simulation.
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Figure 12. 80% Asynchrony - Time to Rendezvous as a function of Noise-level, Noise
δ = [0, 100].

Focussing further on the region where δ is small, the exponential

algorithm should be the fastest is expected. The exploration suffers

only from missed meetings - both agents should have chosen the same

landmarks. Since this algorithm will revisit the best landmark more

often than any other algorithm, it has the best chance of overcoming

the asynchrony problem. However, once any noise is present in the

system, this algorithm fails rapidly.
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6.4. Multi-Agent Exploration

Of particular interest in this experiment is the ability for the rendezvous

algorithm to overcome the communication restriction and yet maintain

the increase in speed that multiple-agent robotics promises. We would

like to demonstrate a significant increase in exploration speed, even

accounting for the time to rendezvous.

As our metric for measuring speed increase in exploration, we used

the change in mapping speed, S = A
T , where A is the percentage of the

environment that has been mapped, and T is the time to complete the

mapping.

Since the experiment was constructed so that the occupancy grid

matched the size of the bounded environment, we use the number of

cells in the occupancy grid that contained information of any kind

(occupied or not) as our measure of the size of the mapped environment.

The increase in speed of the mapping process is then given by

Equation 18,

∆S =
Scombined − Ssingle

Ssingle
(16)

=
Ac
Tc
− As

Ts
As
Tc

(17)

=
Ac
As

Ts
Tc
− 1 (18)

We take the area of a single agent, As to be the area explored by

the active agent, and the time of the single agent Ts to be the time

allowed for the exploration process alone. The combined area, Ac is

the explored area of the merged maps, and the combined time, Tc is

the time to explore. Ts added to the time to rendezvous, Tr so that

Tc = Ts + Tr.
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Once the maps from the two agents are merged, it is then possible to

determine how much of the environment was explored by the two agents

together, giving the increase in explored speed, compared to the efforts

of a single agent. Recall that each data point in the preceding graphs

represents the mean of 25 trials. The increase in explored areas over all

25 trials was a minimum of 42.8%, and on average 49.4%. If the agents

were capable of merging their maps immediately after the exploration

phase, then Tc = Ts, and the increase in area is exactly equal to the

increase in speed. However, this ideal situation is equivalent to total

communication, and is not realistic.

There are two possible ways to interpret the exploration speed re-

sults: the first treats each exploration iteration and rendezvous iteration

as a single time increment, as if travelling through a graph where each

arc is of time-length 1, and Tr is simply the number of rendezvous

iterations.

Table II shows the speed increase in the algorithms in the zero-

noise case, using this graph-like model of the exploration process. Each

datum is the average of 25 trials; if the agents failed to meet (e.g. due

to the exponential algorithm), then the change in mapping speed, ∆S

was set to 1.0.

Table II. The speed increase using the
graph-like model of the world, in the
zero-noise case. Each number is the av-
erage of 25 trials.

Algorithm % Speed Increase

Sequential 49.1 %

Smart-Sequential 38.1 %

Exponential 21.1 %

Random 46.7 %
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Only the exploration speed of the exponential algorithm was seri-

ously degraded by the rendezvous process. Figure 13 shows the change

in exploration speed as the noise is increased.
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Figure 13. Increase in exploration speed as a function of noise. Environment
modelled as a graph.

Characteristically, sequential performed extremely well over the ma-

jority of the noise range; smart-sequential did well in the low-noise

range, however once the noise began to dominate the measurements,

smart-sequential’s performance was considerably degraded. These re-

sults reassuringly corroborate on a general level the numerical and

simulation results. In fact, figure 13 is compelling support for multiple-

agent robotics in general; an increase of speed of up to 50% in the

exploration task is still available. It is a problem for future work to

show that this increase in speed is possible in general.

7. Rendezvous using Real Robots

All of the prior simulation experiments assumed the simulation sensors

were ideal; noise was explicitly applied in order to approximate real

sensors. Odometric error was assumed to be negligible. Issues of path-
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planning were simplified to allow the robots to pass through each other

in space, rather than investing time in allowing the simulated agents to

detect each other during the exploration stage. These are all assump-

tions that are not valid once a real robot is being used. We therefore

present a proof of concept, that, in fact, the rendezvous method is

possible and useful on real robots.

7.1. Experimental Method

In this final experiment, we examine the feasibility of our rendezvous

strategy on a pair of actual robots in our laboratory. The experiment

was conducted using two mobile robots, a Nomad 200 and an RWI

B-12. Both robots are essentially cylindrical, and quasi-holonomic, in

that they are capable of turning with 0◦ radius. The Nomad 200 is

50cm in diameter, and has 16 sonar transducers equally separated by

22.5◦. The RWI B-12 is 27cm in diameter, and has 12 sonar transducers

equally separated by 30◦. Although the Nomad 200 has an onboard 486

processor running Linux, all computation was performed off-board, on

two SGI Indigo platforms, and a Pentium platform. The communication

between the robots and their controlling platforms was wireless.

Figure 14 show the robots moving through the maze in the labora-

tory. The right panel of the figure shows the robots standing next to

each other, having made a successfully rendezvous.

The experiment was held in a laboratory space measuring 550cm

by 840cm. The walls were free-standing corrugated plastic, 60cm high,

taped together for structural integrity, and stood off the floor with

angle-brackets, measuring 10cm long. The total wall length, including

bounding walls, was 50.4m.
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Figure 14. The robots exploring the maze, and then making a rendezvous.

7.1.1. Sonar sensors

The sensor that was used throughout these experiments was the sonar

sensor, which is a range sensor only. Consequently, all our distinc-

tiveness function candidates relied upon range information only. The

maximum range of the robots5 is 8m for the Nomad, and 13m for the

RWI. The range precision is ±2.54cm for the Nomad, and ±1.07cm

for the RWI. By using the sonar to measure the distance to obstacles

around it, the robot can acquire a metric map of its environment. There

do exist more sophisticated sonar models such as developed by Klee-

man and Kuc (Kleeman and Kuc, 1994), Wilkes (Wilkes et al., 1991),

Borenstein (Borenstein et al., 1996) and Lacroix and Dudek (Lacroix

and Dudek, 1997) that can recognise and deal appropriately with sonar

artefacts in our model. However, our simple model of the sonar pulses,

combined with some simple outlier handing, is sufficient for the lim-

ited purposes of our experiments; a more sophisticated sonar model

would be more appropriate for long-term exploration and environment

modelling.

5 Assuming speed of sound at 330 m/s.
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7.2. Experimental Results

7.2.1. Trajectory

Figure 15 shows the trajectories of the robots moving through the maze.

The RWI B-12’s trajectory is shown in the left panel, and the Nomad

200’s trajectory is shown in the right panel. It should be emphasised

that the maps were overlaid by hand for clarity, and the robots had

no embedded knowledge of the layout of environment. Also overlaid on

the images are the landmark positions that were chosen by the robots

for rendezvous.

1
2

3

1

2

3

a. Nomad 200 trajectory b. RWI B-12 trajectory

Figure 15. The landmark selections of the two robots overlaid on their trajectories.
The triangles represent points where the robots considered potential landmarks. The
ranking of the landmarks in the final landmark set is shown as well.

The trajectories consist of collections of points, separated by large

areas of space. These “islands” of points were areas of the environment

explored using local potential field descent. Once a local potential min-

imum had been reached, the robot used breadth-first search to find a

new area that was known to be clear, yet low in potential (i.e., seen

but unexplored).

Although gradient ascent was used in the simulations, it was not

used in these experiments due to the small size of the environment.
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Notice that the Nomad chose a point in the upper corridor as its best

rendezvous location, whereas the RWI chose a point in the inner maze.

This is no doubt due to sensor differences between the two robots.

7.2.2. Rendezvous

This single experiment provides the clearest support for our approach,

in demonstrating a need for establishing some appropriate behaviour if

the initial rendezvous attempt is unsuccessful. As Figure 15 indicates,

the two robots did not choose the same point in the environment for

the best rendezvous location. The robots made a successful rendezvous

on the 4th attempt among the three landmarks, since they were using

the sequential method of exploration.

Figure 16 shows the result of map merging. The map merging was

performed manually. Although algorithms exist to merge maps gath-

ered by heterogeneous agents (Ishioka et al., 1993), that problem is not

the focus of the present work.

Figure 16. The final map created from the merged data acquired by the two robots.
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The most important conclusion that was drawn from the experiment

using the real robot is that the methodology we have chosen for achiev-

ing rendezvous is practical. The fact that the robots failed to meet on

the first iteration of the rendezvous cycle is a very convincing piece of

evidence that the rendezvous problem is substantially more complex

than simply choosing a place to meet in the environment.

8. Conclusion

In this work, we have described the new problem of performing ren-

dezvous between multiple mobile agents. The objective is to overcome

practical communication limits by periodically having the agents con-

verge and share information. In this manner, we increase the speed of

operation of the multiple robot system compared to the single robot sys-

tem, while eliminating the traditional assumption of infinite range, full

bandwidth communication between agents. We are specifically inter-

ested in multiple-robot exploration of an unknown environment where

communication is limited to short-range line of sight. Furthermore, we

developed a methodology that does not depend on any particular task

such as exploration, is trajectory independent and does not require any

memory-intensive spatial representations. Although our implementa-

tion does take advantage of metric information that is provided by the

exploration algorithm, our rendezvous methodology can be decoupled

completely from the underlying primary task.

We divided the rendezvous problem into two separate subproblems.

The first is determining what points in the environment constitute

good rendezvous locations, or landmarks. We addressed this problem

by modelling the environment as a function of the sensors; this function
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gave rise to a distinctiveness surface, defined over the domain of the

environment. We then chose landmarks at the local extrema of the sur-

face, limiting our knowledge of the surface only to those points that the

agents have visited. Which points the robot visited was dictated by the

trajectory prescribed by the underlying task, and so we demonstrated

how to overcome these trajectory dependencies.

Our use of distinctive locations as landmarks is related to the psy-

chology of human attentive vision and, in particular, to the selection

of targets for pre-attentive vision. Although we have used only a sonar

range-sensor throughout this work, it is easily extended to other sen-

sor modalities, such as computer vision. For example, the notion of

using distinctiveness to define domain-independent features has been

employed for visual navigation (Sim and Dudek, 1998). Of course, the

particular distinctiveness metric is a function of the sensor modality;

the distinctiveness measure used in this paper is easily replaced with a

camera-specific measure without loss of generality.

While the problem of rendezvous reduces, in the idealised case, only

to the task of choosing the best point in the environment to which the

robots should converge, this is in fact an inappropriate idealisation.

In the formalisation of this problem, we identified 3 key parameters

that characterise the problem. We showed that a number of different

points in the environment must be chosen for meetings, and these

points must be visited in some intelligent manner for rendezvous to

be achieved reliably. These parameters we have called sensor noise,

map commonality, and asynchrony.

This problem of which appropriate behaviour to use in choosing

the landmarks to visit is the second of the two subproblems of ren-

dezvous. We proposed two main classes of algorithms, deterministic

and probabilistic, and gave examples of each class of algorithm. In
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order to determine the characteristics of the algorithms, we gave a

closed-form analysis of the worst- and expected-case complexity of the

algorithms at points in the parameter space. This closed-form analysis

was complemented by a numerical description of the performance of

the algorithms at a range of points in the parameter space.

Finally, we demonstrated the rendezvous algorithm in use both in

simulation and on physical robots. The simulation tests were used as

a confirmation of the numerical results. Within the class of determin-

istic algorithms, there were different regions that favoured different

algorithms. These results were confirmed by both analytic closed-form

solutions of section 3, and idealised numerical simulations of section 5.

The physical experiments served as a proof of concept for the explo-

ration and rendezvous algorithms, and we concluded with a map of

an environment that resulted from the collaborative exploration and

subsequent successful rendezvous within our laboratory of two robots.

An interesting conclusion from these results is that, depending on

a combination of these confounding factors, no strategy is canonically

a good or bad choice - under the correct circumstances, a heretofore

poor choice of algorithm can outperform the erstwhile winner. The

exponential algorithm, while generally a poor choice, will outperform

the other algorithms when asynchrony is a problem but sensor noise is

not. It may be, however, that determining the true operating conditions

is sufficiently difficult that smart-sequential is usually the best choice.

Further experiments in realistic robot situations is needed to be able

to tell how difficult it is to determine the operating conditions.

The physically-based simulation demonstrated that, although it is

much harder to isolate the parameters in a physical sense, many of

the main conclusions were upheld, despite several complicating fac-

tors that were not part of the numerical simulation. Furthermore, the
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physically-based simulation demonstrated that an increase of speed

is still attainable with a multiple robot system using the rendezvous

approach to communication. The experiments using physical robots

gave a compelling demonstration that the rendezvous algorithms are an

essential part of the rendezvous process; the assumption that the robots

will meet on the first iteration is simply untenable. Despite very similar

sensors and configurations, and a high degree of overlap between the

agents, the robots required 4 rendezvous iterations before they could

successfully meet and share information.

Only a small number of rendezvous algorithms were considered for

this work. There is a body of literature on online search methods, of

which rendezvous is a subclass. Algorithms that were not considered

here may have particular utility in different regions of the problem

space.

Of the analysis presented in this work, only limited but critical parts

of the parameter space were examined. Further examination is neces-

sary for examining the behaviour of the algorithms under conditions of

worsening noise, worsening asynchrony, and perhaps most importantly,

conditions of landmark commonality. It is likely that as time passes,

the areas explored by the agents will overlap more and more; analysis

of the performance of the algorithms under these conditions would be

useful.

One open problem is the ability of the agents to choose the appro-

priate rendezvous algorithm. A major part of this problem is allowing

the agents to estimate the environmental parameters, and identify the

correct portion of the parameter space that identifies the environment.

At no time did the agents attempt to estimate the experimental pa-

rameters; the agents did not use any environmental information in

the algorithms. Allowing the agent to vary the parameters, such as
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constants in the stochastic algorithms, as rendezvous succeeds or fails,

may have considerable power. It may also be interesting to investigate

stochastic estimates of performance for the rendezvous algorithms.

The only consideration used by the algorithms for choosing which

landmark to visit was the distinctiveness of the landmark. Given the

sometimes substantial mechanical complexity of travelling between two

landmarks, a better algorithm would consider the mechanical complex-

ity of visiting landmarks in addition to its distinctiveness, so that of

two landmarks with similar distinctiveness, the closer landmark would

be visited first.

Although we have dealt primarily with two-agent systems, the work

is in principle easily extended to larger collections of agents, or swarms.

The probabilistic algorithms are symmetric across agents, and there-

fore adding new agents is trivial. The deterministic algorithms can be

extended to larger swarms, simply by dividing the swarms into pairs.

However, implicit in large robot swarms are complex issues of task

division and interference, and so it is no way clear that the same kind

of speedups that are observed for two-agent collectives will be observed

for larger collectives. There may also be intelligent ways to use larger

collectives to avoid long-distance travel by transmitting information

from agent to agent over several scheduled rendezvous. Further exper-

iments are required to determine how information propagation affects

the speed of task completion.
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