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{dudek,simra}@cim.mcgill.ca

Abstract— We discuss a software environment for multi-
robot, multi-platform mobile robot control and simulation.
Like others, we have observed that mobile robotics research
is greatly facilitated by the availability of a suitable simulator
for both vehicle kinematics as well as sensing, and have
created an environment that permits this while allowing a
large measure of device independence. By using a multi-
processor internet-based architecture, our platform permits
multiple users to use a variety of programming interfaces
(visual, script-based or various application programming
interfaces (API’s)) to rapidly prototype methods to control
multiple heterogeneous robots both in simulation and in real-
world settings. We present an overview of our architecture
and discuss its future directions.

I. I NTRODUCTION

In this paper, we describe a software system and
associated architecture for controlling groups of mobile
robots. Robotics, and particularly mobile robotics, is a
problem domain that entails an exceptional requirement
for the integration of multiple software and hardware
technologies. In order to construct a truly effective mobile
robot, several extant problems in computational percep-
tion, artificial intelligence and discrete control must be
solved simultaneously. As the mechanical systems for
mobile robotics research have matured it has become
increasingly feasible to implement robotics sensing and
navigation techniques in a device-independent manner.
Further, the use of a standardized interface between robot
control software and, concomitantly, higher-level modules
greatly facilitates research on the integration of and in-
teractions between different components that constitute a
mobile robot system. We will describe a mobile robot con-
trol architecture that facilitates the use and combination
of different software subsystems and different hardware
platforms, providing a uniform and simple, but versatile
interface to the user.

In this paper we focus on a particular software package
calledRoboDaemonthat serves as a nexus for both robots
and other software subsystems. By virtue of its role as
an interface between components, this software package
plays a critical role in defining an entire architecture (the

Fig. 1. A core problem: how to control multiple, heterogeneous robots
through a uniform interface.

McGill Mobile Robotics Architecture, or MMRA) for
mobile robot control. In this paper, however, we confine
our attention to the role of this single package itself since
it provides somewhat better focus. It should also be noted
that the role of connecting different devices and subsys-
tems has also been approached recently in the context of
robot operating systems and special purpose programming
languages. While there are common themes to our own
in such work, this work is particularly well suited to
experimentation and rapid prototyping as opposed to the
development of high performance applications.

One of our objectives has been to construct an infras-
tructure that would allow researchers to combine software
and hardware modules for different mobile robotic sub-
problems. This has been necessary if only to permit the
investigation of specific research problems that are our
primary objective. In many ways, this mirrors the issues
being faced by the community at large: to develop systems
that integrate results not only from multiple individual
researchers, but from multiple teams and institutions, each



Fig. 2. TheRoboDaemongraphical user interface

of whom may employ different robotic hardware or who
may favour different programming environments. Such
an objective involves motivating different individuals and
groups to adopt components of one another’s systems in
the first place; that task motivates this work, but it is
outside the scope of this discussion. Equally important,
it presupposes that a mechanism and infrastructure exists
that permits subsystems to be combined with limited
effort, assuming there exists an underlying motive. (In fact,
adding functionality to an existing subsystem is usually
attractive to researchers if the infrastructure facilitates it.)

RoboDaemon, a core component of our infrastructure
and control system, provides a variety of such services,
namely the abstraction of robotic and sensing program-
ming interfaces away from the low-level devices, the abil-
ity to develop robotic applications in a multi-user setting,
and the ability to operate in full simulation when hardware
resources are scarce, slow or expensive to operate. The
objectives of our effort have many commonalities with
other general-purpose robot control systems such as the
Task Control Architecture[1], [2] (TCA) and the related
systems TCX and IPC, theReactive Action Package[3],
[4] (RAP), the RAVE architecture [5], or even the sub-
sumption architecture [6], [7]

A. Objectives

The objectives of our archtecture are to provide robotics
researchers with an abstract programming layer that pro-
vides access to a variety of robotic and sensing platforms.
Included among the goals of the project are:

1) Hardware independence.We have implemented
robot drivers for a variety of vendors (including No-
madics, RWI and Cyberworks), providing users with
an abtraction layer, allowing for vendor-independent
application development (Figure 1).

2) Multi-sensor platform. Our architecture facilitates
multiple sensing capabilities on each instantiated
robot, including sonar, laser, infra-red sensing and
video.

3) Multi-user platform. Our architecture employs a
client-server model to allow multiple users to collab-
orate in the control of a single, or multiple, robots,
working alone or together in the real world, or in
one or more simulated worlds.

4) Multi-interface platform. We provide both graphi-
cal and command-line interfaces for user commands
and feedback (Figure 2). Furthermore, we have
implemented network-based clients for a variety of
popular programming languages.

5) Fully simulated environment. When hardware re-
sources are scarce or cumbersome to operate, or
where time is of the essence, the user may opt to
use simulators for any of the supported hardware
platforms. Simulation includes modelling of robot
kinematics (including noise models), sensor prop-
erties and the environment in which they operate.
The user has the ability to instantiate simulators in
parallel and real-time with real robots, or to operate
in instantaneous mode, enabling the rapid evaluation
of the outcome of user algorithms.

6) Extensible environment.Our architecture provides
interfaces for extending functionality and behavior.
A plug-in interface provides access to low-level
functionality, enabling, for example, the addition of
new graphical interfaces, collision-avoidance modes,
or random map-generation features, while a mod-
ule interface provides the ability to access external
computational services, such as out-sourcing map or
image data processing.

B. Outline

In the remainder of this paper we discuss related work,
and the problem of promoting the integration of robotics
solutions. We continue with an exposition of the architec-
ture, provide an illustrative example, and discuss some of
the realized benefits and challenges. Finally, we close with
a discussion of open problems, shortcomings and findings
from our work.

II. RELATED WORK

Several research groups have considered the issues of
building systems to control mobile robots. While our work
is directed primarily at rapid prototyping and the support
of diverse hardware and software systems and interfaces,
related work on architectures for mobile robots has served
as an important precursor.

Several authors have considered task planning as it ap-
plies to robotic systems. While the range of contributions
is too long to enumerate, systems that combine planning



with exception management are particularly noteworthy.
PRS (Procedural Reasoning System) [8] is a schema-
based system that is particularly suited to goal and sub-
goal management and dealing with the sequencing and
interaction between subgoals. PRS interacts with a “lower
level” egocenteric representational framework called LPS -
Local Perceptual Space which is core to the Saphira robot
control package. The Saphira system [9], [8] uses LPS and
shares several objectives and features withRoboDaemon.
Saphira is also based on a client-server model of robot
control whereby the robot provides a set of basic functions
that can be used to interact with it. Like the system
described here, it allows for extensibility on the part of
end-users, although as far as we know the process is
substantially more intensive than either the “plug-in” or
scripting facilities we seek to provide.

The execution support language deals with task and goal
management and provides rich mechanisms for dealing
with failures and exceptional events [10], [11]. IPEM and
similar systems also show their key strength in the domain
of planning, plan monitoring and exception handling [12].
In our work we place very little emphasis on planning
per seand assume it is handled by either a higher level
supervisory system or (in the case of reactive planning) by
systems below the level of abstraction of what we describe
here.

ROGUE [13] is an architecture built on a real robot
which provides algorithms for the integration of high-
level planning, low-level robotic execution, and learning.
Somewhat closer to this work is the Task Description
Langauge (TDL) and its sibling Task Control Architec-
ture (TCA) [14], [15]; architectures based on language
extensions to C++. These provide mechanisms to facilitate
planning, exception handling and inter-task communica-
tion and synchronization via TCA. Like the present work,
TCA uses a centralised process control mechanism. Again,
the emphasis in that work is more specifically on real
time control and on planning than in the present work
where a premium is put on ease of use, user interface and
flexibility.

Several powerful commercial systems have also been
developed, such as ControlShell by Real-Time Innova-
tions. However, as observed in [16] their closed nature
makes them difficult to integrate into an research environ-
ment except in special circumstances.

III. PROMOTING INTEGRATION

In many cases integrating the results of disparate re-
searchers depends critically on having this objective in
mind from the outset of a project life cycle. While it is
possible to retrofit existing subsystems to work together,
it is usually infeasible due to limits on available time and
energy.

In addition, several projects have, understandably, fo-
cussed on the examination of what can be accomplished
using a uniform consistent formalism which makes all the
components of the systems adhere to a single methodology
and communications mechanism. Systems based on the
subsumption architecture, for example, were originally
composedin principle of components that canall be
described as simple finite-state automata [6], [7] and
which communicate with one another using a specific class
of abstraction mechanism1. While such an approach serves
to exemplify the potential of a given approach, and even to
simplify design, it can frustrate progress2. Further, since
researchers are governed by their own peculiar tastes, it
discourages widespread adoption.

In this work, we focus on factors that make the system
readily acceptable to potential researchers working on
particular subsystems. Three most important factors that
have contributed to this acceptability are:

1) making basic functionality easy to learn and accom-
plish,

2) providing intuitive and informative, yet unobtrusive,
feedback on system behaviour, and

3) providing readily available facilities that would be
difficult to replicate otherwise.

a) Ease of acquisition:Persuading researchers to
adopt a framework for system integration involves an
undeniable component of salesmanship. While being easy
to learn is not, in fact, a critical attribute for long-term
users or system functionality, it has proven very important
in attracting users initially (especially since they are often
on tight schedules, even with their initial implementation
efforts).

b) Informative feedback:A common difficulty in
working with abstracted interfaces is the lack of infor-
mative diagnostic information when failures occur “under
the hood”. Users are also often frustrated by black-box
interfaces that fail to produce an expected result. Finally,
textual output can be useful to diagnose some failures but,
in a robotics context and particularly in simulation, visual
output can be far more compelling and informative.

c) Facilities: The third aspect that encourages adop-
tion is the provision of facilities and features that would
be cumbersome to replicate otherwise. In the case of
robot controllers, essential features include a high level
of control abstraction (so that the developer can ignore
the underlying actuation problems in moving the robot),
robust simulation and sensor modelling, and rich visual-
ization tools for observing sensor output and obtaining

1Several highly capable systems have been constructed using this
architecture and it is possible to relax the standard design constraints
if necessary.

2For example, the widespread successful adoption of the C program-
ming language is partly attributed to its frighteningly lax enforcement of
stylistic and syntactic rules, for example with respect to type checking.
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Fig. 3. RoboDaemonand the MMRA architecture.

feedback on the robot’s state. It should be noted that this
goal is often in competition with the ease of use criteria
and it is important to keep this tension in mind when
adding new features.

In addition to the attributes noted above, there are
several additional features that we believe are important
for a widely acceptable common infrastructure.

IV. SYSTEM ARCHITECTURE

Figure 3 provides an overview of theRoboDaemon
package in the context of the MMRA architecture.Ro-
boDaemon’s core role is to receive client connections and
manage a set of instantiated robots. The robot instances
may interface to real robots through device drivers and
wireless connections, or may instead communicate with
simulated counterparts.RoboDaemonalso provides visu-
alization tools and a set of plugins that define high-level
robot behaviours. Finally,RoboDaemonprovides a module
interface that facilitates inter-process communication with
subsystems that perform CPU-intensive processing tasks.
In the remainder of this section we will discuss the various
components of the architecture.

A. Simulation

Hardware simulation has become a major factor in
many domains. Despite this, many robotic systems have
only limited simulation abilities and only a few can
realistically simulate the performance of their sensors.
In many ways, a poor simulation is worse than none at
all as it leads to false expectations. The advantages of
an effective simulation are threefold: demand on scarce
or high-maintenance resources is reduced; extensive sets
of experiments can be readily developed, conducted and

Fig. 4. Simulated camera viewpoint.

exhaustively examined; and experiments can be repeated
when anomalies are detected.

There are three aspects to simulation in our architec-
ture: robot modelling, sensor modelling, and environment
modelling.

• Robot models: We have endeavoured to produce
accurate kinematic models of our robots. This in-
cludes not only addressing the motion properties of
the robot, but also idiosyncracies such as quantization
error (for example, the differential drive on the No-
madics Scout exhibits significant quantization error
when rotations are induced), and appropriate noise
models for odometry error.

• Sensor models: We employ the sonar simulator
described in [17], [18] which takes into account
attenuation, beam width, multi-path reflections and
material reflectivity. We have also developed a laser
simulator and modeled noise properties as a function
of distance, as well as accurate models of blind spots
and the pose of the real sensor on our real robots.
Finally, through our plugin and module interfaces,
we have developed camera simulators that render
the robot’s view point using OpenGL or PovRay
(Figure 4).

• Environment models: Part and parcel with sen-
sor modelling is the problem of representing the
environment with sufficient accuracy. Furthermore,
different problem domains require different levels of
realism. Our core environment facility employs pla-
nar polygons to represent walls and other obstacles.
The reflectivity of these polygons can be controlled
individually, and texture maps can be applied for
visual sensors. Furthermore, we have additional tools
for converting large sets of real sonar and laser
data into line segment models for producing realistic
simulations of planar environments.



B. Run-time Modes

RoboDaemonhas a variety of run-time modes to suit
the needs of developers:

• Real-time vs instantaneous events:While the robot
simulators are event driven, it is possible to turn off
the clock, allowing events to be processed without
delay. The primary benefit of instantaneous mode is
that long simulations can be sped up, allowing for
faster debugging and completion times.

• Synchronous vs asynchronous control: Robo-
Daemonallows the user to define the level of in-
teraction they will have with the robots. For many
applications, stop and shoot mode is sufficient, not
to mention straightforward to debug, whereas more
intensive applications call for continuous velocity and
acceleration control. A variety of safeguards are taken
to ensure that a robot in asynchronous mode avoids
collisions. These modes also apply equally to real and
simulated agents.

C. User Interface

As we have mentioned,RoboDaemonsupports both
command-line and graphical user interaction. The server
also facilitates remote interaction using telnet or one of
the client API’s. The graphical interface supports robot
creation, point and click navigation, map editing and user-
defined buttons for higher-level commands. Visualization
is a key component of the debugging process and the path
of the robot (both real, if known, and odometry-based),
sensor measurements, and user-defined notes can all be
plotted visually. Furthermore, the user is not restricted to
using the built-in X11 client, but can turn any command-
line connection to the server, local or remote, into a GUI
event stream for contructing custom GUI’s.

The command-line interface provides a slightly richer
set of primitives to work with than the GUI. In addition to
common navigation commands, the user can specify local
variables and macros, execute shell escapes, read a script
of commands from file, and examine and set various inter-
nal parameters controlling sensing and individual robots.
The overall design is object oriented, such that each robot
can be configured individually, and each connected user
can set their own shell preferences.

D. Network-Based Client Support

As mentioned, the system implements a client-server
model, allowing multiple clients to connect, possibly from
remote locations. Our current set of client API’s include C,
C++, Perl, and Java. It is also possible to simply connect
and supply commands in ASCII format. The versatility of
this approach is obvious– multiple users can gain access to
the robotic hardware, in the language of their preference.

E. Robot Drivers

Our multi-vendor implementation currently supports
Nomadics Scouts and Nomad 200 robots, RWI B-12, and
Cyberworks robots. We have implemented simulators for
all of these models, as well as a generic cylindrical robot
simulator (on which the Nomadics and RWI simulators are
based), and an ever-popular Point-Robot Simulator, which
is convenient for studying theoretical problems without the
burden of additional safety constraints. Among our current
projects is the development of a driver and simulator for
Sony Aibo robots.

F. Embedded Plugins and External Modules

One of the core goals of this project is the facilitation of
subsystem integration. This goal is often circumvented by
incompatible programming interfaces and data types. We
provide two venues for users to extend the functionality
of the architecture, often with minimal revision to the
imported system.

a) Plugins: Plugins provide a method for extending
coreRoboDaemonfunctionality. The plugin interface is an
API that gives the programmer access to robot, gui and
shell internals. Examples of ideal plugins are renderers
for camera simulation, new GUI extensions, and path
planners. A key feature of the plugin interface is that new
plugins can be created and loaded dynamically without
recompilation of the core system.

b) Modules: Modules provide an extremely power-
ful method for system integration. The module interface
allows users to import commands from other running
processes by interfacing with that process’ command line
interface.

We illustrate the interface by example. We have a soft-
ware package, called Rhys, that processes range images in
order to fit geometric models[19]. Rhys operates through a
command line interface. The module interface allows the
RoboDaemonuser to run an instance of Rhys and import
all of the commands available in Rhys toRoboDaemon.
For example, if Rhys has a command called’fit’ , one
can call the command’rhys.fit’ in RoboDaemon.
Map and robot data is shared with the module using simple
file formats, and it is possible for a “RoboDaemon-aware”
application to send explicit commands back toRoboDae-
mon for execution. The module interface requires only
that the subsystem can operate through a command-line
interface. The key point to be noted is that modules can
be developed independently of the MMRA architecture,
in whichever programming environment the developer
prefers (in fact, Rhys was developed long before the
current version ofRoboDaemonwas written).

V. VALIDATION

Our experience withRoboDaemonhas suggested it
meets several of its key design goals. In particular, we



Fig. 5. Cooperative localization setup. (Figure courtesy Yiannis Rek-
leitis)

have observed that unfamiliar users can acquire a working
knowledge and implement control algorithms rapidly.

Specifically, we have found that students in an introduc-
tory robotics course having no prior robot programming
experience are able to learn the interface and design
and test sensor-based robotics algorithms in limited time
(for example wall following, obstance avoidance, etc.).
Typically, students are able to produce working proto-
types within a week (concurrent with other course work)
assuming they already understand the algorithms to be
used. The quality and utility of the simulation is further
validated when the resulting algorithms were tested on the
real robots in our laboratory with a roughly 85% success
rate for algorithms that worked well in simulation (and
failures due primarily to incorrectly set parameters).

RoboDaemonalso meets the need for enabling sub-
system integration. For the purposes of illustration, we
present here an example of how the platform has been
used to integrate research from various sources in our
laboratory. The results of these experiments have been
reported elsewhere [20].

Our recent work on contructing visual maps requires
that a collection of training images be obtained with
ground-truth position information as to where the images
were collected[21]. Related research in our lab entails us-
ing multiple robots to perform “cooperative localization”
whereby a laser range finder mounted on an observing
robot is used to locate the pose of a second robot with
a mounted target[20]. Furthermore, the cooperative lo-
calization method employs Rhys, the line segment fitting
software described above.

The scenario we are faced with is one in which three
processes (mapper, localizer, and line fitter) must interact
to control two robots with distinctly different sensor
configurations (one with a laser, the other with a camera)
(Figure 5). RoboDaemonacts as the intermediary, ser-

Fig. 6. Odometric (x) vs Tracker-corrected (o) trajectories of the robot.

Fig. 7. Robot viewpoint during exploration.

vicing sensing requests and motion commands, enabling
images to be added to the mapper and employing Rhys
to outsource data processing. The localizer interfaces with
RoboDaemonwith the C API over a TCP/IP socket, while
the mapper collects images throughRoboDaemonand
obtains the ground truth pose estimates with the Perl
API. Rhys can operate in the background as a module,
although in our example it was connected to directly by
the localizer. Figure 6 illustrates the error-prone odometry-
based trajectory of the robot versus the “ground truth”
obtained from the laser setup. One of the images collected
for the visual mapper is depicted in Figure 7.

VI. D ISCUSSION

We have presented an architecture for robotic applica-
tion development in a heterogeneous linguistic, vendor
and user environment. Our architecture provides a rich
set of facilities and features that encourage the integration
of subsystems, and allows for both real-time control and
maintenance of a collection of robots as well as full
simulation of their kinematics and sensor properties. We



believe that a core development and control environment
such as the one presented here is essential to the succes-
ful development of complete, functional robotic systems.
Our future work involves the ongoing development of
this platform, including increased integration with other
robotic platforms and with other researchers’ navigation,
localization and map-building solutions.
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