
Map Validation and Self-location in a Graph-like World �

G. Dudek1, M. Jenkin2, E. Milios2, D. Wilkes3

1MCRCIM, McGill University, Montreal, Canada, H3A 2A7
2Dept. of Computer Science, York University, Toronto, Canada, M3J 1P3

3Dept. of Computer Science, University of Toronto, Toronto, Canada, M5S 1A4

dudek@mcrcim.mcgill.edu, fjenkin, eemg@cs.yorku.ca, wilkes@cs.toronto.edu
1(514)398-4325, 2(416)736-5053, 3(416)978-7726

Abstract

We present algorithms for the discovery and use

of topological maps of an environment by an ac-

tive agent (such as a person or a mobile robot).

We discuss several issues dealing with the use

of pre-existing topological maps of graph-like

worlds by an autonomous robot and present al-

gorithms, worst cases complexity, and experi-

mental results (for representative real-world ex-

amples) for two key problems. The �rst of these

problems is to verify that a given input map is

a correct description of the world (the valida-

tion problem). The second is to determine

the robot's physical position on an input map

(the self-location problem). We present

algorithms which require O(N2) and O(N3)

steps to validate and locate the robot in a map

(where N is the number of places in the map).

�This paper appears in the Proceedings of IJCAI 1993,
Chambery, France, August 1993. Financial support from
NSERC Canada, and the Ontario-Quebec interchange pro-
gram is gratefully acknowledged. We also thank Xiaotie Deng
and Andy Mirzaian for many helpful discussions.

1 Introduction

One of the problems confronting an autonomous mobile

robot is that of maintaining an internal description of

its environment. Without a useful internal representa-

tion (a map) and knowledge of the robot's position and

orientation with respect to this map, many robotic tasks

become di�cult, if not impossible. Some tasks may be

amenable to behaviour-based approaches, and for such

tasks an internal description of the environment may not

be required, for example [Brooks, 1986; Brooks, 1989;

Connell, 1990; Arkin, 1990]. For other tasks, especially

complex structured tasks, which are speci�c to particu-

lar landmarks in the environment, a map of the environ-

ment is crucial. If the robot is to have a map, what form

would this map take, and how should it be acquired?

There are many possible ways in which a map can be

built. Perhaps the simplest is to have the map input

manually (o�ine). Although an attractive approach due

to its ease of implementation, a manually crafted map of

the environment may not be the best map for the robot

to use; the features and structures most natural for hu-

mans may not correspond well to features and structures

to which the robot has sensory access. It may be better

to have a robot create the map itself.

Several map representations have been proposed in the

literature. These include: metric representations [Ay-

ache and Faugeras, 1989; Latombe, 1991; Lumelsky and

Stepanov, 1987; Cox, 1989; Elfes, 1987], which explicitly

model the two or three dimensional position of struc-

ture in the environment, probabilistic representations

[Meng, 1987; Smith and Cheeseman, 1986], which retain

many metric properties in the representation, but aug-

ment the representation with uncertainty information,

graph-based representations [Kuipers and Levitt, 1988;

Davis, 1986; Basye and Dean, 1990], which represent

locations of interest. Hybrid maps, which combine el-

ements of each of these representational levels have

also been proposed [Engelson and McDermott, 1992;

Arkin, 1990]. Integration of a map within a reactive

framework has been explored [Mataric, 1992].

When an autonomous agent explores its own environ-

ment, the fundamental problem that the robot has to

address is the \have I been here before" problem. If the

environment is modelled in a metric manner, this prob-

lem can be viewed as equivalent to the following: Given

the current position and orientation of the robot (known

with a particular covariance error matrix with respect

to a world-centered coordinate system), has the robot

been previously at that same position with the same ori-

entation, but via a di�erent path? If the environment

is represented in a graph-like manner, the question be-

comes \have I visited this location before", and if so

which entrance did I use last time I entered here?

In previous work [Dudek et al., 1991; Dudek et al.,

1988] we described and analyzed an algorithm for build-

ing a graph-like map of an a priori unknown world (see

also section 3). This work assumes that a topological,

rather than metric, description of the world is desirable

at some level in a descriptive hierarchy [Kuipers and

Levitt, 1988]. A graph-like map was chosen because it

represents the minimal information that a robot must

be able to sense in order to distinguish one place from

another. The exploration algorithm allows the robot to

form a model of its world by exploring the world sys-

tematically with the use of one or more distinct markers

that can be dropped and picked up at will. These mark-

ers can be recognized if they are found on the path of the

robot. The exploration algorithmworks by building up a

known subgraph of the world, exploring unknown edges

incident on the known subgraph, and thus incrementally

adding to it. The algorithm requires the robot to make

O(N3) moves between locations in the worst case, where

N is the number of distinguished locations in its envi-

ronment. These locations correspond to vertices in the

graph-like map that is produced while the moves corre-

spond the edge traversals. Note that it is not possible for

the robot to explore its environment without some navi-

gational aid. As an example, regular graphs of the same

degree (i.e. graphs in which each vertex has the same

number of incident edges, equal to the degree) are indis-

tinguishable from each other without markers, because

each vertex appears identical to every other vertex.

This paper addresses two related problems: Given a

map of the world, how can an active agent (robot) deter-

mine whether the map is correct in its description of the

connectivity among locations. This is the map valida-

tion problem. A related problem is: given a map, how

can an active agent determine its current location and

orientation on the map (the self-location problem),

where \orientation" is equivalent to the correct corre-

spondence between the map edges and the world edges

incident on the correct location.

2 The World Model

The algorithms presented in this paper operate on an

augmented graph-like representation of the world which

is de�ned below. Although the pros and cons of such

a representation are beyond the scope of this paper, we

view this abstraction as a lowest common denominator

for real robotic systems, yet as nevertheless rich enough

to represent location in a meaningful way.

2.1 De�nitions

The robot's \purpose in life" is to use its ability to act

and to perceive in the graph domain in order to build

an augmented graph1 which is isomorphic [Guibas and

Stol�, 1984] to the �nite world it has been assigned to

explore. The robot's inputs are its sensations and it can

interact with the world only through its actions.

1By an augmented graph we mean a graph as well as con-
straints on how it is embedded.

The World The world is de�ned as an embedding of

an undirected graph G:

G = (V;E)

with set of vertices V and set of edges E. Note that

in practice such a graph could be de�ned within a con-

tinuous environment based of landmarks or other fea-

tures [Kuipers and Levitt, 1988]. The vertices are de-

noted by:

V = fv1; :::; vNg

We will restrict the world model to graphs G that con-

tain no cycles of length � 2, i.e. the graph contains

no degenerate or redundant paths. This restriction pro-

hibits the world from having multiple edges between two

vertices or an edge incident twice at the same vertex.

The de�nition of an edge is extended slightly to allow

for the explicit speci�cation of the order of edges incident

upon each vertex of the graph embedding. This ordering

is obtained by enumerating the edges in a systematic

manner (e.g. clockwise if the graph is planar) from some

standard starting direction. An edge Ei;j incident upon

vi and vj is assigned labels n and m, one for each of

vi and vj respectively. n represents the ordering of the

edge Ei;j with respect to the consistent enumeration of

edges at vi, m represents the ordering of the edge Ei;j

with respect to the consistent enumeration of the edges

at vj . The labels m and n can be considered as general

directions, e.g. from vertex vi the nth exit takes edge

Ei;j to vertex vj .

Movement and Action The robot can move from

one vertex to another by traversing an edge (a move), it

can pick up a marker that is located at the current ver-

tex, and it can put down a marker it holds at the current

vertex (a marker operation). The robot in general has

K markers at its disposal.

Assume the robot is at a single vertex, vi, having en-

tered the vertex through edge Ei;l. In a single move, it

leaves vertex vi for vertex vj by traversing the edge Ei;j,

which is r edges after Ei;l according to the edge order at

vertex vi (see Figure 1). This is given by the transition

V_i

V_l

V_j

E(i,j)
...

0
1

2
r

Figure 1: Edge ordering

function:

�(vi; Ei;l; r) = vj

We assume the following property about the transition

function:

If �(vi; Ei;l; r) = vj and �(vj ; Ei;j; s) = vk, then

�(vj; Ej;k;�s) = vi.

This implies that a sequence of moves is invertible, and

can be retraced. We also assume that there does not ex-

ist a t 6= �s such that �(vj; Ej;k; t) = vi and that there

does not exist a t such that �(vj ; Ej;k; t) = vj, i.e. there

are no redundant or degenerate paths.

A single move is thus speci�ed by the order r of the

edge along which the robot exits the current vertex,

where r is de�ned with respect to the edge along which

the robot entered such vertex. Note that in the special

case of a planar embedding of a graph, enumeration of

edges in a clockwise fashion satis�es the above assump-

tion.

Perception The robot's perception is of two kinds,

marker-related and edge-related perception.

Marker-related Perception. Assume that the robot

is at vertex vi, having arrived via edge Ei;j. The

marker-related perception of the robot is a K-tuple

Bs = (bs1; bs2; :::; bsK), where bsk has a value from

the set fpresent; not�presentg, according to whether

marker k is present at vertex vi.

Edge-related Perception. The robot can determine the

relative positions of edges incident on the vertex vi in a

consistent manner, e.g. by a clockwise enumeration (in

the planar case) starting with Ei;j. As a result, it can

assign an integer label to each edge incident on vi, rep-

resenting the order of that edge with respect to the edge

enumeration at vi. The label 0 is assigned arbitrarily

to the edge Ei;j, through which the robot entered ver-

tex vi. The ordering is local, because it depends on the

edge Ei;j. Entering the same vertex from two di�erent

edges will lead to two local orderings, one of which is

a permutation of the other. Note that if the graph is

planar and a spatially consistent (e.g. clockwise) enu-

meration of edges is used, then two permutations will be

simple circular translations of each other. But this will

not hold in general, and in this paper we only assume

that the edges can be ordered consistently. If the robot

visits the same vertex twice, it must relate the two di�er-

ent local orderings produced and unify them into a single

global ordering, for example by �nding the label of the

0-th edge of the second ordering with respect to the �rst

ordering. Determining when the same vertex has been

visited twice and generating a global ordering for each

vertex is part of the task of the following algorithms.

3 Map building: exploration

In earlier work ([Dudek et al., 1988; Dudek et al., 1991])

we demonstrated that in general it is not possible for a

robot to explore and map an unknown environment with

this sort of limited sensory perception. Additional infor-

mation is required. This is not a particularly startling re-

sult: fairy tales, and mythology are full of stories of heros

who avoided becoming lost within a maze by dropping

markers or unwinding string as they went. The basic

problem is that, when the explorer enters an unknown

environment, he cannot always determine if he has re-

turned to a previously visited location.

In these earlier papers it was also demonstrated that,

as long as the explorer had a single unique marker which

could be dropped and picked up at will, it was possi-

ble for the explorer (or robot) to fully map his environ-

ment (an arbitrary graph) within O(N3) steps (although

complexity for most typical cases appears substantially

better than this worst-case bound). The basis of the al-

gorithm is the maintenance of an explored subgraph of

the full graph. As new vertices are encountered, they

are added to the explored subgraph, and their outgoing

edges are added to the set of edges that lead to unknown

places and therefore must be explored.

The cost of exploring the graph in terms of edges tra-

versed by the robot (mechanical complexity) is O(N3),

where N is the number of nodes. This follows from the

need to go back and actually visit all of the locations

in the known sub-graph to solve the \have I been here

before" problem. Often it is not necessary to explore an

environment completely from scratch. A map may al-

ready be available and it may su�ce to determine if the

existing map of the world corresponds to its current state

and, if not, to determine where the two are inconsistent.

4 Map validation

The map validation problem is de�ned as follows. The

robot is given a map of its environment, and it is told

which map vertex is its current location and also the

correspondence between one map edge incident on the

current map vertex and a physical exit from the cur-

rent physical vertex. This gives the robot a position and

orientation with respect to the map. The problem is

to determine whether the map is correct. One issue is

whether this can be done more e�ciently than full ex-

ploration. This paper gives an algorithm for validation

that requires at most O(N2) moves of the robot.

The key idea underlying the validation algorithm is to

construct a spanning tree rooted at the current vertex

(a simple operation [Bondy and Murty, 1976]), to verify

the presence in the world of that tree �rst, and then to

verify the remaining edges of the graph-like world (which

is akin to an exploration task). We now describe the

algorithm, in the case in which the robot is equipped

with a single movable marker.

1. Validate a spanning tree rooted at the start position.

(a) Compute a spanning tree ST of the map,

rooted at the initial vertex v0.

(b) Validate ST .

This involves backup up the tree in the manner

of the exploration algorithm to verify that every

vertex on the tree is unique and has a local

signature (degree) matching the corresponding

vertex on the map. This has complexity (N2+

N)=2 or O(N2). If this validation fails, the

entire validation fails.

2. Validate the edges outside the spanning tree, by

checking that they connect the correct two vertices.

The e�cient way to do this is to check all edges that

are incident on a single vertex with a single physical

traversal of the graph.

For each vertex vi of the graph (connected to at

most N � 1 vertices)

(a) leave the marker there

(b) visit all neighbours of vi, vj of the map via ST

(O(N) e�ort)

(c) for each vj (having an edge (vi; vj) accord-

ing to the map) check physically whether edge

(vi; vj) exists by traversing it and looking for

the marker at the other end.

Step 1 is based on traversing the spanning tree for the

graph. A graph's spanning tree has O(N) nodes and

O(N) edges and thus this step requires O(N2) moves

of the robot. Note that a graph's spanning tree can be

computed e�ciently [Bondy and Murty, 1976].

Step 2 requires, in the worst case, O(N2) moves.

Thus, the entire algorithm requires O(N2) moves in the

worst case.

In the case in which we have at least N movable, dis-

tinguishable markers available, we can save a substantial

number of moves by making a single re-traversal of the

spanning tree to validate all non-tree edges. In this case,

O(M) moves may be required in the worst case, for M

the number of edges in the graph.

For the case of k markers, where k < N , we cut the

number of traversals of the spanning tree by a factor k

(a) (b)

Figure 2: Stages in validating a graph. The graph was
validated with itself starting with the correct location
and orientation. Edges that have been validated are
drawn with a thicker line. Note that non-spanning tree
edges are validated in one direction at a time and these
are drawn half thick/half thin with the thicker end corre-
sponding to the validated end of the edge. The location
of the robot is indicated with a square and the location
of the marker is indicated by a diamond. (a) shows the
validation algorithm after the validation of the spanning
tree, while (b) shows the validation algorithm after val-
idating half of each of the graph edges. This graph was
correctly validated.

by placing all k markers at di�erent vertices, and then

traversing the spanning tree ST once for this marker

placement, thereby validating the edges incident on all

k vertices.

Figure 2 shows the state of the validation process at

two stages in the validation of a simple graph. Figure 2a

shows the validation process after the validation of the

spanning tree of the graph, while Figure 2b shows the

same graph after half of each of the graph edges have

been validated. Treating this graph as a map, two cor-

rupted versions and the point of failure of the validation

process are shown in Figure 3. Figure 3a is a graph

having an extra edge. The validation process (indicated

by the heavy lines) fails in the spanning tree validation

stage as the spanning trees do not agree (the degree of

one of the nodes on the spanning tree is incorrect). Fig-

ure 3b shows a corrupted world in which the spanning

trees agree but in which the graph edges are incorrect.

Here the spanning tree is veri�able, but the graph edges

disagree.

(a) (b)

Figure 3: Two graphs which fail when being validated
by the map given in Figure 2. (5 a) fails as the spanning
tree cannot be validated, while (b) fails because a non-
tree edge is incorrect.

5 Self-location and validation if the

current position and orientation is

unknown

Now consider the more general problem in which the

robot is given a map of its environment, but is not told

its location and orientation with respect to the map. In

this section we show an algorithm for performing two

tasks at once: validating the correctness of the map,

and, in case the map is correct, �nding the correspon-

dence between the map and the world. The latter is the

self-location problem, which in our case involves

identifying the initial vertex on the map and/or the cor-

rect "orientation" (i.e. the mapping between physical

exits from that vertex and map edges incident on that

vertex).

Two major issues are involved here:

1. Under what conditions does the problem have a

unique solution? In graphs with symmetries it may

not be possible to uniquely identify the robot posi-

tion.

2. Can the problem can be solved e�ciently? This pa-

per gives an algorithm for self-location problem

that uses O(N3) moves.

To solve the general problem, we �rst form all possi-

ble hypotheses using the given map, corresponding to all

possible initial vertices and orientations (i.e. their refer-

ence edges) in the map. The number of such hypotheses

is
X

i=1::N

degree(vi) 8 vertices vi 2 V (1)

IfD is the maximumdegree of any vertex, the number of

hypotheses is O(ND). Assuming that D = O(N), there

are O(N2) hypotheses in total (in typical real environ-

ments D << N).

The idea of the algorithm is to carry out exploration

but, at the same time that we form the explored sub-

graph S and the list of unexplored edges U, we also es-

tablish a correspondence between their elements (ver-

tices and edges) and elements of each hypothesis. Such

a correspondence creates expectations about the vertices

and edges that are being explored, which, when violated,

cause the rejection of a hypothesis. In other words, the

robot "imagines" that each hypotheses is correct until

this is contradicted by what is found in the real world.

The above algorithm is identical to the exploration al-

gorithm described in [Dudek et al., 1991], except that

additional data structures are added to it. We gener-

ate one map for each hypothesis, and we establish links

from the edges and vertices of each hypothesis to the

edges and vertices of the explored subgraph. With each

step of the exploration algorithm, we scan all of the hy-

potheses and then check whether their expectations are

satis�ed, rejecting the hypotheses for which they are not.

It should be noted that in realistic situations, pruning of

most hypotheses would occur extremely quickly. For ex-

ample, all hypotheses that have an incorrect degree for

the starting node are immediately falsi�ed. The algo-

rithm that performs self location has three major stages,

each of which consists of an exploration action and result

followed by management of the set of map hypotheses.

These stages are as follows.

Exploration action: Vertex Validation. A step of

the algorithm consists of the selection of an unexplored

edge e from U , and validation of the vertex v2 at the

other end of edge e = (v1; v2). Validation of the vertex

consists of placing the marker there and visiting all ver-

tices of S, staying inside S, looking for the marker. If the

marker is found at vertex vi of the explored subgraph,

then vertex v2 is identical to the already known vertex

vi.

Hypothesis testing action: Vertex validation.

Each hypothesis expects a speci�c vi, and if the true vi is

not the expected one, the hypothesis is rejected. For the

remaining hypotheses, vi is linked with the appropriate

vertex, as well as all the incident edges.

Exploration action: Vertex in S and Edge order-

ing. In case vertex v2 is in S, edge e = (v1; v2) must be

assigned an index with respect to the edge ordering of

vertex v2. To determine this, the robot drops the marker

at v1 and goes back to v2 along the shortest path in the

explored subgraph S. At v2, it tries going out of the

vertex along each of its incident edges. One of them will

take the robot back to v1, which the robot will immedi-

ately recognize by the existence of the marker. Note that

the index of e with respect to the edge ordering of v1 is

known by construction. Edge e is added to the subgraph

S and removed from U .

Hypothesis testing action: Vertex in S and Edge

ordering. Each hypothesis expects a speci�c index for

e with respect to vertex v2, and therefore if the true index

is not the same as expected, the hypothesis is rejected.

Exploration action: Vertex not in S. If the marker

is not found anywhere in S, then vertex v2 is not in the

subgraph S and therefore must be added to it. The

unexplored edge e is also added to S, which has now

been augmented by one edge and one vertex. Edge e is

the reference edge for vertex v2. All other edges incident

on v2 are assigned an index with respect to it and added

to U .

Hypothesis testing action: Vertex not in S. Each

hypothesis expects a speci�c degree for v2. Therefore, if

the true degree is not the same as expected, the hypoth-

esis is rejected.

The above algorithm performs validation and self-

location simultaneously, since only the following cases

are possible:

1. The map is correct, in which case a single hypothesis

will not get rejected until the whole graph has been

explored. This hypothesis establishes the proper

mapping between the map and the world.

2. The map is correct and contains symmetries, in

which case more than one hypothesis may remain

valid until the end. In this case we can safely dis-

card all valid hypotheses but one (they are identical

anyway), and use it for solving path planning prob-

lems in that world.

3. The map is incorrect, in which case all hypotheses

get rejected sooner or later.

In the case of a correct map with symmetries, the self-

location problem is unsolvable without additional infor-

mation. Examples of additional information which may

be brought to bear include: metric information on dis-

tances and orientation, the ability to check whether a

region with a given cycle as its boundary contains a ver-

tex not belonging to the cycle, or the ability to decide

which side of an edge a vertex is on - treating edges as

in�nite lines that divide 2D space into two [Levitt and

Lawton, 1990].

6 Discussion and Conclusions

We have considered issues relating to the use of a priori

maps of an environment. A realistic problem is that of

how to deal with changes to the environment or errors

in the map. We call this the map recovery problem:

given a partially incorrect map of an environment, how

can one (optimally or near-optimally) determine where

the errors in the map are and correct them. This could

arise, for example, either is a map was constructed in-

correctly or if the environment changed. Assumptions

are the same as those for the validation algorithm. Of

course, if the map is totally di�erent from the world, one

has to discard it and run the full exploration algorithm.

In general, there are various ways in which one map can

be modi�ed to produce another; the precise de�nition

of optimality is crucial. However, if we limit the allow-

able set of transformations, it may be possible to devise

e�cient algorithms for �xing a \defective" map. For ex-

ample, possible constraints could be: to assume damage

is local, only node deletion might be allowed but no node

addition, only edge deletion might be allowed, etc. Many

such constraints have real world analogues (for example,

only edge deletions might correspond to navigating in an

o�ce where some of the doorways had been closed). We

leave this as a future research problem.

We have presented new algorithms that suggest how

a mobile robot might make use of a priori maps of a

known environment. The self-location and map val-

idation problems suggest how a robot with a map could

initially begin using it once out of the packing crate it

was shipped in. The algorithms presented here have

been implemented and a number of experiments has been

conducted on several types of random graphs [Bollobas,

1985]. Comparisons between the actual performance of

the exploration and the validation algorithm, as well as

three-dimensional examples, are presented in [Dudek et

al., 1993]. In another paper of this proceedings [Dudek et

al.,], the case of exploration without markers is being

examined.

References

[Arkin, 1990] R. Arkin. Integrating behavioural, per-

ceptual, and world knowledge in reactive navigation.

Robotics and Autonomous Systems, 6:105{122, 1990.

[Ayache and Faugeras, 1989] Nicholas Ayache and

Olivier D. Faugeras. Maintaining representations of

the environment of a mobile robot. IEEE Journal of

Robotics and Automation, Vol. 5, NO.6:804{819, 1989.

[Basye and Dean, 1990] Kenneth Basye and Thomas

Dean. Map learning with indistinguishable locations.

In M. Henrion L. N. Kanal J. F. Lemmer, editor, Un-

certainty in Arti�cial Intelligence 5, pages 331{340.

Elsevier Science Publishers, 1990.

[Bollobas, 1985] B. Bollobas. Random Graphs. Aca-

demic Press, London, 1985.

[Bondy and Murty, 1976] J. A. Bondy and U. S. R.

Murty. Graph Theory With Applications. North-

Holland, New York, 1976.

[Brooks, 1986] R. Brooks. A robust layered control sys-

tem for a mobile robot. IEEE Journal of Robotics and

Automation, 2(1):14{23, March 1986.

[Brooks, 1989] R. Brooks. A robot that walks: Emer-

gent behaviours from a carefully evolved network.

Neural Computation, 1(2):253{262, Summer 1989.

[Connell, 1990] J. Connell. Minimalist Mobile Robotics:

A Colony-style Architecture for an Arti�cial Creature.

Academic Press, Boston, MA, 1990.

[Cox, 1989] I. Cox. Blanche: Position estimation for

an autonomous robot vehicle. In Proceedings of the

IEEE/RSJ International Workshop on Robots and

Systems (IROS), pages 432{439, 1989.

[Davis, 1986] Ernest Davis. Representing and Acquiring

Geographic Knowledge. Pitman and Morgan Kauf-

mann Publishers, Inc., London and Los Altos, Cali-

fornia, 1986.

[Dudek et al.,] G. Dudek, P. Freedman, and S. Hadjres.

Using local information in a non-local way for map-

ping graph-like worlds. In this proceedings.

[Dudek et al., 1988] G. Dudek, M. Jenkin, E. Milios,

and D.Wilkes. Robotic exploration as graph construc-

tion. Technical Report RBCV-TR-88-23, Research in

Biological and Computational Vision, Department of

Computer Science, University of Toronto, 1988.

[Dudek et al., 1991] G. Dudek, M. Jenkin, E. Milios,

and David Wilkes. Robotic exploration as graph con-

struction. IEEE Trans. on Robotics and Automation,

7(6):859{864, 1991.

[Dudek et al., 1993] G. Dudek, M. Jenkin, E. Milios,

and D. Wilkes. Map exploration, validation and self-

location in a graph-like world. Technical report, De-

partment of Computer Science, York University, 1993.

[Elfes, 1987] A. Elfes. Sonar-based real-world mapping

and navigation. IEEE Journal of Robotics and Au-

tomation, 3(3):249{265, 1987.

[Engelson and McDermott, 1992] S. P. Engelson and

D. V. McDermott. Maps considered as adaptive plan-

ning resources. In AAAI Fall Symposium on Appli-

cations of Arti�cial Intelligence to Real-World Au-

tonomous Mobile Robots, Cambridge, MA, 1992.

[Guibas and Stol�, 1984] L. Guibas and J. Stol�. Prim-

itives for the manipulation of general subdivisions and

the computation of Vornoi diagrams. ACM Transac-

tions on Graphics, 4, 1984.

[Kuipers and Levitt, 1988] B. Kuipers and T. Levitt.

Navigation and mapping in large-scale space. In AI

Magazine, pages 25{43, 1988.

[Latombe, 1991] Jean-Claude Latombe. Robot Motion

Planning. Kluwer Academic Publishers, Standford

University, 1991.

[Levitt and Lawton, 1990] T. Levitt and D. Lawton.

Qualitative navigation for mobile robots. Arti�cial

Intelligence, 44(3):305{360, August 1990.

[Lumelsky and Stepanov, 1987] V. Lumelsky

and A. Stepanov. Path-planning strategies for a point

mobile automaton moving amidst unknown obstacles

of arbitrary shape. Algorithmica, 2(4):403{440, 1987.

[Mataric, 1992] M. Mataric. Integration of representa-

tion into goal-driven behaviour-based robots. IEEE

Transactions on Robotics and Automation, 8(3):304{

312, June 1992.

[Meng, 1987] A. Meng. Free space modelling and geo-

metric motion planning under location uncertainty. In

Workshop on Spatial Reasoning and Multisensor Fu-

sion, pages 430{440. Morgan Kaufmann, 1987.

[Smith and Cheeseman, 1986] R. Smith and P. Cheese-

man. On the representation and estimation of spa-

tial uncertainty. International Journal of Robotics Re-

search, 5(4):56{68, Winter 1986.

