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Abstract

The combined problems of sensor eccor modelling and
the exploration of unknown environments are funda-
mental aspects of autonomous robotics. We consider
these ptoblems in the coatext of mappiag an unknown
closed environment with a sonar sensor, .

This leads to three issues at different levels of ab-
straction: modelling the characteristics of the sensor,
dealing with the unavoidable anomalies in the data ob-
tained, and constructing a long-tesm representation of
the eavironment. An important aspect of this parti-
tioning of the problem is that it takes us {rom local
quantitative descriptions to large-scale symbolic ones.

This paper presents algocithms for extracting obsta-
cle contours [rom sonar data, that accounts for the
properties of sonar modelled in our previous work. This
work 1s then related to work on the high-level problem
of constructing & map of an unukaocwn enviroament.

Our model of sonar range sensing for robot naviga-
tion accounts for multiple reflections of the sonar signal
belween Lransrussion and reception. This gives more
realistic results than previous models. This controlled
data-acquisition methodology can be subsequently used
10 compare techniques for the interpretation of the ac-
quired data.

From this model of sonar sensing itself, a new model
for inferring coherent reflecting surfaces 1s developed,
based on an assumption of coherent smooth sucfaces
1a the world. This is accomplished by using an “energy
based minimization” algorithm to reject sonar measure-
ments that are not consistent with an ¢ preor¢ world
model.

Finally, we briefly discuss a representation for large
s¢ale structure of the environment that is based only on
hie topological interrelation hetween places of interest

and the paths conpecting them.

1 Introduction

The evolution of autonomous tobotics depends criti-
cally on the ability to navigate in. unknown environ-
ments. This is true not only because of the imprac-
ticality of ohtaining and encodng sufficiently accurate
maps of many places of interest, but also hecause even
in well-known environments things are liable to chauge
over time.

Ia the process of building and using a map of an un-
known enviconment, at autonomous robot must also
rake into account the characteristics and fallibilities of
its sensors. Jn general, this implies having a notion of
what kinds of errors the seasor is prone to as well as
how to deal with them. We consider map constsuction
using sonar data, In doing so, we deal with the issuc
of modelling the sensors, integraling uareliable mea-
sucements and constructing a model for a large-scale
environment. Although we deal with sonar range sens-
ing, the conclusions and methodologies we preseut are
applicable to other ranging technologies.

This paper describes an accurate and reprocucible
model for sonac range scosing and presents an algo-
rivhm for fitting obstacle contours to such data. We set
the work in the context of our related research on sonat
modelling and tmap building for two reasons. First, the
algorithm is successful largely because it accounts well
for the peculiarities of sonar range measurement, that
can only be understood through caceful modelling ot
sonat devices. Second, the algorithm forms a bridge
hetween the low-level sonar data and our high-level ex-
ploration algorsthm.

Acoustically based sensors have been used in a num-
ber of different robotic systems|2, 11]. Acoustic sensors
measure the time of (light frors the seusor to matersal
in the environment. The technology is simple. 1nexpen-
sive, and easily available. Sonar range sensing refers
1o techuologies for emitting sound signals and measur-
ing the characteristics of the echo that veturns. The
commonest form of sonar range sensing - the one we
will address here - 15 based on emitting a sonar signal
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and measuring the time delay until an initial echo is de-
tected. This provides a particularly siaple and econom-
:eal method for distance measurement. One commonly
weed commetcial system is the Polaroid time-of-flight
package. This unit utilizes the same technology that is
available in Polaroid cameras. The unit sends out an
ultrasonic pulse and records the delay to the reception
of an echo. Given the speed of sound in ait the distance
to the target can he estimated, The output of a single
such sensor provides limited information about the en-
vironmeat; by taking the output of several sensors at
different locations and orientations an fairly complete
ostimate of the surrounding structure can be obtained.

Of the various possible sensor arrangements, the
most common is a ring shaped one. Each unit s fired
in sequence, and radial distances to surfaces are recov-
ered. The platform containing the sensors can be moved
between presentations, and the known motion of the
sensor platform and the sonar responses at different
locations ace integrated into a description of the cur-
rent location. By moving the robot between scans, and
knowing the distance and direction of motion between
scans, it is possible to integrate the measurements into
a cescription of objects in the environment.

Such data is often idealized as a set-of infinitely thin
beams that return the distance to the closest susface. Ia
ceality, the finite beam thickness, the reflectance prop-
ecties of the objects being sensed, and the possibili-
vies of mutiple reflections are important issues. For
example, sonar scans which are not perpeadicular to
an object may be reflected away from the sonar unit
and Jost, or they may be bounced off other objects in
the environment leading to incorrect distance measure-
ments citewilkes1090, McKerrow!990. In addition, it is
not possible to completely and accurately specify the
motion of & robot. For example, each time a robot
moves theve i+ some slippage between the wheels and
the surface. As these measurements are compoundexd
over & number of steps the effect of this error is cumu-
lative. Aftes a numbec of steps the ertor associated with
carly measurements can become unacceptably large.

Tn this paper, we begin by briefly reviewing our worlk
on sonar moclelling. Followiag this, we preseut an &lgo-
rithm that behaves well in the presence of the types of
error characteristic of time-of-flight sonar devices. Fi-
nally. we desceibe the relationship of this work to our
carlier work on mapping of unknown environments.

2 Analysis of data acquisition

There are several complexities involved in the anal-
ysis of simple “range” measurements. First, the re-
turn signal detected by the system may have followed
a path from the transmitter involving multiple refiec-
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tions, rather than a single reflection. Secoad, the ve-
turn signal may have originated off the aiming axis of
the transmitter (since power is not coucentrated along
a single line). Third, diffraction may play a role ia the
propagation of the sound encrgy.

In order Lo study ways of dealing with such sensor éc-
rors, it has psoven very useful to construct an accurate
model of these unpleasant realitics. We begin with a
description of single-suiface intevactions [9] and elabo-
rate it 1o deal with these other factors. The availability
of a model which accurately captures these features al-
lows sensor integration methods to be validated quickly
and with data that can be precisely replicated from one
execution to another. The result is & model that sim-
ulates and models the behavior of multiple mndividunal
sonar “rays”. Sample signal paths are followed from
the trapsmitter, threugh bounces and diffracrion, back
to the receiver.

The model is premised on several assumptions about
the behavior of sonar signals in normal circumstances.
First we assume predominantly specular reflection of
the sonar signal from surfaces, and that floors and ceil-
ings can safely be ignored due to the large angle of
incidence. For the typical sonar frequencies. reflection
from most wall surfaces are primarily specular. To ac-
count for out-of-plane structures such as floors, we may
run our two-dimensional simulation on different cross-
sections of the environmeat to recover rehiable range
readings. For example, the simulation could be run
o one horizoatal and one vertical cross-section intes-
secting the transducer, er (with slight modi fication) on
several parallel cross-sections of the environment. We
assume that the sonar system responds only to the first
occurrence of the reception of a signal over the thresh-
old strength, in a given trial. Also. we assume that
vhe rangefinder incorporates an amplifier whose gain
increases linearlv with time to conipensare for the dis-
petsion of the signal into space (thix ix also consisten!
with commonly-used technology). Other parameters of
the model include transducec impulse response and she
catio of the strengths of a specularly reflected signal
and & signal diffracted from a straight edge [15].

Undler the assumptios that the objects reflecting the
sonar pulse of wavelength A are at distances = much
targer than i’% from a cirenlas transducer with cadius a.
the impulse response of a transducer at angle o 0 the
<onar wavefront is givea by [9]
2crcosa <:"3(I—'2:/’-’:)2

«?sin’ o

halt.z,e,0) = (1)

w6 *Sina
for ¢ the gpeed  of gound in the environment,
te [Lz=aztine, Juswmaine], 404 0 < o] < §. Note that
hg is just the delta function 8(t — 2zfc) when o = 0
(the wavefront leaves/hits all parts of the transducet
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stimultancously ).
Knowing the impulse response and the waveform of

the sonar "chirp” allows us to determine the relative
strengch of each soaar vay as it travels through space,
as a (unction of the transmission angle and reception
angle, Thus, we can determine the time of flight of
ke first sonar ray that is sufficiently strong to trip the
cdelection citcultry,

Below ix an example rua of our sirnulation on a simple
simulated enviconment (figure 1). The model has been
validated against simple real soaar data [13].

3 Data integration

An algocithm {ollows which takes sonar measurements
from a riag-like collection of sonar sensors and inte-
grates the measurements over a number of positions in
order to build up & room description. The two princi-
ples motivating this approach aré the aeed 1o suppress
data that is due to suspected sensor actifacts and is
inconsigtent with an a priori world model, and the ac-
cumulation of information ovey time. The algorithm
has been designed with the [ollowing featuces in mind.

e Soaar response eccors are not well modelled by a
sunple white Gaussian process. In particular

— The effect of the finite pulse width and side
lobes of the sonar pulse will result 1o system-
atic crrors in reported sonar distances. For
example, this will result 1o false responses
neatr poiuts of high curvature (e.g. corners).

— There is a critical angle for sonar signale
which will result 1n partial to full signal reflec-
tion away from the sonar unit when the pulse
is not sent perpendicularly to a susface. In
mmany cases the response will not he lost, but
rather will be reflected off some other struc.
ture in the environment and thea back to the
sonar wnit, cesulting in a false response. [or
example, right-angled cocners typically have
a sonar appearance identical to that of a flar
wall at the distance of the corner. perpendic-
wlac to vhe transducer auming direction.

¢ There must be some mechaunism for “lorgetting”
older sonar measurements as the error in the posi-

tion of the responses relative to the current posi-
tion of the robot will grow.

e There must be some mechanisni to guide the robot
in its exploration task. I[decally the mechanism
should act to reduce the uncertainty of the cur-
rent mmterpretation of structure in the environmment,

rather than simply following a preset path.

The types of errors associated with sonar measure-
ments ace not well represented by normally distributed
ecvor functions. Rather the criors are very system-
atic and highly structured. Techniques such as fitting
straight lines to the sonar data using least squares ot
somie sirnilar measure are likely to also fit straight lines
Lo the erroes. Rather than consider such an approaci,
this paper proposes Lo use active contours to describe
structure in the enviconment. The version ol cthe al-
gorithm presented below is designed to operate i au
envitonmeat that can be characterized by closed cou-
tours. This is typical of iudoor eavicoments or man-
mmade outcloors ones. It uses repealed sensor scans to
derive the position of structures, and it uses the current
interpretation to drive the exploration process.

4 The Algorithm

The robot interacss with its environment in Lwo ways,
The robot can perform a sonar scan with its sonav ring
and read the ceturned values [rom the scanr, and 1t can
move a given distance in a specified direction subject
to the presence of objects in its environment. As each
valid sonar point is retwraed, it is integrated into the
global sensory map which is described below.

The goal of the algorithm iy vo obtain a description
of objects in the environment given the results of previ-
ous sonar scans. Internally, the robot will represent its
environment as a collection of closed, non-intersecting
two dimensional contours C' = {c}, as shown in figure
2. One of these contours, ¢, is distinguished in that
it contains all of the other contours within 11, and for
all other contours ¢; and c; it is not the case that c;
contains or intersects ¢;. At each iteration of the algo-
rithm, the robot will move, perform a sonar scan. and
then integrate the new measurements into C'. Initally
co 18 set to the contour {ormed by joining the witial set
of sonar measurements together in a racial fashion.

The algorithm also maintamns an external energy sur-
face E(%). This surface is initialized to zero, and is
npdated as new sonac cesponses are recorded, or when
sonar responses are aged. This energyv surface is used in
fitting the contours to the sonar cesponses. The energy
sutface is similar 1o occupancy models of representa-
Lion by Elfes (7], except that there the representational
sutface 15 a probabilistic representation of the presence
of structure in the environmerit, while in this paper the
energy surface is an additive field allowing for the abil-
iLy to subtract previously given supportl.

Whenever a sonar scan is made, the robot obtains
a list of distances {and directions) to structures i the
environment from the sonar units. Tlhis scan gives sup-
port for the exiglence of solid structure in the environ-

rnent at a number of different places (where the sonar
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Pigure 2: Contours representing the environment.

< inferred Lo have been reflected), as well as the pres-
ence of free space (the straight line from the robot to
the reflection point). The robot mtegrates these two
potential sources of information into the description of
the egvironment in two ways. First, the support for
true structure in the eavironment is integrated into an
encrgy model which 1s ased to “vote” for structurc in
the environment. Votes are “counted” in the energy
surface £(F). Fach positive response voles by adding
to the local energy surface near Zo. The support s
modeled as

() = ~Ly{||F = Al* + 1) (2)

The ray {rom the robot to this vote region is also
cecorded in the energy susface as a region of positive
response, indicating support for {ree space along bhis
diroction (see figure 3). As each sonar response 18
vecorded, ils support is added to the energy surface.
After a sufficiently lacge number of measurements have
been nade, the energy surface begins to appeat quite
siiuilar to the description of the room. Aclditional
localization information (such as the free space a rohot
has passed through during the exploration of its envi-

=

ronment), or the presence of obstacles, (indicated by
'he collision of the robot with structuce In the envi-
ronment), can easily be integrated into this eneérgy sur-
face.

As additional sonar measurements are made, thev
are added to the energy surface. Older sonar measure-
rments, which ace deemed 1o be no longer positionally
accurate, can be subtracted from the encrgy suriace.
Note that this type of operation 15 not possible if the
OCCUPANCY SPACE S snterpreted in a probabilistic man-
Jer. The basic rask that the robot considers i solving
this energy surface in order to oblan room and object
cdescriptions.

The second way in which the snformation g inle-
erated into the scene description is through the by poth-
asis of a new, unoccupied region formed by connecting
the returaed sonar measurements obtaiaecl by the cut-
vent scan. This region is logically added Lo the existing
(ree space region(s) as idenufied by the active contours
(described helow). The resulting region is tepically ha-
ludes crroneous outliers and the active contonr Halnre
of the representation is then used to combine Ls new
region with existing measurements.

A crive contours or snakes are a computational mech-
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Figure 3: Energy update value as a funclion of distance to an obstacle.

anism for fitting a contour to an energy surface. Snakes
have found applications in zero finding, object track-
ing, and stereopsis{8]. A snake Is an energy-minimum-
seeking structure composed of an ordered sequence of
knots. The total energy of a snake (parameterized by
v(s) = (r(e),y(s)) is given by[8]

Ermukl: o /E““:(S) + Eimuge(s) ds (3)

where £, vepresents the internal enecgy of the spline
due to beading and Ei,q. represants the image {occes
As the contours we are usiag are closed no special pro-
cessing is required at the ends of the snakes. Following
[8] the internal spline energy can be written

Eini = al8)[va(s)]* + B(s)|vauls)? (4)

The two terms of the internal spline energy enforce dif-
ferent kinds of smoothness onto the contour, distance
{controlled by a(s$)) and curvature (controlled by B(=)).
Either type of curvature (or both) could be used to con-
trol the forn of the snake. ‘

The Einag. term is used to fit the active contour to
the sonar points obtained by the robot. Whenever a
sonar weasurement is oblained, the E, ., term is up-
dated az described earlier. The collection of snakes §
are then used as starting points for an updated object
wmodel. The soakes seek local minima in ovder Lo mini-
mize theie total energy.

These s no ceason 1o assume that the minima se-
lected by the snakes will be conveniently arranged so
that no two contours intersect, nor is the minimum
seeking process guaranteed to drive individual snakes
to unique solutions. Thus the minima selected by
the snakes may violate the simple noa-intersection,
uon-containing assumptions described earlier. In or-
der to reform the snales back to the non-intersecting

model described earlier, the regious identified by the
snakes are broken down into simiple non-intersecting
non-containing regions, except for the outermost re-
gion so. This allows the snakes to identify obstacles
as well as the exierior boundary of the robot’s loca-
tion. The process of taking the regions identified by the
snakes and reducing them to simpler non-intersecting,
non-containing regions s accomplished by projecting
the closed regions described by the snakes onto an ar-
vay, and then performing boundary tollowing on the
resulting binary image using a tunction that performs
like Papert’s turtle. which is described in [l]. Snakes
which encompass extremelv small locations with exter-
nal Eingye near zero are discarded.

It is also possible for this process to miss spatial ce-
gions that are small relative to the sonar pulse spacing
or knot spacing. Regions which have no snake allocated
1o them but which have a high local Einqp values can
be easily identified and snakes inserted in order to try
to identify these regions as true objects. This is not
attempted in the curcent implementation.

The robot explores its enviconment by moviug ro-
wards the snake point which has the laigest £,
term. Such a point has eithee been interpolated {pos-
sibly over an opening), or may have been drawn away
from real structure. When the robot moves towards this
wall (traversing through the known empty space) and
then performs a sonar scan, it updates the local energy
surface. The sonar scan sent near the suspect point
either hits a solid surface {which decreases the iy
term), or passes through it (leaving behind a large pos-
itive path) which will niove the snake away from the
robot. Of course, the layout of the room may be such
thar the robot cannot navigate directly rowards tlins
suspect point, but the process of traversing through an
occupancy graph is well known and many solutions ex-
ist in the literature[13]. Iu the current implementation.
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the recovered contours are used to identify the point
towards which the robot should move, and the robot
movas in that direction under human control. Ongoing
work seeks to automate this process. The exploration,
scan, and snake updating process continues until no
point exists with an £, . term greater than a partic.
ular tolerance. At this point the environment is said to
have been explored,

As sonar information is only added to the enesry sur-
face through known sonar scans, sonar data can be eas-
ily aged by remembering the positions of scans, and
then removing the additive effect of 4 scan from the
eaergy surface. The snakes then are no longer under
the effect of the measuremen! and can move accord-
ingly. This aging process allows for older, less accurate
measurements to be forgotten.

o Sample Run

Figure 4 is a partial floorplan of the 7th floor of the Ross
building at York University. Note that the floor consists
of 2 number of hallways with central regions. Initially
the robot was dropped near the elevators  and allowed
to roam the halls. Figure 5 shows the explored region
after 10, 20, 30, and 40 moves. Note that during the
exploration the robet successfully identifies the central
block of the departrnent, and that by the 40th move
the floorplan obtained by the robot s essentially the
floorplan of the building.

As the vobot explores, support from true structure
in the scea¢ becomes an anchor for the active contours,
As new regions are identified, the sonar scan pushes the
sinakes mto unknown areas, while the exisling measure-
ments keep the snakes connected to the reality of earlier
Measurements.

6 Map Construction

The availability of stable descriptions for each place
allows a global map interconnecting these places to
be constructed. This involves being able to recognize
places from the curve that describes their boundaries
and can be accomplished using one of several curve
recognition methods[12, 6]. For reasoas of accuracy as
well as computational cHiciency, however, it is impor-
tant to construct large-r-:cafe maps at a coarser level.
Robotic exploration and map-based navigation based
on dead reckoning is difficult 1o accornplish over large
spatial scales without refercnce to external features of
the world, due to the accumulation of error 10 robot
Position and orientation(10, 3].

[t other work, we have considered Lhe problem of ex-
ploring and mappiag a world which can be describec

in terms of an embedding of an und:cected graph G =

(V, E} where recognizable places are modelled bbe the set
of vertices V and potential routes between then by the
vet of edges E'[4, 5]. We have established that without
any knowledge of distances or global coordinates a sin-
gle movable place token (also described as a “marker”
or “beacon”) is sufficient to fully map the environment.
The robotic exploration problem described heve cannot
be solved simply using depth or breadth-first search.
The 1dentity of individual vertices of the sraph cannot
be established without first solving the mapping prob-
lem. Once the graph has heen explored, 1t can then
be searched efficiently by standard techniques (and the
algorithm, in fact, does this within the portion of the
graph that has already been mapped out). By consid.-
ering the sonar signatures of specific locations as place
tokens, it would appear that it is straightforward to
construct maps of arbitrarv environments,

By showing that the map acquisition problem caa be
solved with acceptable complexity hounds under these
circumstances, we demonstrate that such tasks are solv-
able within at least these bounds by more sophisti-
cated gystems. Furthermore, although more sophigti-
cated perceptual mechanisms mcluding, for example,
global positional information, may be available, they
are rarely completely dependable (#ot only must oqe
account for sensor errors, but the sensed data is also
domain cependent). Fence. even robots with power-
ful seasing systems may occasionallv find theayse]ves
reduced to the level of the model described here.

7 Discussion

The algorithm presented in this paper ss capable of re.
covering static closed room descriptions (including ob-
stacles) using sonar data. The algonthm utilizes active
contours or snakes in order 1o recover the rooni descrip-
tions. The use of snakes allows the algorithm to drive
the exploration process, and to be less sensitive to sys-
lematic errors in the sonar measurement peocess. The
use ot an additive energy surface allows the robot to
“forget” older sonar measurements which will be sus-
pect relative to the robot’s co-ordinate system.

I order to more fully explore the limitations and ad-
vantages of this approach, the alworithin must be con
sidered under more realistic conditions presented in this
papeér. The algorithm requires testing under niore re-
alistic simulated sonar data(14], and should be tested
on a real sonar platforrn. This is the subject of oun-
going research and an ongolng grant application. A
numbeér of problems and processes sull requice attens
lion even in the limited domain considered here, The
algorithm does not. currently support full robotic con-
trol of the exploration process. The snakes are used o
identify where the robor should explore next. but hu-
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Room descripiions, Snakes are drawn as closed contours. The current location of the robat is given by a small
star. and the best place to erplore nert is grven by « small cross.
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Figure 53: Room descriptions
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man control is used to move the robot near this point.
Small ohstacles can be missed by the robot during its
exploration of the environment. A process is required
to “add” snakes to local energy distributions which are
not associated with an existing snake.
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