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Abstract

This paper deals with automatically learning the
spatial distribution of a set of measurements: im-
ages, in the examples presented here. The solu-
tion to this problem can be viewed as an instance
of robot mapping although it can also be used in
other contexts. We examine the problem of orga-
nizing an ensemble of images of an environment
in terms of the positions from which the images
were obtained, and where only limited prior odo-
metric information is available. Our approach em-
ploys a feature-based method derived from a prob-
abilistic robot localization framework. Initially, a
set of visual landmarks are selected from the im-
ages and correspondences are found across the en-
semble. The images are then localized by first as-
sembling the small subset of images for which odo-
metric confidence is high, and sequentially insert-
ing the remaining images, localizing each against
the previous estimates, and taking advantage of any
priors that are available. We present experimental
results validating the approach, and demonstrating
metrically and topologically accurate results over
two large image ensembles, even given only four
initial ground truth poses. Finally, we discuss the
results, their relationship to the autonomous explo-
ration of an unknown environment, and their utility
for robot localization and navigation.

Introduction

be from the first few odometry readings along a trajectory, the
general shape of the trajectory, information from an observer,
or from a localization method that is expensive to operate,
and hence is only applied at a small subset of the observation
poses. While metric accuracy is of interest, our primary aim
is to recover the topology of the ensemble. That is, metrically
adjacent poses in the world are topologically adjacent in the
resulting map.

The problem of automated robotic mapping is of substan-
tial pragmatic interest for the development of mobile robot
systems. The question of how we bootstrap a spatial repre-
sentation, particularly a vision-based one, also appears to be
relevant to other research areas such as computer vision and
even ethology. Several authors have considered the use of
self-organization in robot navigatidakahashet al, 2001;

Beni and Wang, 1991; Deneuboueg al., 1989; Selfridge,
1964, often with impressive results. We believe this paper
is among the first to demonstrate how to build a complete
map of a real (non-simulated) unknown environment using
monocular vision. We present quantitative data to substanti-
ate this.

We approach the problem in the context of probabilistic
robot localization using learned image-domain features (as
opposed to features of the 3D environmd®im and Dudek,
2001]. To achieve this there are two steps involved: first,
reliable features are selected and correspondences are found
across the image ensemble. Subsequently, the quantitative
behaviours of the features as functions of pose are exploited
in order to compute a maximum-likelihood pose for each
image in the ensemble. While other batch-oriented map-
ping approaches are iterative in naf{lierun et al, 1998;

This paper addresses the problem of building a map of affohonen, 198 we demonstrate that if accurate pose infor-
unknown environment from an ensemble of observations anfl*tion is provided for a small subset of images, the remain-
limited pose information. We examine the extent to which!"d images in the ensemble can be localized without the need
we can organize a set of measurements from an unknown efff further iteration and, in some cases, without regard for the
vironment to produce a visual map of that environment withO"der in which the images are localized.

little or no knowledge of where in the environment the mea- .

surements were obtained. In particular, we are interested iﬂrl Outline

taking a set of snapshots of the environment using an uncaln the following section, we consider prior work related to our
ibrated monocular camera, and organizing them to quantitggroblem; in particular, approaches to self-organizing maps,
tively or qualitatively indicate where they were taken which, and the simultaneous localization and mapping problem. We
in turn, allows us to construct a visual map. We assume thathen proceed to present our approach, providing an overview
at most, we have limited prior trajectory information, so asof our landmark-based localization framework, followed by
to bootstrap the process— the source of this information mighthe details of how we apply the framework to organize the in-



put ensemble. Finally, we present experimental results on ather words, he have the full solution to the mapping prob-

variety of ensembles, demonstrating the accuracy and robudem in hand (we will relax this assumption in the following

ness of the approach. sections). The landmark learning framework operates by first
selecting a set of local features from the images using a mea-

2 Previous Work sure of viSL_JaI attention, tra}ck_in_g those feature_s across the en-
semble of images by maximizing the correlation of the local

The construction of self-organizing spatial maps (SOM's) hasmage intensity of the feature, and subsequently parameteriz-

a substantial history in computer science. Kohonen developeitig the set of observed features in terms of their behaviour as

a number of algorithms, for covering an input spde-  a function of the known positions of the robot (Figure 1).

honen, 1984; 1995 While spatial coverage was used as a

metaphor, the problem of representing a data space in terms

of self-organizing features has numerous applications ranging 4

from text searching to audition. The problem of spanning an

input space with feature detectors or local basis functions has

found wide application in machine learning, neural nets, and

allied areas. In much of this algorithmic work, the key con-

tributions have related to convergence and complexity issues.

The issue of automated mapping has also been addressed

in the robotics community. One approach to fully auto- Ji = EO KO e

mated robot mapping is to interleave the map synthesis and

position estimation phases of robot navigation (sometimes

known as SLAM: simultaneous localization and mapping).

As it is generally applied, this entails incrementally building Figure 1: Landmark Learning Framework.

a map based on geometric measurements (e.g. from a laser

rangefinder, sonar or stereo camera) and intermittently using The resultingtracked landmarkscan be applied in a

the map to correct the robot’s position as it mofiesonard  Bayesian framework to solve the localization problem.

and Durrant-Whyte, 1991b; Yamaucht al, 1998; Davi-  gpecifically, given an observation image the probability

son and Kita, 200l When the motion of a robot can only that the robot is at pose is proportional to the probability

be roughly estimated, a topological representation becomess the observation conditioned on the pose:

very attractive. Early work by Kuipers and Byun used re-

peated observation of a previously observed landmark to in- p(qlz) = ZM 1)

stantiate cycles in a topological map of an environment dur- p(z)

ing the mapping procedKuipers and Byun, 1987; 1991  wherep(q) is the prior ong andp(z) is a normalization con-

The idea of performing SLAM in a topological context was stant. For a landmark-based approach, we express the proba-

also been examined theoreticallyeng and Mirzaian, 1996; bility of the observation conditioned on the pose as a mixture

Dudek and Tsotsos, 19P1The probabilistic fusion of un-  model of probability distributions derived from the individual

certain motion estimates has been examined by several ajgndmarks:

thors (cf, [Smith and Cheeseman, 198@&nd the use of p(z|q) = kzp(hlq) )

Expectation Maximization has recently proven quite suc-

cessful although it still depends on estimates of successi

robot motions[Shatkay and Kaelbling, 1997; Thrun, 1998

Choset and Nagatani, 2001

DETECT B MATCH B> PARAMETERIZE

1€z
_V\‘/?/hereli is a detected observation of landmaiik the image
' andk is a normalizing constant.
The individual landmark models are generative in nature.
That s, given the proposed poggan expected observatidh
3 Landmark Framework is generated by learning a parameterizatjos- F;(q) of the
landmark, and the observation probability is determined by

Our approach employs an adaptation of the landmark learning 5y ssjan distribution centered at the expected observation
framework described ifim and Dudek, 20q1We review it 5,4 with covariance determined by cross-validation over the
herelm brief and refer the reader to the cited work for f“rthertraining observations. Whereas in prior work the parameteri-
details. _ _ zation was computed using radial basis function networks, in
The key idea is to learn visual features, parametrically denis work we construct the interpolants using a Delaunay tri-
scribe them so that they can be used to estimate one’s pogipgy|ation of the observation poses. In general, the contents
tion (that is, they can be used for localization). The featuresyt ihe feature vectar; itself can be any quantitative measure
are pre-screened using an attention operator that efficienthy|ated to the local image neighbourhood of the observation.

detects statistically anomalous parts of an image and robustoy the present work we define the feature vector as the posi-
useful features are recorded along with an estimate of the{fs, of the feature in the image:

individual utility.

In the localization context, assume for the moment that we L = [z il ®3)
have collected an ensemble of training images with ground- A pose estimate is obtained by finding the paegethat
truth position information associated with each image. Inmaximizes Equation 1. It should be noted that the framework



requires no commitment as to how uncertainty is represented their response to the attention operator, and second on
or the optimization is performed. It should be noted, however,  the basis of their distance from the nearest image posi-

that the probability density fog might be multi-modal, and, tion in M. In this way, features irb which are close

as is the case for the problem at hand, weak priorg ornight to prior matches are omitted, and regions of the image
require a global search for the correct pose. For this work,  where features exist but matching failed receive contin-
we employ a multi-resolution grid decomposition of the en- ued attention. Call this new set of tracking s€ts

vironment, first approximating(q|z) at a coarse scale and
computing increasingly higher resolution grids in the neigh-
bourhood ofq* as it is determined at each resolution. Figure
2 illustrates a typical probability distribution over the pose
space, given an input image.

4. A search for matches to the new tracking setg¢nis
conducted over each image i (that is, the previously
examined images), and the successful matches are added
to their respective tracking set.

5, T=TUTsg
6. F=FUz

The template used for by any particular tracking set is de-
fined as the local appearance image of the initial feature in the
set. We use local windows of 33 pixels in width and height.
Matching is considered successful when the normalized cor-
relation of the template with the local image under consider-
ation exceeds a user-defined threshold.

When tracking is completed, we have a set of feature cor-

A respondences across the ensemble of images. The process is
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\ O(kn) wherek is the final number of tracked sets, ands
the number of images.

X position (cm)

¥ positon (m) 4.2 Localization

Figure 2: Likelihood function of pose of robot over 3.0m by Once tracking is complete, the next step is to determine the

6.0m pose space. Note that the distribution is not unimodal. POSition of each image in the ensemble. For the moment,
consider the problem when there is a single feature that was

tracked reliably across all of the images. If we assume that
.. the image feature is derived from a fixed 3D point in space,
4  Self Organization the motion of the feature through the image will be according

We now turn to the problem of inferring the poses of the train-to @ monotonic mapping as a function of camera pose and the
ing images when ground truth is unavailable, or only partiallycamera’s intrinsic parameters. As such, the topology of a set
available. The self-organization process involves two stepf observation poses is preserved in the mapping from pose-
In the first step, image features are selected and tracked, ag@ace to image-space. While the mapping itself is nonlinear

in the second step the set of images are localized. (due to perspective projection), it can be approximated by as-
sociating actual poses with a small set of the observations and
4.1 Tracking determining the local mappings of the remaining unknown

Tracking proceeds by considering the images in an arbitrar
order (possibly, but not necessarily, according to distanc
along the robot’s trajectory). An attention operator is applied 1. Initialize S = {(q,z)}, the set of (pose, observation)

oses by constructing an interpolant over the known poses.
guch an algorithm would proceed as follows:

to the first imagez in the set, and each detected feature ini- pairs for which the pose is known. Computk the pa-
tializes atracking setl’; € T. The image itself is added to the rameterization o as defined by the landmark learning
ensemble sek. For each subsequent imaggethe following framework.

algorithm is performed:

_ ) 2. For each observationwith unknown pose,
1. A search is conducted over the image for matches to

each tracking set iff, and successful matches are added (@) UseD as an interpolant to find the posg' that
to their respective tracking sefs. Call the set of suc- maximizes the probability thag™ produces obser-
cessful matches/. vationz. |

2. The attention operator is then applied to the image and () Add(q",2) to S and updateD accordingly.

the set of detected featurgss determined. For a parameterization model based on a Delaunay Trian-
3. If the cardinality ofM is less than the cardinality of, ~ 9ulation interpolant, updating th® takesO(logn) amor-

new tracked set®; are initialized by elements selected tiZed time, wheren is the number of observations in the
from S. The elements are selected first on the basis of"0del. The cost of updating the covariance associated with
each model i$(k logn), wherek is the number of samples

We select local-maxima of edge-density. omitted during cross-validation.
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Figure 4: Ground truth, and the map resulting from the self-
organizing process for the environment depicted in Figure 3.

Figure 3: The first scene, a 2.0m by 2.0m pose space.

In addition, the cost of finding the maximally likely pose
with D is O(mlogn), wherem corresponds to the num-
ber of poses that are evaluated (finding a face in the trian-
gulation that contains a poirf can be performed ifogn
time.). Givenn total observations, the entire algorithm takes
O(n(m + k + 1) logn) time. Bothm andk can be bounded
by constants, although in practice we typically bourigy 7.

In practice, of course, there is more than one feature de-
tected in the image ensemble. Furthermore, in a suitably
small environment, some might span the whole set of images,
but in most environments, most are only visible in a subset of
images. Finally, matching failures might introduce a signifi-
cant number of outliers to individual tracking sets. Multiple
landmarks, and the presence of outlier observations are ad-
dressed by the localization framework we have presented; the
maximum likelihood pose is computed by maximizing Equa-was considered useful if it contained at least 4 observations).
tion 2, and the effects of outliers in a tracked set are reducedhe localization stage proceeded by first providing the ground
by their contribution to the covariance associated with thatruth information to four images selected at random. The re-
set. maining images were again sorted at random and added, with-

When it cannot be assumed that the environment is smatiut any prior information about their pose, according to the
enough such that one or more landmark spans it, we mustethodology described in the previous section. Figure 4 plots
rely on stronger priors to bootstrap the process. For exampléhe original grid of poses, and beside it the same grid imposed
we might require the initial known poses to be close togethernipon the set of pose estimates computed for the ensemble.
ensuring that they share common landmarks for parameteriwhile there is some warping in the mesh, for the most part
zation. In addition, we might take advantage of knowledge otthe topology of the poses is clearly preserved. It is interesting
the order in which images were acquired along a trajectoryto note that the mesh is distorted most as the y-axis increases,
ensuring that as one landmark goes out of view, new ones arresponding to looming forward with the camera and, as
present against which to localize. such, where the nonlinearity of the perspective projection is

In the following section we present experimental results ormost pronounced.
two image ensembles.

Figure 5: The second scene, a 3.0m by 5.5m pose space.

5.2 A Larger Scene

5 Experimental Results For our second experiment, we examine a larger pose space,
3.0m in width and 5.5m in depth, depicted in Figure 5. For
5.1 ASmall Scene this experiment, 252 images were collected at 25cm intervals

For our first experiment, we demonstrate the procedure on asing a pair of robots, one of which used a laser range-finder
relatively compact scene. An ensemble of 121 images of theo measure the 'ground-truth’ pose of the moving roBek-
scene depicted in Figure 3 was collected over a 2m by 2nteitis et al., 2001.
environment, at 20cm intervals. Ground truth was measured As in the previous experiment, tracking was performed
by hand, accurate to 0.5cm. over the image ensemble and a set of 49 useful tracked land-
Given the ensemble, the images were sorted at random amdarks were extracted. In this instance, the larger interval
tracking was performed as described in Section 4.1, resulbetween images, some illumination variation in the scene
ing in 91 useful tracked landmarks. (A tracked landmarkand the larger number of input images presented significant
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Figure 6: Ground truth simulated trajectory. 5.3 Discussion

We have demonstrated an approach to spatially organizing

images of an unknown environment using little or no posi-
tional prior knowledge. The repeated occurrences of learned
visual features in the images allows us to accomplish this.

The visual map of the environment that is produced appears
to be topologically correct and also demonstares a substantial
degree of metric accuracy and can be described as a locally
conformal mapping of the environment. This representation
can then be readily used for path execution, trajectory plan-
challenges for the tracker, resulting in the smaller number of'"9 a_nd other spatial tasks. . .
tracked landmarks. While seyeral authors.have co'nS|d.ered systems that inter-
: . . leave mapping and position estimation, we believe ours is

Given the size of the environment, no one landmarkymong the first to do this based on monocular image data.
spanned the entire pose space. As aresult, it was necessary o qition, unlike prior work with typically uses odometry
impose constraints on the input ground-truth priors, and the, ¢onsirain the localization process, we can accomplish this
order in which the inputimages were considered for localizasjih essentially no prior estimate of the position the measure-
tion. In addition, aweak prigs(q) was applied as eachimage ments are collected from. On the other hand, if some posi-
was added in order to control the distortion in the mesh.  iona| prior is available we can readily exploit it. In the sec-

Rather than select the initial ground-truth images at ranond example shown in this paper we exploited such a prior.
dom, ground truth was supplied to the four images closesktven in this example, it should be noted that the data acquisi-
to the centre of the environment. The remainder of the im+jon trajectory was one that did not include cycles. In general,
ages were sorted by simulating a spiral trajectory of the robogyclic trajectories (ones that re-visit previously seen locations
through the environment, intersecting each image pose, anga another route) will greatly improve the quality of the re-
adding the images as they were encountered along the trajeguits; in fact they are prerequisite for many existing mapping
tory. Figure 6 illustrates the simulated ground-truth trajectoryand localization techniques, both topological and metric ones.
through the ensemble. Finally, given the sort order, as images e believe that absence of a requirement of a position prior
were added it was assumed that their pose fell on an annul%{e_ Odometry) makes this approach suitable for unconven-
ring surrounding the previously estimated poses. The radiu§onal mapping applications, such as the integration of data
and width of the ring was defined in terms of the interval Useqrom Wa|k|ng robots or from manua”y collected video se-
to collect the images. The computed priors over the first fewguences. Our ability to do this depends on the repeated oc-
images input into the map are depicted in Figure 7. The incyrence of visual features in images from adacent positions.
tent of using these priors was to simulate a robot exploringrhis implies that successfuly mapping depends on images be-
the environment along trajectories of increasing radius fromng taken at sufficiently small intervals to assure common el-
a home position. ements between successive measurements.

As in the previous section, Figure 8 plots the original grid
of poses, and beside it the same grid imposed upon the set ?ieferences
pose estimates computed for the ensemble. Again, the posi-
tive y-axis corresponds to looming forward in the image, and Beni and Wang, 1991G. Beni and J. Wang. Theoretical
as such the mesh distorts as landmarks accelerate in image problems for the realization of distributed robotic system.
space as the camera approaches them. Note however, that adn Proc. IEEE Int'l Conf on Robotics and Automation
in the first experiment, the topology of the poses preserved pages 1914-1920, Sacramento, CA, April 1991. IEEE
for most of the grid. Press.

Figure 7: Evolution of the annular prior over the first few
input images.
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