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Abstract

This paper deals with automatically learning the
spatial distribution of a set of measurements: im-
ages, in the examples presented here. The solu-
tion to this problem can be viewed as an instance
of robot mapping although it can also be used in
other contexts. We examine the problem of orga-
nizing an ensemble of images of an environment
in terms of the positions from which the images
were obtained, and where only limited prior odo-
metric information is available. Our approach em-
ploys a feature-based method derived from a prob-
abilistic robot localization framework. Initially, a
set of visual landmarks are selected from the im-
ages and correspondences are found across the en-
semble. The images are then localized by first as-
sembling the small subset of images for which odo-
metric confidence is high, and sequentially insert-
ing the remaining images, localizing each against
the previous estimates, and taking advantage of any
priors that are available. We present experimental
results validating the approach, and demonstrating
metrically and topologically accurate results over
two large image ensembles, even given only four
initial ground truth poses. Finally, we discuss the
results, their relationship to the autonomous explo-
ration of an unknown environment, and their utility
for robot localization and navigation.

1 Introduction
This paper addresses the problem of building a map of an
unknown environment from an ensemble of observations and
limited pose information. We examine the extent to which
we can organize a set of measurements from an unknown en-
vironment to produce a visual map of that environment with
little or no knowledge of where in the environment the mea-
surements were obtained. In particular, we are interested in
taking a set of snapshots of the environment using an uncal-
ibrated monocular camera, and organizing them to quantita-
tively or qualitatively indicate where they were taken which,
in turn, allows us to construct a visual map. We assume that,
at most, we have limited prior trajectory information, so as
to bootstrap the process– the source of this information might

be from the first few odometry readings along a trajectory, the
general shape of the trajectory, information from an observer,
or from a localization method that is expensive to operate,
and hence is only applied at a small subset of the observation
poses. While metric accuracy is of interest, our primary aim
is to recover the topology of the ensemble. That is, metrically
adjacent poses in the world are topologically adjacent in the
resulting map.

The problem of automated robotic mapping is of substan-
tial pragmatic interest for the development of mobile robot
systems. The question of how we bootstrap a spatial repre-
sentation, particularly a vision-based one, also appears to be
relevant to other research areas such as computer vision and
even ethology. Several authors have considered the use of
self-organization in robot navigation[Takahashiet al., 2001;
Beni and Wang, 1991; Deneubourget al., 1989; Selfridge,
1962], often with impressive results. We believe this paper
is among the first to demonstrate how to build a complete
map of a real (non-simulated) unknown environment using
monocular vision. We present quantitative data to substanti-
ate this.

We approach the problem in the context of probabilistic
robot localization using learned image-domain features (as
opposed to features of the 3D environment)[Sim and Dudek,
2001]. To achieve this there are two steps involved: first,
reliable features are selected and correspondences are found
across the image ensemble. Subsequently, the quantitative
behaviours of the features as functions of pose are exploited
in order to compute a maximum-likelihood pose for each
image in the ensemble. While other batch-oriented map-
ping approaches are iterative in nature[Thrun et al., 1998;
Kohonen, 1984], we demonstrate that if accurate pose infor-
mation is provided for a small subset of images, the remain-
ing images in the ensemble can be localized without the need
for further iteration and, in some cases, without regard for the
order in which the images are localized.

1.1 Outline
In the following section, we consider prior work related to our
problem; in particular, approaches to self-organizing maps,
and the simultaneous localization and mapping problem. We
then proceed to present our approach, providing an overview
of our landmark-based localization framework, followed by
the details of how we apply the framework to organize the in-



put ensemble. Finally, we present experimental results on a
variety of ensembles, demonstrating the accuracy and robust-
ness of the approach.

2 Previous Work
The construction of self-organizing spatial maps (SOM’s) has
a substantial history in computer science. Kohonen developed
a number of algorithms, for covering an input space[Ko-
honen, 1984; 1995]. While spatial coverage was used as a
metaphor, the problem of representing a data space in terms
of self-organizing features has numerous applications ranging
from text searching to audition. The problem of spanning an
input space with feature detectors or local basis functions has
found wide application in machine learning, neural nets, and
allied areas. In much of this algorithmic work, the key con-
tributions have related to convergence and complexity issues.

The issue of automated mapping has also been addressed
in the robotics community. One approach to fully auto-
mated robot mapping is to interleave the map synthesis and
position estimation phases of robot navigation (sometimes
known as SLAM: simultaneous localization and mapping).
As it is generally applied, this entails incrementally building
a map based on geometric measurements (e.g. from a laser
rangefinder, sonar or stereo camera) and intermittently using
the map to correct the robot’s position as it moves[Leonard
and Durrant-Whyte, 1991b; Yamauchiet al., 1998; Davi-
son and Kita, 2001]. When the motion of a robot can only
be roughly estimated, a topological representation becomes
very attractive. Early work by Kuipers and Byun used re-
peated observation of a previously observed landmark to in-
stantiate cycles in a topological map of an environment dur-
ing the mapping process[Kuipers and Byun, 1987; 1991] .
The idea of performing SLAM in a topological context was
also been examined theoretically[Deng and Mirzaian, 1996;
Dudek and Tsotsos, 1991]. The probabilistic fusion of un-
certain motion estimates has been examined by several au-
thors (cf, [Smith and Cheeseman, 1986]) and the use of
Expectation Maximization has recently proven quite suc-
cessful although it still depends on estimates of successive
robot motions[Shatkay and Kaelbling, 1997; Thrun, 1998;
Choset and Nagatani, 2001].

3 Landmark Framework
Our approach employs an adaptation of the landmark learning
framework described in[Sim and Dudek, 2001]. We review it
here in brief and refer the reader to the cited work for further
details.

The key idea is to learn visual features, parametrically de-
scribe them so that they can be used to estimate one’s posi-
tion (that is, they can be used for localization). The features
are pre-screened using an attention operator that efficiently
detects statistically anomalous parts of an image and robust,
useful features are recorded along with an estimate of their
individual utility.

In the localization context, assume for the moment that we
have collected an ensemble of training images with ground-
truth position information associated with each image. In

other words, he have the full solution to the mapping prob-
lem in hand (we will relax this assumption in the following
sections). The landmark learning framework operates by first
selecting a set of local features from the images using a mea-
sure of visual attention, tracking those features across the en-
semble of images by maximizing the correlation of the local
image intensity of the feature, and subsequently parameteriz-
ing the set of observed features in terms of their behaviour as
a function of the known positions of the robot (Figure 1).

Figure 1: Landmark Learning Framework.

The resulting tracked landmarkscan be applied in a
Bayesian framework to solve the localization problem.
Specifically, given an observation imagez, the probability
that the robot is at poseq is proportional to the probability
of the observation conditioned on the pose:

p(q|z) =
p(z|q)p(q)

p(z)
(1)

wherep(q) is the prior onq andp(z) is a normalization con-
stant. For a landmark-based approach, we express the proba-
bility of the observation conditioned on the pose as a mixture
model of probability distributions derived from the individual
landmarks:

p(z|q) = k
∑
li∈z

p(li|q) (2)

whereli is a detected observation of landmarki in the image
andk is a normalizing constant.

The individual landmark models are generative in nature.
That is, given the proposed poseq, an expected observationl∗i
is generated by learning a parameterizationl∗i = Fi(q) of the
landmark, and the observation probability is determined by
a Gaussian distribution centered at the expected observation
and with covariance determined by cross-validation over the
training observations. Whereas in prior work the parameteri-
zation was computed using radial basis function networks, in
this work we construct the interpolants using a Delaunay tri-
angulation of the observation poses. In general, the contents
of the feature vectorli itself can be any quantitative measure
related to the local image neighbourhood of the observation.
For the present work we define the feature vector as the posi-
tion of the feature in the image:

li = [xi yi] (3)

A pose estimate is obtained by finding the poseq∗ that
maximizes Equation 1. It should be noted that the framework



requires no commitment as to how uncertainty is represented
or the optimization is performed. It should be noted, however,
that the probability density forq might be multi-modal, and,
as is the case for the problem at hand, weak priors onq might
require a global search for the correct pose. For this work,
we employ a multi-resolution grid decomposition of the en-
vironment, first approximatingp(q|z) at a coarse scale and
computing increasingly higher resolution grids in the neigh-
bourhood ofq∗ as it is determined at each resolution. Figure
2 illustrates a typical probability distribution over the pose
space, given an input image.
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Figure 2: Likelihood function of pose of robot over 3.0m by
6.0m pose space. Note that the distribution is not unimodal.

4 Self Organization
We now turn to the problem of inferring the poses of the train-
ing images when ground truth is unavailable, or only partially
available. The self-organization process involves two steps.
In the first step, image features are selected and tracked, and
in the second step the set of images are localized.

4.1 Tracking
Tracking proceeds by considering the images in an arbitrary
order (possibly, but not necessarily, according to distance
along the robot’s trajectory). An attention operator is applied
to the first imagez in the set1, and each detected feature ini-
tializes atracking setTi ∈ T . The image itself is added to the
ensemble setE. For each subsequent imagez, the following
algorithm is performed:

1. A search is conducted over the image for matches to
each tracking set inT , and successful matches are added
to their respective tracking setsTi. Call the set of suc-
cessful matchesM .

2. The attention operator is then applied to the image and
the set of detected featuresS is determined.

3. If the cardinality ofM is less than the cardinality ofS,
new tracked setsTi are initialized by elements selected
from S. The elements are selected first on the basis of

1We select local-maxima of edge-density.

their response to the attention operator, and second on
the basis of their distance from the nearest image posi-
tion in M . In this way, features inS which are close
to prior matches are omitted, and regions of the image
where features exist but matching failed receive contin-
ued attention. Call this new set of tracking setsTS .

4. A search for matches to the new tracking sets inTS is
conducted over each image inE (that is, the previously
examined images), and the successful matches are added
to their respective tracking set.

5. T = T ∪ TS

6. E = E ∪ z

The template used for by any particular tracking set is de-
fined as the local appearance image of the initial feature in the
set. We use local windows of 33 pixels in width and height.
Matching is considered successful when the normalized cor-
relation of the template with the local image under consider-
ation exceeds a user-defined threshold.

When tracking is completed, we have a set of feature cor-
respondences across the ensemble of images. The process is
O(kn) wherek is the final number of tracked sets, andn is
the number of images.

4.2 Localization

Once tracking is complete, the next step is to determine the
position of each image in the ensemble. For the moment,
consider the problem when there is a single feature that was
tracked reliably across all of the images. If we assume that
the image feature is derived from a fixed 3D point in space,
the motion of the feature through the image will be according
to a monotonic mapping as a function of camera pose and the
camera’s intrinsic parameters. As such, the topology of a set
of observation poses is preserved in the mapping from pose-
space to image-space. While the mapping itself is nonlinear
(due to perspective projection), it can be approximated by as-
sociating actual poses with a small set of the observations and
determining the local mappings of the remaining unknown
poses by constructing an interpolant over the known poses.
Such an algorithm would proceed as follows:

1. Initialize S = {(q, z)}, the set of (pose, observation)
pairs for which the pose is known. ComputeD, the pa-
rameterization ofS as defined by the landmark learning
framework.

2. For each observationz with unknown pose,

(a) UseD as an interpolant to find the poseq∗ that
maximizes the probability thatq∗ produces obser-
vationz.

(b) Add (q∗, z) to S and updateD accordingly.

For a parameterization model based on a Delaunay Trian-
gulation interpolant, updating theD takesO(log n) amor-
tized time, wheren is the number of observations in the
model. The cost of updating the covariance associated with
each model isO(k log n), wherek is the number of samples
omitted during cross-validation.



Figure 3: The first scene, a 2.0m by 2.0m pose space.

In addition, the cost of finding the maximally likely pose
with D is O(m log n), wherem corresponds to the num-
ber of poses that are evaluated (finding a face in the trian-
gulation that contains a pointq can be performed inlog n
time.). Givenn total observations, the entire algorithm takes
O(n(m + k + 1) log n) time. Bothm andk can be bounded
by constants, although in practice we typically boundk by n.

In practice, of course, there is more than one feature de-
tected in the image ensemble. Furthermore, in a suitably
small environment, some might span the whole set of images,
but in most environments, most are only visible in a subset of
images. Finally, matching failures might introduce a signifi-
cant number of outliers to individual tracking sets. Multiple
landmarks, and the presence of outlier observations are ad-
dressed by the localization framework we have presented; the
maximum likelihood pose is computed by maximizing Equa-
tion 2, and the effects of outliers in a tracked set are reduced
by their contribution to the covariance associated with that
set.

When it cannot be assumed that the environment is small
enough such that one or more landmark spans it, we must
rely on stronger priors to bootstrap the process. For example,
we might require the initial known poses to be close together,
ensuring that they share common landmarks for parameteri-
zation. In addition, we might take advantage of knowledge of
the order in which images were acquired along a trajectory,
ensuring that as one landmark goes out of view, new ones are
present against which to localize.

In the following section we present experimental results on
two image ensembles.

5 Experimental Results
5.1 A Small Scene
For our first experiment, we demonstrate the procedure on a
relatively compact scene. An ensemble of 121 images of the
scene depicted in Figure 3 was collected over a 2m by 2m
environment, at 20cm intervals. Ground truth was measured
by hand, accurate to 0.5cm.

Given the ensemble, the images were sorted at random and
tracking was performed as described in Section 4.1, result-
ing in 91 useful tracked landmarks. (A tracked landmark

Figure 4: Ground truth, and the map resulting from the self-
organizing process for the environment depicted in Figure 3.

Figure 5: The second scene, a 3.0m by 5.5m pose space.

was considered useful if it contained at least 4 observations).
The localization stage proceeded by first providing the ground
truth information to four images selected at random. The re-
maining images were again sorted at random and added, with-
out any prior information about their pose, according to the
methodology described in the previous section. Figure 4 plots
the original grid of poses, and beside it the same grid imposed
upon the set of pose estimates computed for the ensemble.
While there is some warping in the mesh, for the most part
the topology of the poses is clearly preserved. It is interesting
to note that the mesh is distorted most as the y-axis increases,
corresponding to looming forward with the camera and, as
such, where the nonlinearity of the perspective projection is
most pronounced.

5.2 A Larger Scene
For our second experiment, we examine a larger pose space,
3.0m in width and 5.5m in depth, depicted in Figure 5. For
this experiment, 252 images were collected at 25cm intervals
using a pair of robots, one of which used a laser range-finder
to measure the ’ground-truth’ pose of the moving robot[Rek-
leitis et al., 2001].

As in the previous experiment, tracking was performed
over the image ensemble and a set of 49 useful tracked land-
marks were extracted. In this instance, the larger interval
between images, some illumination variation in the scene
and the larger number of input images presented significant
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Figure 6: Ground truth simulated trajectory.

Figure 7: Evolution of the annular prior over the first few
input images.

challenges for the tracker, resulting in the smaller number of
tracked landmarks.

Given the size of the environment, no one landmark
spanned the entire pose space. As a result, it was necessary to
impose constraints on the input ground-truth priors, and the
order in which the input images were considered for localiza-
tion. In addition, a weak priorp(q) was applied as each image
was added in order to control the distortion in the mesh.

Rather than select the initial ground-truth images at ran-
dom, ground truth was supplied to the four images closest
to the centre of the environment. The remainder of the im-
ages were sorted by simulating a spiral trajectory of the robot
through the environment, intersecting each image pose, and
adding the images as they were encountered along the trajec-
tory. Figure 6 illustrates the simulated ground-truth trajectory
through the ensemble. Finally, given the sort order, as images
were added it was assumed that their pose fell on an annular
ring surrounding the previously estimated poses. The radius
and width of the ring was defined in terms of the interval used
to collect the images. The computed priors over the first few
images input into the map are depicted in Figure 7. The in-
tent of using these priors was to simulate a robot exploring
the environment along trajectories of increasing radius from
a home position.

As in the previous section, Figure 8 plots the original grid
of poses, and beside it the same grid imposed upon the set of
pose estimates computed for the ensemble. Again, the posi-
tive y-axis corresponds to looming forward in the image, and
as such the mesh distorts as landmarks accelerate in image
space as the camera approaches them. Note however, that as
in the first experiment, the topology of the poses preserved
for most of the grid.

Figure 8: Ground truth, and the map resulting from the self-
organizing process for the environment depicted in Figure 3.

5.3 Discussion

We have demonstrated an approach to spatially organizing
images of an unknown environment using little or no posi-
tional prior knowledge. The repeated occurrences of learned
visual features in the images allows us to accomplish this.
The visual map of the environment that is produced appears
to be topologically correct and also demonstares a substantial
degree of metric accuracy and can be described as a locally
conformal mapping of the environment. This representation
can then be readily used for path execution, trajectory plan-
ning and other spatial tasks.

While several authors have considered systems that inter-
leave mapping and position estimation, we believe ours is
among the first to do this based on monocular image data.
In addition, unlike prior work with typically uses odometry
to constrain the localization process, we can accomplish this
with essentially no prior estimate of the position the measure-
ments are collected from. On the other hand, if some posi-
tional prior is available we can readily exploit it. In the sec-
ond example shown in this paper we exploited such a prior.
Even in this example, it should be noted that the data acquisi-
tion trajectory was one that did not include cycles. In general,
cyclic trajectories (ones that re-visit previously seen locations
via another route) will greatly improve the quality of the re-
sults; in fact they are prerequisite for many existing mapping
and localization techniques, both topological and metric ones.

We believe that absence of a requirement of a position prior
(i.e. odometry) makes this approach suitable for unconven-
tional mapping applications, such as the integration of data
from walking robots or from manually collected video se-
quences. Our ability to do this depends on the repeated oc-
curence of visual features in images from adacent positions.
This implies that successfuly mapping depends on images be-
ing taken at sufficiently small intervals to assure common el-
ements between successive measurements.
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