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Abstract

We consider the problem of localizing a robot in a known
environment modeled by a simple polygon P. We as-
sume that the robot has a map of P but is placed at an
unknown location. The robot must move around and
use range sensing and a compass to determine its po-
sition (i.e. localize itself). From its initial location, the
robot sees a set of points called the visibility polygon
V of its location. In general, this will not suffice to
uniquely localize the robot, since the set H of points in
P with visibility polygon V may have more than one
element. To address this difficulty, we combine infor-
mation from multiple vantage points seeking a strategy
that minimizes the distance the robot travels to deter-
mine its exact location. An optimal localization strat-
egy would direct the robot to follow a minimum length
path to verify its location, but this is impossible to com-
pute without a priori knowing which of the hypothetical
locations in H is the true initial location of the robot.

In this paper, we define a natural, algorithmic variant of
the problem of localizing a robot with minimum travel.
We then show this variant is NP-hard. Finally, we give
a polynomial time approximation scheme that causes
the robot to travel a distance of at most k = |H| times
d, where d is the length of a minimum length tour that
would allow the robot to verify its true initial location
by sensing. This is remarkable in view of the fact that
the length d of such a minimum length tour cannot be
determined without a priori knowledge of which hypo-
thetical location in H is the true one, and yet our strat-
egy determines a path whose length is provably within a
factor k& of the best possible without using such a prior:
knowledge.
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1 Introduction

Numerous mobile robot tasks call for a robot that has
a map of its environment and knowledge of where it is
located in the map. Determining the position of the
robot in the environment is known as the robot localiza-
tion problem. To date, mobile robot research that uses
a map generally assumes either that the position of the
robot is always known, or that it can be estimated using
sensor data acquired by displacing the robot only small
amounts [KMK93, TA92]. However, self-similarities be-
tween separate portions of the environment prevent a
robot that has been dropped into or activated at some
unknown place from uniquely determining its exact lo-
cation without moving around. This motivates a search
for strategies that direct the robot to travel around
its environment and to collect additional sensory data
[BD90, DJMW93] to deduce its exact position.

In this paper, we view the general robot localization
problem as consisting of two phases. The first phase is
to determine the set H of hypothetical locations that are
consistent with the sensing data obtained by the robot
at 1ts initial location. The second phase is to determine,
in the case that H contains two or more locations, which
location is the true initial position of the robot; i.e. to
eliminate the incorrect hypotheses. Ideally, for reasons
of speed and accuracy, the robot should travel the mini-
mum distance necessary to determine its exact location.

A solution to the hypothesis generation phase of robot
localization has been given by Guibas, Motwani and
Raghavan in [GMR92], and we describe their results
later. Our paper is concerned with minimizing the dis-
tance traveled in the hypothesis elimination phase of
robot localization. Together, the two papers give a so-
lution to the general robot localization problem.

We show that the problem of localizing a robot with
minimum travel is NP-hard. We then solve the hypoth-
esis elimination phase with what we call a greedy local-
1zation strategy. Our strategy causes the robot to travel



a distance that is bounded above by k = |H| times the
length d of a minimum length tour that allows the robot
to verify its true initial position by sensing. Such a min-
imum length tour cannot be determined without a pri-
ort knowledge of which hypothetical location in H 1s the
true one, and yet our strategy determines a tour whose
length is within a factor k of the minimum without using
such a priori knowledge.

2 Preliminaries

In this section, we describe our robot model and give
some key definitions.

2.1 Assumptions about the robot

e The robot is mobile and moves in a static 2-
dimensional obstacle-free environment. We model
the movement of the robot in the environment by
a point p moving inside and along the boundary of
an n-vertex polygon P positioned somewhere in the
plane.

e The robot has a map of its environment, i.e., it
knows both P and the orientation of P in the plane.

e The robot has a compass and a range sensing de-
vice. It 1s essential that the robot be able to deter-
mine its orientation (with the compass); otherwise
it cannot determine its exact location in an environ-
ment with non-trivial symmetry such as a square.

e The robot’s sensor can detect the orientations of,
and the distances to, those walls for which an unob-
structed straight line can be drawn from its current
location. The observations at a particular location
determine a polygon V of points that the robot can
see from that location. This is analogous to a laser
range sensor or a simple model of sonar sensing.

In order to abstract the sensory interpretation process,
we use a visibility skeleton (defined later) that the robot
will compute for its current location, based on its obser-
vations. We use this abstraction because there are only
a finite number of visibility skeletons for all the points
in P.

2.2 Some definitions and an example

Two points in P are wistble to each other or see each
other if the straight line segment joining them does not

intersect the exterior of P. The wvisibility polygon V(p)
for a point p € P is the polygon consisting of all points in
P that are visible from p. We denote by V the visibility
polygon of the initial location of the robot. There may
be more than one location in P with visibility polygon
V, so V. = V(p) for one or more points p € P. The
number of vertices of V is denoted by m. Since the
robot has a compass, we assume the representations of
P and V have a common reference direction.

We break the general problem of localizing a robot into
two phases as follows.

The Robot Localization Problem

HyPOTHESIS GENERATION: Given P and V| determine
the set H of all points p; € P such that the visibility
polygon of p; is exactly V (i.e. V(p;) = V).

HypPOTHESIS ELIMINATION: Devise a strategy by which
the robot can correctly eliminate all but one hypothesis
from H, thereby determining its exact initial location.
Ideally, the robot should travel a distance as small as
possible.

Consider the example illustrated in Figure 1. The robot
knows the map polygon P of its environment and the
visibility polygon V representing what it can “see” in
the environment from its present location. It also knows
that P and V should be oriented as shown. The black
dot represents the robot’s position in the visibility poly-
gon. By examining P and V, the robot can deter-
mine that it is at either point p; or point ps in P,
ie. H = {p1,p2}. Tt cannot distinguish between these
two locations because V(p1) = V(p2) = V. However,
by traveling out into the “hallway” and taking another
probe, the robot can determine its location precisely.

E L

P V(p1) = V(p2)

Figure 1: Given a map polygon P (left) and a visibility
polygon V' (center), the robot must determine which of
the 2 possible initial locations p; and py (right) is its
actual location in P.

An optimal strategy for the hypothesis elimination
phase would direct the robot to follow an optimal veri-
fication tour, defined as follows.

Definition. A wverification tour is a tour along which



a robot that knows its position a prior: can travel to
verify this information by probing and then return to
its starting position. An optimal verification tour is a
verification tour of minimum length d.

Since we do not assume ¢ prior: knowledge of which
hypothetical location in H is correct, an optimal verifi-
cation tour for the hypothesis elimination phase cannot
be pre-computed. For this reason, we seek an interac-
tive probing strategy to localize the robot. In each step
of such a strategy, the robot sends out range sensors,
receives back the visibility polygon of its present posi-
tion, and from this information decides where to move
next to make another probe. To be precise, the type
of strategy we seek can be represented by a localizing
decision tree, defined as follows.

Definition. A localizing decision tree is a tree consist-
ing of two kinds of nodes and two kinds of weighted
edges. The nodes are either sensing nodes (S-nodes)
or reducing nodes (R-nodes), and the node types alter-
nate along any path from the root to a leaf. Thus tree
edges directed down the tree either join an S-node to
an R-node (SR-edges), or join an R-node to an S-node
(RS-edges).

e FEach S-node 1s associated with a position defined
relative to the initial position of the robot. The
robot may be instructed to probe the environment
from this position.

e Each of the R-nodes is associated with a set H' C
H of hypothetical initial locations that have not yet
been ruled out. The root is an R-node associated
with H, and each leaf is an R-node associated with
a singleton hypothesis set.

e Each SR-edge has weight 0. Such an edge repre-
sents the computation that the robot does to rule
out hypotheses in light of the information gathered
at the S-node end of the edge. An SR-edge does
not represent physical travel by the robot.

e Each RS-edge has an associated path defined rel-
ative to the initial location of the robot. This is
the path along which the robot is directed to travel
to reach its next sensing point. The weight of an
RS-edge is the length of its associated path.

Since we want to minimize the distance traveled by the
robot, we define the weighted height of a localizing de-
cision tree as follows.

Definition.  The weight of a root-to-leaf path in a
localizing decision tree is the sum of the weights on the
edges in the path. The weighted height of a localizing

decision tree is the weight of a maximum-weight root-
to-leaf path. An optimal localizing decision tree is a
localizing decision tree of minimum weighted height.
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Figure 2: A map polygon and 4 hypothetical locations
{p1,p2, ps, pa} with a localizing decision tree for deter-
mining the true initial position of the robot.

We call a localization strategy that can be associated
with a localizing decision tree a localizing decision tree
strategy. As an example of such a strategy, consider the
map polygon P shown in Figure 2. From the visibil-
ity polygon sensed by the robot at its initial location
it 1s determined that the set of hypothetical locations
is H = {p1,p2,p3,pa}. Hence the root of the localiz-
ing decision tree (also shown in Figure 2) is associated
with H. In the figure, the SR-edges are labeled with the
visibility polygons seen by the robot at the S-node end-
points of these edges, and the RS-edges are labeled with
the path the robot should follow. Assuming that north
points straight up, the strategy given by the tree directs
the robot first to travel west a distance di, which is the
distance between p; and p). This positions the robot at
one of p!, ph, ph or py. The strategy then directs the



robot to take another probe at its new location. This is
represented by an S-node in the decision tree. Depend-
ing on the outcome of the probe, the robot knows it is
located either at one of {p/,p4} or at one of {p4, p4}. It
then travels south either ds or ds, to a position just past
the dotted line segment shown in P, and takes another
probe, which determines its unique location in P. The
farthest that the robot must travel to determine its lo-
cation is dy 4 d3, so the weighted height of this decision
tree 1s dq + ds.

2.3 Previous work

Previous work on robot localization by Guibas, Mot-
wani, and Raghavan in [GMR92] showed how to pre-
process a map polygon P so that given the visibility
polygon V that a robot sees, the set of points in P whose
visible polygon of P is congruent to V', and oriented the
same way, can be returned quickly. Their algorithm pre-
processes P in O(n® logn) time and O(n®) space, and it
answers queries in O(m+logn+ A4) time, where n is the
number of vertices of P, m is the number of vertices of
V, and A is the size of the output (the number of places
in P at which the visibility polygon is V).

Theoretical work has also been done on navigating a
robot in an unknown environment (see [BRS91, PY91]).

3 Hardness of Localization

In this section we show that the problem of constructing
an optimal localizing decision tree, as defined in the pre-
vious section, is NP-hard. To do this, we first formulate
the problem as a decision problem.

RoBoT-LocaLriziNg DecisioN TRee (RLDT)

INSTANCE: A simple polygon P and a star-shaped
polygon V', both with a common reference direction,
the set H of all locations p; € P such that V(p;) = V,
and a positive integer h.

QUESTION: Does there exist a localizing decision tree
of weighted height less than or equal to A that localizes a
robot with initial visibility polygon V in the map poly-
gon P, where H is the set of possible initial locations?

We show that this problem is NP-hard by giving a re-
duction from the ABSTRACT DECISION TREE problem,
proven NP-complete by Hyafil and Rivest in [HR76].
The ABSTRACT DECISION TREE problem is stated as
follows:

ABsTRACT DEcIsION TREE (ADT)

INSTANCE: A set X = {a1,..., 2t} of objects, a set
T ={T1,...,T,} of subsets of X representing binary
tests, where test T; is positive on object z; if »; € T}
and is negative otherwise, and a positive integer h' < n.

QUESTION: Does there exist an abstract decision tree
of height less than or equal to h’, where the height of a
tree is the maximum number of edges on a path from
the root to a leaf, that can be constructed to identify
the objects in X7 Such a decision tree has a binary
test at all internal nodes and an object at every leaf.
To identify an unknown object, the test at the root is
performed on the object, and if it is positive the right
branch is taken, otherwise the left branch is taken. This
procedure is repeated until a leaf is reached, which 1den-
tifies the unknown object.

Theorem 1 RLDT is NP-hard.

Proof: Given an instance of ADT, we create an in-
stance of RLDT as follows. We construct P to be a stair-
case polygon, with a stairstep for each object z; € X
(see Figure 3). For each stairstep we construct n = |7|
protrusions, one for each test in 7 (see Figure 4). If
test T is a positive test for object z;, then protrusion
T; on stairstep z; has an extra hook on its end (such as
T3, Ty, and T, in Figure 4). The length of a protrusion
is denoted by [ and the distance between protrusions
T1 and T}, is denoted by d, where d and [ are chosen
so that dh/ < I. The vertical piece between adjacent
stairsteps is longer than (2 + d)h’, and the width w
of each stairstep is much smaller than the other mea-
surements. The polygon P has O(nk) vertices, where
n=17| and k = | X]|.

X1

X2 I> @+d)h

=
e

Xk

L]
Figure 3: Construction showing localization is NP-hard

Consider a robot that is initially located at the shaded
circle shown in Figure 4 on one of the k stairsteps.
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In order to determine the hypothetical location corre-
sponding to the true initial location of the robot, we
construct an overlay arrangement A that combines the
k translates P;.

Definition. The overlay arrangement A for the map
polygon P corresponding to the set of hypothetical lo-
cations H is obtained by taking the union of the edges
of each translate P; as well as the visibility edges in the
visibility cell decomposition of F;.

See Figure b for an example of an overlay arrangement.
Since each visibility cell decomposition is created from
O(nr) lines introduced in the interior of P;, a bound on
the total number of cells in the overlay arrangement as
well as their total complexity is O(k*n?r?), which may
be O(n®). In fact, there are map polygons whose cor-
responding overlay arrangements for certain visibility
polygons have Q(n®) cells.

F

V(p) =V(a)

Figure 5: A visibility polygon, a map polygon and the
corresponding overlay arrangement

4.2 The reference point set ()

Each cell in the overlay arrangement A represents a po-
tential probe position, which can be used to distinguish
between different hypothetical locations of the robot.
For each cell C' of A and for each translate P; that con-
tains C, there is an associated visibility skeleton V;*(C).
If two translates P; and P; have different skeletons for
cell C', or if C' is outside of exactly one of F; and Fj,
then C' distinguishes hypothetical location p; from p;.

For our localization strategy we choose a set @ of ref-
erence points in A that can be used to distinguish be-
tween different hypothetical locations. For each cell '
in A that lies in at least one translate of P, and for each
translate P; that contains C', let q¢; denote the point
on the boundary of C' that is closest to the origin (recall
that translating P to P; moves p; to the origin). Here,
the distance d;(gc ;) from the origin to the closest point
in C' is measured inside P;. We choose Q = {qc;}. In
the remainder of this paper we drop the subscripts from
qc,; when they are not necessary.

Computing the reference points in () involves comput-

ing Euclidean shortest paths in F; from the origin to
each cell C'. To compute these paths we can use ex-
isting algorithms in the literature for shortest paths in
simple polygons (see [GHL*87]), and we omit the de-
tails here. For each cell C' we will have up to & ref-
erence points {¢c1,...,¢ck} and their corresponding
distances {d1(¢c 1), ..., dr(gc 1) }. We define d;(¢q) = oo
for all points ¢ not within F;.

Partition of H

For each cell C' we compute a partition of H that repre-
sents which hypothetical locations can be distinguished
from one another by probing from inside C'. If two trans-
lates P; and P; have the same visibility skeleton for cell
C', then p; and p; are in the same subset of the parti-
tion of H corresponding to cell C'. Also, if C' is outside
of both translates F; and F;, then p; and p; are in the
same subset of the partition.

Although there may be O(n°) cells in the overlay ar-
rangement A, yielding up to O(kn®) reference points,
we show in Section 5.3 that only O(k?) reference points
are needed for our localization strategy, so we do not
need to compute a partition of H for all O(n®) cells.

5 A Greedy Strategy

In this section we present a localizing decision tree strat-
egy, called Strategy @) , for completing the solution of
the hypothesis elimination phase of the robot localiza-
tion problem. Our strategy, which has a greedy flavor,
is called Strategy Q because in choosing locations for
probes, it uses the set Q of reference points described
previously. Strategy @Q will enable the robot to localize
itself by traveling distance at most kd, where k = |H|
and d is the length of an optimal verification tour.

In devising a localizing decision tree strategy, there are
two main criteria to consider when deciding where the
robot should make the next probe: (1) the distance to
the new probe position, and (2) the information to be
gained at the new probe position. However, even a strat-
egy that considers both criteria can do poorly. For ex-
ample, if the robot employs an incremental strategy that
at each step tells it to travel to the closest probe loca-
tion that yields some information, then a map polygon
can be constructed such that in the worst case the robot
will travel distance 2%d.

Using Strategy Q for hypothesis elimination, a strategy
for the complete robot localization problem can be ob-
tained as follows. Preprocess the map polygon P using a
method similar to that in [GMR92]. This preprocessing
vields a data structure that stores for each equivalence



class of visibility polygons either the location in P yield-
ing that visibility polygon, if there is only one location,
or a localizing decision tree that tells the robot how to
travel to determine its true initial location.

5.1 Strategy Q

In this subsection we present the details of Strategy
Q . Using the results of Section 4, it i1s possible to pre-
compute Strategy Q ’s entire decision tree. However, we
will describe the strategy by explaining how it directs
the robot to behave. This amounts to describing the na-
ture of a root-to-leaf path in the tree. This is easier to
understand than the description of an algorithm to com-
pute the entire decision tree. Also, in practice, it may
sometimes be preferable not to pre-compute the entire
tree, but rather to compute the robot’s next move on an
interactive basis, as the robot carries out the strategy.

Information used by Strategy Q

e The map polygon P.

e The set H generated in the hypothesis generation
phase.

e The set ) of reference points defined in Section 4.2.

e For each point ¢ € @) the distance d;(¢q) of ¢ from
the origin, measured within F;.

e For each point ¢ € (), a path path;(¢) within P; of
length d;(g¢), which is defined by a series of relative
motions that take the robot from the origin to ¢
in Pj. Using the data structure in [GHL187] these
paths can be easily computed.

e For each point ¢¢; € @, the partition of H associ-
ated with cell C', as defined in Section 4.2.

Next we describe how Strategy Q directs the robot to
behave. Initially, the set of hypothetical locations is
the given set H. As the robot carries out the strategy,
hypothetical locations are eliminated from H. Thus in
our description of Strategy Q , we abuse notation and
use H to denote the shrinking set of active hypothetical
locations; 1.e. those that have not yet been ruled out.
Similarly, we use @ to denote the shrinking set of active
reference points; i.e. those that non-trivially partition
the set of active hypothetical locations. We call a path
path;(q) active if p; € H and ¢ € Q) are both active.

Notation. Let d.(¢#*) denote the minimum of

{dij(q)|q € Q and p; € H are active }.

Let path,(¢*) denote an active path of length d.(q*).
Strategy Q

Strategy Q directs the robot to travel along paths from
the origin to points in the overlay arrangement A. Sup-
pose that p; is the true initial location of the robot. We
will prove in the next subsection that Strategy Q only
directs the robot to follow paths that are contained in
translate ;. Note that a path from the origin that is
contained in F; is analogous to a path in P from location

pj-

From the initial H and @, an initial path.(¢*) can be
selected. The strategy directs the robot to travel along
this path and to make a probe at its endpoint. The
robot then uses the information gained at the probe
position to update H and @ and to determine a new ¢x
and a new path,(gx) from the origin. The strategy then
directs the robot to retrace its previous path back to the
origin, and then to follow the new path to its endpoint,
which is the next probe location. This process stops
when the size of H shrinks to 1. At this point the initial
location of the robot is determined, and the robot can,
if desired, be directed to return to its initial location by
retracing its last path.

5.2 A performance guarantee

The following theorems show that Strategy Q directs
the robot along a path whose length compares favor-
ably with the minimum verification length d. First we
show that Strategy Q never directs the robot to pass
through a wall. Then we show that Strategy Q elim-
inates all hypothetical locations except the valid one,
and we establish an upper bound on the length of the
path produced by Strategy Q . A corollary of Theorem 3
is that the localizing decision tree associated with Strat-
egy Q has a weighted height that is at most 2% times the
weighted height of an optimal localizing decision tree.

Theorem 2 Strategy () never directs the robot to pass
through a wall

Proof: The proof is by contradiction. Suppose that
p; is the true initial location of the robot and z; is the
point on the boundary of 7; where the robot would first
pass through a wall. Furthermore, suppose that when
the robot attempts to pass through the wall at z;, the
path it has been directed to follow is path;(g).

Let C denote the cell of arrangement A (see Section 4.1)
that contains the portion of path;(q) just before z;.



Since cell C' is contained in F;, it contributes a refer-
ence point ¢¢ ; to the set @) of reference points.

It suffices to show that ¢¢ ; is active at the time Strat-
egy Q chooses path;(q) for the robot to follow. This
is because d;(gc ;) < dj(x;) by definition of ¢¢ ;; fur-
thermore, d;(x;) < d;(x;) since the portion of path;(q)
from the origin to z; is contained within P;, and d;(z;)
is equal to the length of a shortest path in F; from the
origin to z;; finally, d;(x;) < d;(¢) because z; is an in-
termediate point on path;(g). Chaining these inequal-
ities together gives dj(¢c ;) < di(¢q). Hence Strategy
Q would choose path;(qc ;) rather than path;(q) pro-
vided that ¢¢ ; is active at the time path;(g) is selected.

Now we show that ¢¢; is active when path;(q) is se-
lected. Point q¢; is active if and only if the following
two conditions hold: (1) p; has not been eliminated
from H and (2) the visibility skeleton associated with
C' distinguishes between at least two active hypotheti-
cal locations. Clearly condition (1) holds, since the cor-
rect hypothetical location is never eliminated from H.
Condition (2) holds because the skeleton V;*(C') associ-
ated with C relative to P; has a real edge through the
point z;, whereas the skeleton V;*(C) associated with
C relative to P; does not have a real edge through z;.
Therefore, the skeleton associated with points in C' dis-
tinguishes between p; and p;, which are both active at
the time path;(q) is chosen, so point ¢¢ ; is active. O

Theorem 3 Strategy @) directs the robot along a path
whose length is at most kd, where k = |H| and d is
the length of an optimal verification tour for the robot’s
wmttial position.

Proof: Let p; denote the true initial location of the
robot. First we show that Strategy Q eliminates all
hypothetical initial locations in H except p;. Suppose
the contrary is true. This means that the set @) of active
reference points becomes empty before the size of H
shrinks to one. Let p; be an active hypothetical initial
location different from p; at the time @ becomes empty.
Translates P; and P; are not identical, so there is some
point z; on the boundary of P; that does not belong to
the boundary of P;. Let C' be the cell of arrangement
A contained in P and containing z;. C' distinguishes
between p; and p; because the skeletons associated with
C relative to P; and P; are not the same. Therefore qc¢ ;
and qc; are still in the active set (), a contradiction.

Next we establish the upper bound on the length of the
path determined by Strategy Q . Because the strategy
never directs the robot to a probing site that does not
eliminate one or more elements from H, it requires the

robot to make a trip from its initial location to some
sensing point and back at most & — 1 times.

We claim that each round trip has length at most d. To
see this, we first consider how a robot traveling along an
optimal verification tour L would rule out an arbitrary
incorrect hypothetical location ps. Then we consider
how Strategy @Q would rule out ps.

Consider a robot traveling along tour L that eliminates
each invalid hypothetical location at the first point x on
L where the visibility skeleton of x relative to the in-
valid hypothetical location differs from the skeleton of «
relative to P;. Let w be the point on L where the robot
rules out py. The point w must lie on the boundary of
some cell C'in the arrangement A that distinguishes p
from p;. Cell C generates a reference point qc: € @,
which is the closest point of C' to the origin, where dis-
tance is measured inside P, so di(gc¢) < dy(w). Since
p: 1s the true initial location of the robot, the distance
di(w) is equal to or less than the distance along L of w
from the origin, as well as the distance along I from w
back to the origin. Putting these inequalities together,
we deduce that the distance di(gc¢) is equal to or less
than half the length of L.

Since py is the true initial location of the robot, it is
active at the moment Strategy Q directs the robot to
move from the origin to the probing site where it elimi-
nates p;. Since p i1s about to be ruled out, 1t is also still
active. That means that the reference point ¢¢; con-
sidered in the previous paragraph is still active, since it
distinguishes p; from p;.

At this time Strategy Q directs the robot to travel along
path.(g*x) = path;(q). By design, the length d.(¢*) =
d;j(q) of this path, which is the distance the robot will
travel from the origin to the next probing position, is the
minimum over all d;(¢) for active p; € H and ¢ € Q.
In particular, since point g is still active, d.(g*) is
equal to or less than d;(¢c+). But as we have already
seen, this latter distance is equal to or less than half the
length of L. Therefore, Strategy Q directs the robot to
travel from the origin to some probing position where
the robot eliminates p; and back, and the length of this
loop is at most d. O

Note that if a verifying path is not required to return
to its starting point, the bound for Theorem 3 becomes
2kd. In this paper, we do not comment further on com-
putation time as there are many ways to implement
Strategy Q .

Corollary 4 The weighted height of the localizing deci-
ston tree constructed by Strategy @ is at most 2k times
the weighted height of an optimal localizing deciston tree



for the same problem.

The bound given in Corollary 4 for the weighted height
of the localizing decision tree built by Strategy Q 1s also
alower bound. That is, a map polygon P and a visibility
polygon V can be given such that the weighted height
of the localizing decision tree built by Strategy Q for P
and V' is Q(k) times the weighted height of an optimal
localizing decision tree.

5.3 A reduced set of reference points

The set @ of reference points may have size O(kn®). In
this subsection, we show that when Strategy ¢ is run
with only a subset Q' C @ of size at most k(k — 1), the
kd performance guarantee of Section 5.2 still holds.

Set )’ is defined as the union of subsets Q; C @, where
there is one @; for each p; € H and |@Q;| < k — 1. Tg-
noring implementation issues, we define (); as follows.
Initially @; is empty, and the subset of ) consisting of
reference points qc,; generated for translate F; is pro-
cessed in order of increasing d;(gc ;). For each succes-
sive reference point ¢c¢ i, the partition of H induced by
@i U{gc i} is compared to that induced by ; alone. If
the subset of H containing location p; is further subdi-
vided by the additional reference point ¢¢;, then qc ;
is added to @);. Conceptually, the reference point q¢ ;
distinguishes another hypothetical initial location from
pi. This process continues until p; is contained in a sin-
gleton in the partition of H induced by ;. Since there
are only k& — 1 initial locations to be distinguished from
pi, @i will contain at most & — 1 points.

We denote by Strategy @' the strategy obtained by re-
placing set @ with @’ in Strategy (). The proof of the
following theorem is similar to those of Theorems 2 and

3.

Theorem 5 Strategy Q’, which uses a set of at most
k(k — 1) reference points, directs the robot along a path
whose length is at most kd, where k = |H| and d is
the length of an optimal verification tour for the robot’s
wmttial position.

6 Conclusion

We have shown that the problem of localizing a robot
in a known environment by traveling a minimum dis-
tance is NP-hard, and we have given an approximation
strategy that achieves a bound of k times an optimal

solution, where k is the number of possible initial loca-
tions of the robot.

The work in this paper is one part of a strategy for lo-
calizing a robot. The complete strategy will preprocess
the map polygon and store the decision trees for am-
biguous initial positions so that the robot only needs to
follow a predetermined path to localize itself.

There are many variations to this problem which can
be considered. If the robot must localize itself in an
environment with obstacles, then the map of the envi-
ronment can be represented as a simple polygon with
holes. In this paper we assigned a cost of zero for the
robot to take a probe and analyze it. In a more general
setting we would look for a minimum weighted height
decision tree, where the edges of a decision tree asso-
ciated with the outcome of a probe would be weighted
with the cost to analyze that probe. A pragmatic varia-
tion of the problem would weight reference locations so
that those that produce more reliable percepts would be
selected first.
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