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Abstract- Many methods are available for image mosaic- 
ing most of which are not useful because they either (1) 
require a great deal of overlap between images, or (2) if 
they work for restricted sub-problem (translation, rotation 
or zooming) they would not work for the others. While 
numerous methods exist for accurately calculating transla- 
tional shifts, no method was found that could handle rota- 
tions of angles greater than 15 degrees, or for scaling. In this 
paper, a new method using Zernike moments is presented 
to solve for the translational registration, rotational regis- 
tration(2D and 3D) and zooming all at the same time. This 
method was tested on different sets of images with transla- 
tional shifts, rotational shifts and zooming. The method is 
very fast, efficient and does not require any human interac- 
tion, and the results proved to be very accurate. 

I .  INTRODUCTION 

In this paper, we present a new algorithm for an auto- 
matic solution for a subset of the general image mosaicing 
problem. Our approach uses Zernike moments to compute 
the relative transformations between images. Translational 
registration] rotational registration(2D and 3D) and zoom- 
ing can all be recovered simultaneously. 

Image mosaicing has numerous applications in medicine] 
digital terrain mapping and in autonomous navigation of 
robots. In each of these examples, smaller overlapping 
images are used to construct an image with a far larger 
field of view than could be obtained with a single pho- 
tograph. Potential and existing applications include tasks 
such as segmentation, object recognition] shape reconstruc- 
tion, motion tracking, stereo mapping and character recog- 
nition. In medical image analysis, relevant research areas 
include diagnostic medical imaging, such as tumour detec- 
tion and disease localization and biomedical research in- 
cluding classification of microscopic images of blood cells, 
cervical smears, and chromosomes. Registration methods 
can also be applied to civilian and military applications, 
agriculture, geology, oceanography, oil and mineral explo- 
ration, and target location and identification. 

Zernike moments belong to a set of orthogonal polyno- 
mials, which allow independent moment invariance to be 
constructed easily to an arbitrarily high order. Such mo- 
ments have several advantages in terms of noise sensitivity, 
information redundancy and image representation ability. 
Thus, Zernike moments offer a complete solution to the re- 
covery rotational and scaling parameters without the need 
for extensive correlation and search algorithms. 
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The next section presents a detailed review of the related 
work. In section 111, we discuss some previous work and 
background on the problem of mosaicing. Our approach 
is discussed in section IV, while section V demonstrates 
some of the results. As a conclusion, we investigate the 
robustness and significance of our method along with a 
discussion of potential future applications. 

11. BACKGROUND 
The main problem is to find the overlapping region be- 

tween two neighbouring images and to paste them together 
and can be summarized as follows. Given a sequence of 
spatially overlapping images, find the transformation be- 
tween adjacent images, align them, and use the results to 
construct a larger compound view (See Figure 1). The 
process of finding the relative transformation between any 
two images is called image registration, while the process of 
generating panoramic 3D views is called image mosaicing 
or stitching. 

L 

Fig. 1. General mosaicing problem 

There is no direct method available for automatically 
preparing image mosaics. The simplest approach used in 
practice to  prepare a mosaic is to assemble the photographs 
manually. The key problem in automating the process lies 
in developing a good algorithm to optimally determine the 
seam between images of neighbouring regions. In essence, 
this is an instance of the correspondence problem. The 
problem of spatial assembling of these images is solved 
manually by selecting a few points of interest in the over- 
lapping region, setting the correspondence manually and 
then obtaining the necessary transformation. 

Efficient methods have been developed to automatically 
solve for the translational shift. In the case when there is a 
large overlap between the images, Szeliski[7] has proposed 
a method for image registration by directly minimizing the 
discrepancy in intensities between pairs of images. An opti- 
mal solution is found using the Levenberg-Marquardt non- 
linear minimization algorithm. This method has the ad- 
vantage of not requiring any feature points and being sta- 
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tistically optimal in the vicinity of he true solution, but it 
needs a priori approximation of the t relative transformation 
between the images. In practice, the Levenberg-Marquardt 
algorithm is computationally expensive, and d,oes not nec- 
essarily converge to  the desired midimum. 

On the other hand, if the overlap between the images 
is small, a good method was devised where hierarchical 
matching is used to  avoid local mknima[lO]. Kuglin and 
Hines[3] proposed another method qalled phase correlation, 
which gives good results when thelcamera motion is very 
large. This method relies on the 'fact that it translation 
in the spatial domain corresponds to  a phase shift in the 
frequency domain. Although the rebults are quite accurate, 
phase correlation requires a memdry capacit!y that grows 
with the log of the image area, which makes it slow when 
handling larger images. I 

In the case of rotational shift, {ew methods proved to  
be efficient. Among the best methods we have the work 
of Dani and Chaudhuri[2]. Their general method consists 
of three stages. In the first stage} features in the image 
are computed. In the second stage, feature points in the 
reference image, often referred  to^ as control points, are 
corresponded with feature points in the data image. In 
the last stage, a spatial mapping is determined using these 
matched feature points. Reassem ling of one image onto 
the other is performed by applying he spatial mapping and 
interpolation. This method works ell for up to 15 degrees 
of rotation using angles between e ge points. 

De Castro and Morandi[l] use the fact that rotation 
is invariant with the Fourier trans orm; rotating an image 
rotates the Fourier transform of th  t image by the same an- 
gle, $. If we know the angle, then / e can rotate the cross- 
power spectrum and determine t i e  translation by phase 

in testing for each angle $. 
Viola[4] used mutual info 

30 degrees rotation, but it 
overlap, larger than 50%. 

finally pasted successively. Results using this technique are 
quite satisfactory, but require the precomputing of optical 
flow fields, which are usually noisy and not very reliable. In 
addition, flow computation assumes dense temporal sam- 
pling. Small rotations are accounted for, but large rota- 
tions can not be handled. 

Thus, existing mosaicing methods have strong limita- 
tions on imaging conditions and distortions are very com- 
mon. No method was given that could simultaneously solve 
for lateral translation, rotation about any point, and zoom- 
ing. 

In attempting to propose a good solution, we make the 
following assumptions: 

There is no warping of images (no elastic deformation). 
The subimages do not exhibit a high level of repetitive 
similarity, for example, a sinusoidal or a checker board 
variation in intensity. 
Intensity in the image does not change arbitrarily, 
but there may be a change in overall contrast due to 
changes in illumination or camera parameters. 
There is at least 10% overlap between adjacent images. 

The first of these assumptions indicates that our pro- 
posed algorithm would not work for higher order alignment 
models, such as affine or perspective. That is a true limita- 
tion of our current implementation, as well as most other 
image mosaicing techniques. But, we believe there is room 
to extend our approach further to deal with these issues. 
Yet, as the algorithm stands, we see two cases where our 
technique will prevail over other implementations: 

A camera mounted on a tripod. In this case, the cam- 
era is not allowed to change its position in space. It 
is only able to translate in any direction, and rotate 
about its vertical axis. Therefore, no warping could 
occur. 
A handheld camcorder in which the motion is slow 
and uniform. In this case, slight warping might occur, 
but can be safely neglected due to  the large overlap 
between consecutive images. 

In the case where there is no overlap of the scenes in 
two such images, the registration cannot be accomplished 
without a priori knowledge of the pictured scene. Heuris- 
tic approaches such as analytic continuation of curvilinear 
elements in spatially adjacent photographs may be used 
under such circumstances, but this is beyond the scope of 
this paper. 

This article presents a new method to  compute the reg- 
istration function between two images requiring only very 
little overlap ( 10 - 20%) and arbitrary rotation. Our tech- 
nique will also take care of magnification and zooming. It 
is very fast, completely automatic without any human in- 
teraction and can handle any number of images. 
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111. THEORY 
A .  Fourier Transforms 

Kuglin and Hines(31 proposed a method to align two im- 
ages which are shifted relative to one another. This method 
is called phase-correlation, and relies on the translation 
property of the Fourier Transform; basically, a lateral shift 
in spatial domain translates into a phase shift in the Fourier 
domain. The method states that given two images f1 and 
f2  which differ only by a shift (dx,dy), their respective 
Fourier Transforms can be found 

Fl = I Fl ( 1 )  

F2 = IF2Je-i42 ( 2 )  

Multiplying Fl by F2*, and dividing by the magnitudes, 
results in a function that depends only on the difference of 
the phases of the two input images 

(3) - - e-i(41-42) 

Now, taking the inverse Discrete Fourier Transform of A 
results in a delta function whose peek corresponds to  the 
relative spatial shift between the two images. 

Although this method does not work very well in the 
case of different scaling, and large rotations, it still gives 
good results for small amounts of rotation. In the ideal case 
where the relative transformation between the images is a 
pure translation, phase-correlation proved to be extremely 
accurate to  within a single pixel. 

B. Zernike Moments 
Zernike Polynomials constitute a complete set of complex 

polynomials that are orthogonal over the interior of the unit 
circle, x2 + y 2  = 1. Since these polynomials are complex, 
and denoting them by Vnm(x, y ) ,  they can be expressed by 
a radial and an angular components 

Vnm (2, Y )  = vnm (P,  6) = Rnm(p)eime (4) 

where 
n is a non-negative integer, 
m is an integer obeying the constraints n - Iml is even and 

pis  the magnitude of the vector from the origin to the point 

8 is the angle between the vector and the x-axis, in a coun- 
terclockwise direction. 
The Radial component Rnm(p) is defined as 

Iml I n, 

(239) = m2 + Y 2 ,  

orthogonality of the Zernike Polynomials is expressed by 
the following relationship 

where 
1 a = b  
0 otherwise dab = ( 7 )  

The projection of the image function f ( x , y )  onto this 
orthogonal set of polynomials define the Zernike moments. 
More specifically, the Zernike moment of order n, with rep- 
etition m, has the form 

In the case of a digital image, which is composed of a dis- 
crete number of pixels, the double integral simply reduces 
to a double sum 

Anm = 9 C,  Cy f[x, v]V,*,(p, 8 )  , x 2  + y2 5 1 
(9) 

Note that the equation of the Zernike moment holds only 
within the unit disk. In order to correctly compute the 
Zernike moments of an image, the image has to be mapped 
first onto the unit circle. Only pixels lying within the unit 
circle are used. 

Once the Zernike moments are computed, the orthogo- 
nality of the Zernike basis allows the use of these moments 
to  reconstruct the image. In order to perfectly recover the 
input image, an infinite number of moments has to com- 
puted. Since this is not possible, only a discrete replica 
f(x, y) can be recovered by computing the moments up to 
a given moment nmax. f(x, y) is computed as follows 

n=O m 

Now consider an image f ( r , 8 ) ,  and a rotated replica 
f r ( r , 8 )  rotated by an angle a. Those two images are re- 
lated as such 

M r ,  0) = f(r, e - a)  (11)  

By the virtue of their definition, Zernike moments of 
both of these images are coupled by a simple relationship. 
In polar coordinates, where x = pcos8 and y = psin8, we 
can express the Zernike moments of the original image as 

The equations for the rotated image are 

It should be noted that the radial polynomials are sym- 
metric with respect to  m, i.e. Rnm(p) = Rn,-m(P). The 
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Letting P = 6 - a,  we can re1 te 'both sets of Zernike a moments as follows 

x e-'"' 
ALm = A,me-ima 

IAnm I 

ing the Zernike mome If the initial corre- 
spondence proves inco tive correspondence 

pseudo-code, followed by a det 

5 .  Align Images. 
6. Compute tn+l using FFT. 

algorithm, the chosen pairof 
the exact same physical loc 

points under this type of a n to solve to  entire. mo- 
saic problem [ 5 ] .  Corner however, are based on 
specific assumptions rega scale and structure of 
distinctive image content. 

dence. 

We propose the use of an attention operator inspired by 
observations of human visual saccades [lii]. Visual saccades 
are drawn to regions of unusual image content, and in par- 
ticular regions with anomalous edge density. Similarly, a 
robust attention operator can be defined computationally 
which defines interest points as those regions of the image 
whose local edge-element density is maximal over the im- 
age [15]. While a detailed consideration of this operator is 
outside the scope of this paper, it appears to  be robust and 
effective over a wide range of scene types. 

A disk of a predefined radius is mapped around each of 
the points, and the Zernike moments within each disk are 
computed. Initial estimates, Ro and SO, of the relative ro- 
tation and scaling of the two images are then calculated. 
This allows one of the images to  be brought into correspon- 
dence with the other by applying the suitable scaling and 
rotation. Given this correction for scale and rotation, we 
can refine the translation estimate t o ,  to  produce a more 
precise estimate t l .  This is computed from phase correla- 
tion of the underlying images, a technique with several de- 
sirable robustness properties [13]. If the refined translation 
estimate differs substantially from the previous one, the 
scaling and rotation is re-evaluated. This process repeats 
until the two images align perfectly, or until the alignment 
error is below a threshold 6. 

The program iterates until a suitable transformation is 
recovered. The termination criterion for the  iteration pro- 
cess is satisfied when the difference between successive esti- 
mates of the lateral shift is below a certain threshold. Ac- 
curate results can be achieved if the threshold is lowered 
and the program is left to iterate further. On the other 
hand, resolution could be traded off for speed by simply 
increasing the threshold, and performing fewer iterations. 

V. RESULTS AND DISCUSSION 
This section discusses the validity and robustness of our 

algorithm. It also presents some of the panoramic mosaics 
that were automatically generated using our approach. As 
can be seen later on, our algorithm can easily handle images 
with little overlap, large rotations(2D/3D) about any axis, 
and scale differences. 

A .  Robustness 

In order to verify the robustness of our algorithm, a set of 
tests was devised. A set of images with different scales and 
rotations were generated. These values were chosen so as to  
test the limitations of using Zernike moments for rotation 
and scale recovery. Figures 2 and 3 show the results. 

In figure 2 ,  close examination shows that Zernike mo- 
ments gave almost accurate results for any angle of rota- 
tion. Only shown are values corresponding to  positive an- 
gles. Since negative angles can be thought of as reversing 
the order of the images, Zernike moments can recover any 
angle in the range of --a to -a. 

In figure 3, we can see that the recovered values were 
very accurate for a scale factor of rt70%. Beyond that 
limit, Zernike moments gave erroneous results that varied 
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Fig. 2. Plot of the actual angles of rotation versus the calculated 
ones. All angles are in degrees. 

Fig. 3. Plot of the actual scale factors versus the calculated ones. 

with the contents of the input images. 

B. Translation and Rotation 

Various attempts by others to solve the rotation prob- 
lem proved successful for only "small rotations" [ll], while 
others assumed a rotation only about the optical axis of 
the camera[5]. Here, we show that our algorithm can suc- 
cessfully recover any angle of rotation about any axis. The 
trick is that once a corresponding pair of points has been 
identified in the two images, this point is taken as the cen- 
ter of rotation. Figures 4 and 5 show some results. 

The relative rotation between the images in figures 4 and 
5 range between 35 to 50 degrees. In figure 4, the relative 
rotation between the last two images is exactly 42 degrees. 
The algorithm computed this angle and found it to be 41.89 
degrees. While in figure 5, the relative rotation between 
the two images is unknown. The algorithm computed this 
rotation to be 47.03 degrees. As apparent from the final 
images, our algorithm is extremely accurate for any angle 
of rotation, and the results are almost perfect. 

C. Zooming 

Other known mosaicing methods assumed no difference 
in scale among images. Among the most elaborate solu- 
tions, [ll] provides only "preliminary" results. In this sec- 
tion, we present results for the zooming problem using our 
method (See equation 15). We show that our algorithm 
can efficiently and accurately recover zoom scales between 
images of up to  150%. Moreover, the algorithm can detect 
zoom scales even if there is a relative rotation between the 

Fig. 4. Shown above are the three original images. The translation 
and phase difference between them is apparent. The resulting 
mosaic is shown on the bottom. 

Fig. 5.  Another mosaic involving both rotation and translation. 

images. In fact, both the rotation angle and the zoom scale 
are computed at the same time. 

During dilation, the field of view becomes smaller; while) 
during zooming out, the field of view becomes larger. This 
creates a difference in resolution between images of different 
scales. In order to minimize the difference in resolution 
between images, all images are scaled down to the size of 
the smallest one, before being stitched. Linear and fractal 
interpolations can also be used to reduce this resolution 
discrepancy. 

In figure 6, The two images are of the same size. There 
is a difference factor of 2 between the relative scales. Only 
parts of the images bounded by the boxes were used to gen- 
erate the final mosaic on the left. The reason for cropping 
the images is that, due to the scale difference, one of the 
images is totally contained in the second one. As can be 
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seen, the algorithm correctly detec{ed the scale difference. 

the image mosaicing problem. presented algorithm 

quality of the final images is 
ancies at image boundaries a 
is extremely fast, and could 

7 good, and discrep- 
tent. The algorithm 
nosaics in real time. 

One limitation of our current 
rithm is its lack of support for 

mentation of the algo- 
order transformations. 
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