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Abstract

In this paper we describe an approach to the automated
specification of procedural textures to be used in render-
ing, based on representative samples. Procedural textures
exhibit many advantages over traditional surface textur-
ing techniques, but unfortunately finding the correct pro-
cedural texture and appropriate parameters to create the
desired texture can be a daunting task for even the most
experienced computer graphics artists. The method we
propose here, which we refer to as image-based procedu-
ral texturing, allows the specification of the desired tex-
ture in the form of a digital input image. From this sam-
ple texture, a corresponding procedural texture is found
which produces a texture which is perceptually similar to
the input sample.

Key words: Texture analysis, texture synthesis, texture
perception, procedural textures, parameter estimation.

1 Introduction

Much of the apparent realism of computer generated im-
agery is due to the appropriate use of texture. This allows
us to add richness to a scene that is critical to its visual
appeal, as exemplified by the fact that many commercial
rendering projects employ hundreds or even thousands
of different texture maps or procedural textures. Fortu-
nately, numerous shaders have been developed and many
of these have very rich ranges of textures that they can
synthesize. This, in turn, leads to the issue of how one
can select the appropriate settings for a procedural tex-
ture in a particular application; that is the subject of this
paper.

Procedural texturing allows an algorithm to describe
how a textured surface should appear. There are several
advantages to procedural texturing, including abstraction,
parameterization, resolution independence, and a com-
pact representation. Moreover, procedural textures do not
suffer from many of the shortcomings of traditional tex-
ture mapping using texture images. Procedural textures
also have the advantage that a wide range of related tex-
tures can be specified by a single procedure.

In this paper, we will describe a technique we refer to
as image-based procedural texturing; a technique which
combines the ease of static texture mapping1 with the
power of procedural texturing. In image-based procedu-
ral texturing, the user specifies a digital input image, and
a procedural texture which generates a similar2 texture is
found. This gives the graphic artist much more freedom
to be creative, minimizing the arduous time spent tweak-
ing various aspects of the procedural framework. This
technique has many promising applications as well as fu-
ture directions.

2 Motivation

Despite the numerous advantages of using procedural
techniques for texturing, there are, unfortunately, some
shortcomings to the approach. The most notable is that
once one has a procedural shader, it can be quite difficult
to obtain the correct parameters to synthesize the desired
texture. Procedural textures often exhibit localized insta-
bility, i.e., a small change in a parameter can lead to a
large change in the synthesized texture for isolated sub-
domains of the parameter domain. Even when the pro-
cedural texture is stable, some shaders have an enormous
number of parameters which can be exceedingly cumber-
some to specify manually3. These factors can make it dif-
ficult for the end user to obtain the desired results, even
though the procedural texture is capable in principle of
achieving them.

The creation of procedural shaders is not a task suited
to a non-specialist since it requires an algorithmic formu-
lation of how the texture should appear. This is obviously
more difficult than using a typical paint program to cre-
ate a single texture to be used as a texture map. More-
over, the implementers of procedural shaders must worry
about technical problems such as anti-aliasing. In gen-

1We refer to the concept of using a static image to be mapped di-
rectly to a surface as static texture mapping, to avoid confusion with the
term procedural texturing.

2The notion of similarity will be explored further in Sec. 5.2.
3The water surface shader in the film The Perfect Storm had 299

parameters! Apparently, there was no single individual at ILM who
knew what each parameter controlled [8].



eral, the author of a procedural shader does not know at
which points the texture will be sampled, and must there-
fore minimize the high frequency content through the use
of smooth edges. This is an example of one of the many
issues which must be resolved during the specification of
a procedural shader.

Image synthesis is usually slower when using procedu-
ral textures rather than static textures since a (sometimes
complex) procedure must be evaluated for every sample
(pixel) in addition to the illumination model. There has
been recent work by Peercy et al. [12] which addresses
this issue and their preliminary results look promising.
Rendering speed is, however, perhaps the smallest con-
cern when weighed against the advantages of using pro-
cedural textures, especially considering the dizzying pace
at which graphics hardware improves.

The approach we outline here for the automatic speci-
fication of a procedural texture from an initial sample at-
tempts to address these shortcomings in a principled and
general-purpose way.

3 Background

A procedural texture is a function of a set of input param-
eters x = (x1; : : : ; xn) which returns the value of a local
surface property (typically reflectance) at the point (u; v)
queried:

P (u; v;x) = f(u; v;L;N; Od; Os; : : : ;x) (1)

where P is a procedural texture having a parameter vec-
tor x and like a static texture map is indexed by (u; v) 2

[0; 1]
2. The input parameters thus determine the appear-

ance of the surface over the region being textured by the
procedural texture. Internally P is a function not only of
the parameters of the texture itself, but also of the light
direction (L), surface normal (N ), object color (Od; Os),
etc., as illustrated with the function f above. Each pro-
cedural texture (often called a shader) will be represented
by a unique function requiring a distinct set of parameters
relative to that texture.

4 Previous Work

Texture synthesis and analysis have been an active re-
search topic and several methods for texture generation
from pictorial samples have been formulated [9, 5, 7, 13,
16]. What all of these techniques have in common is that
they produce an arbitrary amount of texture which resem-
bles an input texture sample. They differ only in their
methodology and results.

Most notable for use in computer graphics is perhaps
[16], since the results reported appear to be able to repro-
duce almost-arbitrary texture samples more convincingly
than previous methods with added computational effi-
ciency. Unfortunately, all existing techniques suffer from

two drawbacks: 1) they produce fixed resolution textures
and as such fall prey to all of the problems inherent with
static texture mapping and 2) the resulting textures can-
not be parametrically modified to achieve an appearance
similar to, but different from, a specified sample. An-
other shortcoming of the local neighborhood search and
fill techniques [7, 16] is not only that textures are pro-
duced at a fixed resolution, but that the output resolution
can never be higher than the resolution of the sample tex-
ture. While increasing the size of the desired synthesized
texture will produce more texture, the resolution will re-
main the same. Other advantages of procedural textures,
namely compact representation, unlimited resolution, ar-
bitrary complexity, as well as the potential for higher di-
mensional textures are simply not available in traditional
sample-based texture synthesis.

Dana et al. [4] have a somewhat different approach
to the texture synthesis problem, and propose a method
which is similar to the techniques used for measuring the
bi-directional reflectance distribution function (BRDF).
They define a bi-directional texture function (BTF) anal-
ogously to the BRDF: for each possible viewing and illu-
mination direction, the BTF of a particular texture returns
an image. This model accommodates both isotropic and
anisotropic textures very well. Actual textured materials
(carpet, velvet, stucco, etc.) are imaged for each possible
viewing and lighting angle, and the resulting texture im-
ages are stored for later use. At rendering time, the cor-
rect texture samples are retrieved and blended together.
Although this approach has produced some nice demon-
stration images, the time and machinery necessary to ac-
curately sample each desired texture for all orientations,
and the space needed to store these samples is quite pro-
hibitive. Suen and Healey [14] have proposed a method
for calculating a basis set of minimal dimension when us-
ing a BTF to avoid storing entire texture databases.

One method for automating parameter estimation for
procedural texturing involves the explicit modeling of
features present in certain types of highly structured tex-
tures [10]. While this work provides some interesting ex-
amples for brick and wood, their method is dependent on
determining measurable features on a per-texture basis,
which unfortunately cannot be generalized. Moreover,
it is not clear that this method can be used for textures
which are not structured; a class which is perhaps more
frequently used in procedural texturing.

5 Approach

We wish to eliminate the difficulties in using procedural
textures by allowing the end user to specify one or more
desired texture samples using pictures (i.e. photographs),
and provide them with a procedural texture which is sim-



ilar to the input sample. We call this technique image-
based procedural texturing.

Consider a set S of tuples hPi; Dii, where Pi is a pro-
cedural texture of arbitrary dimension. Given a texture
sample T , we wish to find a procedural texture P 2 S,
and an associated parameter vector x such that P (x) pro-
duces a texture perceptually similar to T . The process for
finding P and x are outlined below.

Achieving the above is critically dependent on a mea-
surement function Di that serves to estimate the percep-
tual similarity of two textures. We will refer to this as
the similarity function for that texture (for details refer to
Sec. 5.2).

We assume at the outset that the context of our input
sample texture T can be approximated using a procedural
texture. We then need to find procedural textures in the
set S which have some similarity with T . We will call
this set of candidate procedural textures Q (Q � S). De-
pending on how we design our classification algorithm,
the set Q could be empty, or we can force it to always
have at least one element.

Each candidate procedural texture Q i 2 Q will have
an associated parameter space, that is, the space corre-
sponding to the domain of all valid parameters, and an
output texture space corresponding to the range of all
textures which can be synthesized using this procedural
texture. The dimensionality of the parameter space asso-
ciated with Qi is generally given by the number of input
parameters, and that of the texture space is equal to the
number of pixels in the synthesized texture multiplied by
the dimensionality of each pixel. For each candidate pro-
cedural texture Qi we must find a parameter vector xi
such that Di(T;Qi(xi)) is minimized. We then choose
the Qi(xi) from the set Q which has the lowest value for
D. This is the P (x) which was sought.

5.1 Searching in Texture Space
In general, the (high-dimensional) surface produced by
evaluating under Di is unlikely to be convex. As a result,
the process of finding the correct parameters entails the
use of non-convex optimization. While exhaustive search
would, in theory, eventually produce a correct result, our
desire for a solution in interactive time suggests a two
stage approach: a preliminary search using precomputed
data and an on-line refinement stage.

For each Q 2 Q we first search globally over the pa-
rameter space considering samples which are uniformly
distributed for each parameter. Synthesizing the corre-
sponding texture for each sample point in the parameter
space to compare against the target texture T is a local,
independent operation, and therefore can be easily paral-
lelized.

Once the best sample point from the sparse search has

Figure 1: An example of texture segregation (left) and
two textures which do not segregate (right). This figure
originally appeared as Fig. 17.1 in [3, p. 254]. Courtesy
of Jim Bergen.

been found, we perform a local search to find the parame-
ter vectorxi which produces the textureQi(xi) closest to
T . The notion here is that the global search has brought
us close enough to the actual target so that a local opti-
mization method will converge without getting caught in
local minima.

5.2 Evaluating Texture Similarity
The specification of the texture similarity function D i is
important to the performance of our method. There are,
of course, many possible functions which could be used
to calculate the difference between two images, but here
we are interested in the perceptual difference between
two textures. A simple sum of squares distance (SSD)
between respective pixels, for example, is not appropri-
ate in this case: consider two images of the same texture
which are slightly offset from one another. Clearly, these
two images contain the same texture, but their SSD mea-
sures could be quite large.

Formally, we can think of an ideal measure of the per-
ceptual difference between textural characteristics in two
images:

D
�

(T1; T2) 2 [0; 1] (2)

where a value of 0 indicates that T1 and T2 are indis-
cernible, and a value of 1 implies that the two textures
are maximally distinct perceptually.

While the understanding of human texture recognition
and discrimination remains an area of ongoing research
and some disagreement, several consistent results have
been developed formally [1]. Current theories of texture
discrimination maintain that when two textures produce
a similar response to frequency-selective oriented linear



filters they are often indistinguishable [2, 1, 9]. Textures
which do not segregate can be considered to be similar
perceptually, while textures which do segregate are dis-
similar (Fig. 1).

We wish to determine a computable similarity function
D, to approximate D�. Different types of textures may
lend themselves to different computable approximations
to D� which is why our framework allows each procedu-
ral texture Pi to have an associated similarity functionDi

in the set S.
In practice thus far we have used a single D to approx-

imate D�:

D(T1; T2) =

X
x

X
y

�
Fm(T1)[x; y]� Fm(T2)[x; y]

�2

(3)

where Fm(T )[x; y] is the intensity of the pixel at loca-
tion (x; y) in the magnitude of the amplitude image of
the Fourier transform of T .

This measure is reasonable since it captures similar-
ities which are located in the frequency domain and is
thus comparable to the image pyramid analysis proposed
by Heeger and Bergen [9] with the advantage that it can
be efficiently computed. Our preliminary results suggest
that this measure works well in practice.

6 Experimental Results

Textures have often been described as being either de-
terministic or stochastic. Deterministic textures exhibit
some form of underlying pattern, and can be thought of
as having rules which govern the placement of the textu-
ral primitives. Stochastic textures, on the other hand, do
not have any easily identifiable primitives. Many textures
are in fact some combination of both deterministic and
stochastic textures. Most texture synthesis techniques to
date work well only for stochastic textures which are both
stationary and local [9, 5, 16]. In this section, we will
demonstrate the power of our system using both deter-
ministic and stochastic procedural textures. To validate
our method, we first illustrate our technique by replicat-
ing a texture which has itself been generated using a pro-
cedural texture whose parameters we are attempting to
find. This allows us to clearly observe the extent of the
mismatch in the final result that is due to imperfect pa-
rameter fitting, as opposed to errors due to shortcomings
in the expressive ability of the procedural texture itself.
As a second example, we apply our framework to a tex-
ture sample which has not been created procedurally.

Our system uses procedural shaders which are written
in the RenderMan Shading Language [15], although it
can easily support other procedural shading and textur-
ing languages. In addition to standard use of the Shading

Language in the graphics community, we can take advan-
tage of some recent techniques described in [12] to accel-
erate the rendering of procedural textures when using this
language.

In our first example, we have chosen a weave texture
based on an example in Steve May’s RManNotes [11]
(see Fig. 2). This shader has four parameters: the fre-
quency of the weave, the orientation of the weave, the
width of the horizontal stripes, and the width of the ver-
tical stripes. There are many possible textures associ-
ated with random samples of the parameter domain as
is shown in Fig. 2(a). Figure 2(b) shows the target tex-
ture T we are trying to synthesize using our system for
parameter estimation. The candidates from the global
search as outlined in Sec. 5.1 are shown in Fig. 2(c). For
each of these candidates, we performed a local search
and the resulting texture with the lowest distance value
is shown in Fig. 2(d). Because the target texture orig-
inated from the same procedural texture, we can verify
the accuracy of the parameters found by our method. The
parameters for Fig. 2(b) were h23; 2:5; 0:22; 0:78i for ori-
entation, frequency, horizontal width, and vertical width
respectively. The parameters recovered by our method
were h22:9639; 2:50109; 0:213725; 0:785673i. These re-
sults are satisfying both visually and numerically.

To verify the behavior of our system using a more
stochastic procedural texture, we used Musgrave’s
puffyclouds shader [6, p. 295]. This procedural texture
makes use of fractional Brownian motion (fBm), and as
such has parameters for the number of octaves making up
the fBm, the lacunarity, the fractal increment, parameters
for the color of the sky and clouds, as well as a threshold
for choosing between the sky and cloud color depending
on the value of the fBm. This number of parameters, as
well the trial and error guesswork involved in the spec-
ification of their values for the desired results is com-
mon when using procedural textures. These parameters
also do not have intuitive meanings for non-specialists
as compared to the parameters which control the weave
shader discussed above. As such, this particular shader
serves well to demonstrate the usefulness of this tech-
nique for graphic artists.

For the purposes of these illustrative experiments, we
have fixed the number of octaves in the fBm since it is a
function of the resolution of the rendered image, and also
fixed the colors for the sky and clouds to their defaults in
order to reduce the dimensionality of the search space.

It will not always be the case that we can find a close
match if the target texture is not contained in the texture
range of the procedural texture which we are searching.
This will frequently be the case when using real photo-
graphic images as target textures (which is our intended



(a) A few samples from the texture range of the weave shader.

(b) (c) Top candidates matching target texture found during the global search. (d)

Figure 2: Results from using our framework on a procedural texture of a weave (a deterministic texture). (a) shows
a sampling of the various weave textures which can result from using different parameter vectors. The texture whose
parameters we wish to estimate in shown in (b). The sparse global search over the texture range returns the candidates
shown in (c), which are deemed to be the closest to the target texture. A local search is completed starting from each
of the candidates in (c) to find the parameter vector which will give us a resulting texture as close to the target as
possible. This resulting texture is shown in (d).

(a) Samples from the texture range of the cloud shader. (b) (c) (d)

Figure 3: An example of how our system performs for a stochastic texture. As in Fig. 2, a few samples of the range
of the procedural texture are shown in (a). The target texture (an actual picture of clouds) is shown in (b). The closest
match from the global search is shown in (c), and the final texture resulting from the local search in shown in (d).



application). In this situation, we can only hope to find
a parameter vector x such that P (x) is as perceptually
similar as possible to the target texture T . In order to
demonstrate this principle, we have chosen to use a tradi-
tional photograph of actual clouds for our target texture
(Fig. 3(b)).

A few images of clouds resulting from various sam-
ples within the parameter domain of the cloud shader are
shown in Fig. 3(a). The global search over the param-
eter domain chose the image shown in Fig. 3(c) as the
closest match. From this texture, a local search was per-
formed which resulted in the image shown in Fig. 3(d).
The latter is the texture which most closely resembles the
input sample according to our similarity function. Al-
though the synthesized images are noticeably different
from the input samples (unlike those of the weave tex-
ture), the search has captured the critical characteristics
of the clouds from the input sample. This is reasonable,
given that it is unlikely that there is a parameter vector
which will result in an image which is exactly the same as
the input sample. Because we have chosen to use a target
texture from an actual photograph, we cannot verify our
results numerically as we could with the weave shader,
and must rely exclusively on the visual appearance.

For each texture, the global search was performed us-
ing a low density (less than 100 samples) of uniformly
distributed sample points within the parameter domain
of the respective procedural textures. The local refin-
ing searches from the top candidates found in the global
search converged quite quickly as is illustrated in Fig. 4.

The results reported above suggest that this technique
for parameter estimation does in fact work well for both
deterministic and stochastic procedural textures. While
we have shown only a limited number of procedural tex-
tures, our preliminary results are promising, and suggest
that this technique can be used for a wide variety of pro-
cedural textures.

7 Discussion

The approach we have outlined allows us to determine the
suitable parameters for a procedural texture generation
function to allow it to approximate a given input texture,
assuming that the input texture sample is in the domain of
the procedural texture generator. This allows for the auto-
mated specification of procedural parameters that might
otherwise be difficult to discover. One issue, however, is
that for a texture that is well outside the domain of the
procedural texture generator’s output, it may be difficult
to detect that the texture cannot be replicated. While this
problem appears intuitive, its rigorous solution in fact re-
lates to a range of difficult computer vision problems and
is the subject of ongoing research.

A more technical issue is the selection of appropriate
sampling parameters for the space of procedural textures
that can be generated. The textures explored in this pa-
per did not require a dense sampling in order for the lo-
cal searches to be successful, implying that their texture
spaces were relatively well behaved. Specifically, given
a setting of the procedural texture that was a very rough
approximation of the target texture, it was possible to re-
fine the match using local search methods. As the texture
space associated with a procedural texture becomes more
unstable (and has more local minima), a more dense sam-
pling will be required in order to correctly seed the local
search.

The techniques we have described have a few ap-
plications outside of traditional computer generated im-
agery. Because procedural representations of textures are
very compact, there are obvious connections with image
compression. Moreover, current trends show processing
power increasing much more rapidly than network band-
width. As such, implicit representations are well suited
to this scenario where the representations are transferred
across networks to be rendered in real-time on the client
computer.
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