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RECOGNIZING VOLUMETRIC OBJECTS IN THE PRESENCE OF
UNCERTAINTY

TAL ARBEL, PETER WHAITE, AND FRANK FERRIE

Abstract

This paper describes a new framework for parametric shape recognition based on a
probabilistic model of inverse theory first introduced by Tarantola. The key result is
a method for generating classifiers in the form of conditional probability densities for
recognizing an unknown from a set of reference models. Our procedure is automatic.
Off-line, it invokes an autonomous process to estimate reference model parameters
and their statistics. On-line, during measurement, it combines these with apriori
context-dependent information, as well as the parameters and statistics estimated
for an unknown object, into a single description. That description, a conditional
probability density function, represents the likelihood of correspondence between the
unknown and a particular reference model.

The paper also describes the implementation of this procedure in a system for
automatically generating and recognizing 3-D part-oriented models. Specifically we
show that recognition performance is near perfect for cases in which complete surface
information is accessible to the algorithm, and that it falls off gracefully (minimal
false-positive response) when only partial information is available. This leads to the
possibility of an active recognition strategy in which the belief measures associated
with each classification can be used as feedback for the acquisition of further evidence
as required.
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1. INTRODUCTION

In this paper we describe a new framework for parametric shape recognition based
on a probabilistic model of inverse theory first introduced by Tarantola in [12]. Appli-
cation of this theory leads to a Bayesian recognition strategy similar to that used in
other approaches [11]. However, the important distinction of our methodology is that
it leads to a mechanism by which the conditional probability density functions used to
classify shape models can be automatically generated. In doing so, important sources
of contextual knowledge are taken into account that are less obvious in traditional
approaches. Such knowledge includes i) a priori knowledge of the objects comprising
the database, ii) information obtained from the process of estimating model param-
eters for an unknown object, and iii) information from the physical theories giving
rise to the reference models themselves. The resulting density functions describe the
likelihood of correspondence between an unknown model and a particular reference
model. Such a measure is essential to an active recognition process which can use it
as feedback in the collection of further data to resolve ambiguity.

The context of this paper is three-dimensional object recognition in which objects
are represented by parametric shape descriptors such as superellipsoids [1,2,4, 8],
deformable solids [3, 7], and algebraic curves [5,11]. Object models are constructed
through a process of autonomous exploration [13-17] in which a part-oriented, ar-
ticulated description of an object is inferred through successive probes with a laser
range-finding system. Figure la shows the set-up used to perform experiments —
a two-axis laser range-finder mounted on the end-effector of an inverted PUMA-560
manipulator. For any particular viewpoint, such as the one shown in Figure 1b, a
process of bottom-up shape analysis leads to an articulated model of the object’s
shape (Figure 1c¢) in which each part is represented by a superellipsoid primitive [4].
Associated with each primitive is a covariance matrix C which embeds the uncer-
tainty of this representation and which can be used to plan subsequent gaze positions
where additional data can be acquired to reduce this uncertainty further [14-16]. A
system which automatically builds object models based on this principle is reported
in [6,13,17].

Off-line, a database of object models is generated by presenting each object pro-
totype to the model building system. Each object is in turn represented by several
sets of parameters, one corresponding to each part of the object. For the experiments
presented in this paper, objects are represented by a single parametric model that
encompasses the entire object!. On-line, the recognition phase proceeds identically
to model-building except for one key difference. On each iteration, i.e. gaze-point
calculation — data acquisition — data merging (fusion) — parameter estimation,
the conditional probability density function (CPDF) for each reference object given
the current parameter estimate of the unknown object is calculated. If a clear winner
stands out in terms of maximum likelihood, the process is terminated and a ranking
of hypotheses along with their respective belief values returned. Otherwise the pro-

!The extension of our recognition strategy to multi-part objects is currently being investigated
in our laboratory.
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(b) (c)

FIGURE 1. (a) Mobile laser range-finding system used to construct
object models. (b) Laser range-finder image of a pencil sharpener ren-
dered as a shaded image. (c) An articulated, part-oriented model of the
sharpener using superellipsoid primitives; 8 superellipsoids are used,
one corresponding to each of the parts of the object.
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cess is allowed to continue and the CPDF’s for each reference model updated on the
basis of the newly acquired data. In this way, evidence can be incrementally gathered
during the process of exploration.

The above recognition strategy raises a number of fundamental issues which are
the focus of this paper. First, how is parametric uncertainty used and communicated
between the processes of model building and recognition? Clearly they are not inde-
pendent. Furthermore, the recognition process must take both the uncertainties in
the database, as well as the measurement uncertainties of the unknown object, into
account. By applying the Tarantola theory we show how the appropriate CPDF’s
used for recognition can be determined from such information. Second, what is the
best manner in which to accumulate information? The model-building process is
expensive, the merging of data from different viewpoints in particular [9, 10]. While
this might be acceptable for database generation, recognition tasks must often be per-
formed rapidly. An alternative is to consider the use of partial information obtained
independently from different viewpoints. We show that the CPDF’s generated from
this data retain their selectivity and result in a minimum number of false-positive
indications. In turn we show how the resulting ambiguities can be resolved without
the need for data fusion through consensus from several different viewpoints.

Finally, one must consider the stability of model parameters. Representations
based on superquadrics, for example, pose a number of problems due to degeneracies
in shape and orientation. Other parametric forms, e.g. algebraic surfaces [5], are
sometimes less problematic and can offer a more stable basis for recognition pur-
poses. However it is still desirable to choose forms in which physical attributes can
be ascribed to model parameters in an intuitive manner. The finite-element represen-
tations introduced by Pentland and his colleagues are a case in point [3,7]. For our
purposes, where shape is initially partitioned into part-oriented segments, superellip-
soids are attractive both in the range of shapes they can represent as well as their
computational simplicity. We have developed a method of avoiding degeneracies in
the case of the superellipsoid, which permits the use of this convenient parametric
form without incurring undue computational overhead. However, the discussion of
this method is beyond the scope of this paper.

We begin in Section 2 with a brief overview of the inverse theory [12] and then
formulate the problem of model recognition. This leads to a method of deriving,
for each object model instance, the conditional probability of that model given the
current estimated parameters of the unknown and their covariances. Two sets of ex-
periments are presented in Section 3 which describe and compare the performance of
the recognition procedure using CPDF’s computed from complete and partial surface
information respectively, as well as incremental recognition experiments. Finally we
conclude in Section 4 with some general observations on our current work and points
for future research.



2. The Inverse Problem Theory

2. THE INVERSE PROBLEM THEORY

The recognition problem requires us to infer from measurements of an unknown
object that model which best represents it in a data base of known objects. Like
all inverse problems, the recognition problem is ill posed in that, i) several models
can give rise to identical measurements and, ii) experimental uncertainty gives rise
to uncertain measurements. As a result it is not possible to identify the unknown
object uniquely. There are various ways of conditioning ill posed problems, but these
all require strong, and often implicit, a priori assumptions about the nature of the
world. As a result a method may work well only in specific cases and because of the
hidden implicit nature of the conditioning assumptions, cannot be easily modified to
work elsewhere.

For this reason we have adopted the very general inverse problem theory of Taran-
tola [12]. It makes the sources of knowledge used to obtain inverse solutions explicit,
so if conditioning is required the necessary assumptions about that knowledge are
apparent and can be examined to see if they are realistic. Also, and importantly,
the question of whether a solution is ill-posed or not is shown correctly to be an
operational issue. The theory tells us how the knowledge we have can be combined
to obtain a solution, but leaves any decision about its usefulness up to the tasks that
require it. For example, when attempting to recognize objects we would ideally want
the unknown model be identified correctly all the time. Because of experimental un-
certainties this can never happen, and there is always the possibility that an object
will be identified incorrectly. Only the task can know if the likelihood of errors is
acceptable.

This raises the interesting question of what we should do if the level of errors
is not acceptable. Because the sources of knowledge are explicit they are not only
visible to the operational tasks, but are also potentially open to manipulation by
them. In principal it should be possible for the task to condition or actively acquire
the a priori knowledge required to make the solution acceptable. We have already
demonstrated that what we call autonomous exploration functions well at the model
building level [13,17] and we now intend, with the aid of this theory, to incorporate
feedback from the recognition task as well.

2.1. The Inverse Solution. The theory postulates that our knowledge about a
set of parameters is described by a probability density function over the parameter
space. This requires us to devise appropriate density functions in order to represent
what we know about the world.

Tarantola’s theory specifies three separate sources of a priori knowledge:

1. The knowledge given by a theory which describes the physical interaction
between models m and measurements d, denoted §(d, m).

2. Information we have about the model from measurements, denoted pp(d).

3. Information from unspecified sources about the kinds of models which exist in
the world, denoted pp(m). Knowledge like this is a powerful constraint and
can be used to eliminate many of the unconstrained solutions.
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The solution to the inverse problem is in principal quite straight forward — it is
simply a matter of combining the sources of information. The logical operation of
conjunction is appropriate, i.e. the solution to the inverse problem is given by the
theory AND the measurements AND any a priori information about the models.
Tarantola extends the notion of logical conjunction to define the conjunction of two
states of information [12, pages 29-31]. With this definition we can therefore com-
bine the information from the joint prior probability density function p(d,m) and
the theoretical probability density function #(d,m) to get the a posteriori state of
information

p(d, m) (9((1, m)
p(d, m)

where §(d,m) = §(d|m) pup(m) and p(d,m) = pp(d) pp(m) over the joint space
M x D. The so called non-informative probability density u(d,m) = pup(d)pr(m)
represents the reference state of information in much the same way that noise is used
when measuring information in terms of signal to noise ratios. The formulation of
appropriate non-informative densities is a complex issue, but for our purposes we
will assume that all the non-informative densities are uniform over their respective
spaces.

o(d,m) = (1)

Accordingly, (1) is more general that the equations obtained through traditional
approaches, but degenerates to them in specific cases. Under the conditions men-
tioned, the solution is identical to the Bayesian solution [12, page 61] where the a
posteriori information about the model parameters is given by the marginal proba-
bility density function:

po(d) 0(d|m)
o(m) = pufm) [P0

2.2. The Part Recognition Problem. In the system we have constructed, range
measurements are taken, surfaces are reconstructed then segmented into parts, and
individual models are fit to each part. We will treat the whole system as a measuring
instrument. Given some model m in the scene, range measurements are taken and
from these an estimate of the model is obtained, d, which we call a measurement of
the model in the scene.

dd. (2)

2.2.1. Information Obtained from Physical Theories. We first formulate an appropri-
ate distribution to represent what is known about the physical theory that predicts
estimates of the model parameters given a model in the scene. Such a theory is
too difficult to formulate mathematically given the complications of our system. We
therefore collect an empirical theory through a process called the training or learn-
ing stage of the recognition process. Here, monte carlo experiments are run on N
measures of a known model exactly as in traditional statistical pattern classification
methods. The conditional probability density function §(d|m) is calculated for each
model by assuming a multivariate normal distribution. For each model class, a mean
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and covariance matrix are calculated. Therefore, the final equation for #(d|m) is:
f(djm) = N(d — g(m), Cr) (3)

where N is the multivariate normal distribution such that:

1 1 To=1(d — o(m
Nid - glim), Cr) = e exp (—5(d — g(m)"C7(d —glm))) (1

and Cr is the covariance matrix describing estimated modelling errors for a model
m, and 7 is the dimension of the data space.

2.2.2. Information Obtained from Measurements. Much of the knowledge we have
about a problem comes in the form of experimental measurements of observable pa-
rameters. In our system [15], we obtain an estimate of the observed model parameters
d.;s, and also an estimate of their uncertainty in the covariance operator Cy. The
assumption we make is that the multivariate normal distribution N(d —ds, Cy) rep-
resents our belief in the measurements. The probability density function representing
this information is the conditional probability density function v(d.s|d) , such that:

v(dops|d) = pp(d)/pp(d) = N(d — deys, Ca) ()

2.2.3. A Priori Information on Model Parameters. In the current context, there are
a discrete number of reference models, m;,2 = 1... M. The probability density
function used to convey this knowledge is

pu(m) =3 P(m;) §(m —my), (6)

where P(my;) is the a priori probability that the :** model occurs.

2.2.4. Solution to the Inverse Problem. Substituting the probability density functions
(3), (5), and (6) into (2) gives us the final equation for the a posteriori probability
density function

o(m) =Y P(m)N(dy, — g(m).Cp) 6(m —m)). (7)

where Cp = Cy 4+ Cp. This density function is comprised of one delta func-
tion for each model in the database. Fach delta function is weighted by the belief
P(m;)N(d,ss — g(m;),Cp) in the model m;, and is essentially calculated by con-
volving the normal distributions in (3) and (5). The advantage of the method is
that rather than establish a final decision as to the exact identity of the unidentified
object, it communicates the degree of confidence in assigning the object to each of
the model classes. It is then up to the interpreter to decide what may be inferred
from the resulting distribution.

Representations based on superquadrics pose a number of problems due to degen-
eracies in shape and orientation. In solving this problem, work has being done in
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Displayed above are the reference objects that result from training on complete surface data:
a big sphere, a block, a cylinder, a lemon, a smaller sphere, and a rounded block. Below, the
same models are shaded according to the projection of parameter uncertainties into 3-D space.
White reflects large uncertainties, and black indicates parameters that are tightly constrained.
For example, the light face of the block shows that the y size parameter is more uncertain than
the x.

FIGURE 2. Six representatives that result from training

representing objects by multi-modal distributions, where each mode contains infor-
mation about a possible equivalent form. Discussion of this process is beyond the
scope of this paper.

3. EXPERIMENTS

Six objects were chosen for the purposes of testing the recognition procedure. These
objects included a small wooden sphere (rad = 20mm), a slightly larger wooden
sphere (rad = 25mm), a wooden block, a wooden cylinder, a plastic lemon, and a
rounded block made of a sponge-like material. The objects were selected because
they consisted of single parts that conformed well to superellipsoids. They were
relatively symmetric in all three planes, did not bend or taper, and were man-made.
They varied in size and shape, so as not to be clustered together too tightly in
five-dimensional feature space. However, their distributions overlapped sufficiently
enough in several dimensions so that the recognition procedure was challenged in its
discrimination task.

Training (Section 2.2.1) automatically produced object class representatives, by
measuring the object numerous times. Each individual model was created by scanning
the object from several views using a laser range-finder?, then a superellipsoid model
was fit to the data, and the resulting parameters stored. For the purposes of creating a
stable database for recognition, it was established that three views of each object, 120°
apart were sufficient to constrain the fitting procedure. Fach sample was scanned

?The density of scanning was such that each pixel of an 85 x 85pizel? image represented 3mm?.
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from a random scanning position, producing 24 samples of each object. Figure 2
illustrates the six representative models of each object that result from training.

3.1. Matching Using Complete Information. In the first experiment, recog-
nition was performed using an unknown model computed from a sequence of views
covering the visible surfaces of an unknown object. The intent of this experiment was
to validate the recognition procedure against models produced by the autonomous ex-
ploration process on running to completion[14]. Twenty-four samples of each object,
each scanned from three different viewpoints, were presented to test the invariance of
recognition against variations in sampling and viewpoint. Using maximum likelihood
as the basis for recognition, i.e. choosing the model with the highest confidence value,
the results shown in Table 1 are obtained.

Models Big sphere Block Cylinder Lemon Small sphere Rnd.Block
# correct 24 24 24 24 24 24
# incorrect 0 0 0 0 0 0
# undeterm. 0 0 0 0 0 0

TABLE 1. Matching samples taken from multiple viewpoints

The results indicate that the system can successfully recognize an instance of any
object in the database with perfect results, provided that its surfaces are accessible,
independently of viewpoint and sampling order. This is to be expected given that
the probability density functions of each of the unidentified objects exhibit small
variations in parameter space due to the relatively complete information available.
Training produces reference models that also have narrow distributions, and which
are well separated from each other. The distribution of the unidentified object would
necessarily overlap that of the correct reference model more than the others.

Examination of the resultant beliefs shows that the recognition system is certain
about the reference model it chooses in all cases. Examples of the non-normalized
belief distributions of the lemon and block can be found in Table 2. These results
indicate that complete information allows the system to correctly identify objects with
a high degree of certainty. The high beliefs reflect the fact that both the measurement
distributions and the reference model distributions are “delta-like” and close together.

3.2. Matching Using Partial Information. Since complete information is not
always available (and potentially expensive to acquire), a more realistic test would
be to determine the parameters of an unknown model from partial information. In
the limit this would consist of attempting to base recognition on data acquired from
a single viewpoint and would clearly violate the assumptions implicit in the training
process. Furthermore, it has been shown elsewhere that the resulting model param-
eters would be inherently less stable [14]. However, should the procedure still retain
some of its earlier selectivity — as evidenced by a low degree of false positive matches
— then an incremental procedure becomes a possibility. In this second set of exper-
iments, recognition was performed on thirty-six single-view samples of each object.
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Trial Big sphere Block Cylinder Lemon Small sphere Rnd Block

1 0 0 0 5.11 0 0
2 0 0 0 6.53 0 0
3 0 0 0 12.66 0 0
4 0 0 0 70.70 0 0
3 0 0 0 42.32 0 0
6 0 0 0 27.13 0 0

a) Belief distributions of the lemon

Trial Big sphere Block Cylinder Lemon Small sphere Rnd Block
1 0 6.09 0 0
0 6.24
0 9.87
0 1.58
0 15.21
0 11.67

Sy O = W N
jeniNen Bl an B e BN an)
jenilen il an B an Bl an N e
jeniNen Bl an B e BN an)
jenilen il an B an Bl an N e

b) Belief distributions of the block

TABLE 2. Results of several iterations of recognition of a)lemon and
b)block viewed from multiple viewpoints
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Here, data was collected at 40° intervals in 4 different equatorial planes. The same
methodology as in the first experiment was applied in the recognition of the unknown
model parameters. The results obtained are shown in Table 3.

Models Big sphere Block Cylinder Lemon Small sphere Rnd.Block
# correct 36 26 33 36 36 19
# incorrect 0 3 0 0 0 0
# undeterm 0 7 3 0 0 17

TABLE 3. Matching samples taken from a single viewpoint

As expected, recognition based on partial information is less certain than in the
previous case where the complete surfaces of the unknown object were accessible.
Here, undetermined states exist in situations where the values of the a posteriori
probability density functions are extremely low (on the order of 107%°). Due to
numerical underflow, the procedure produces beliefs of zero for each of the refer-
ence models. This situation occurs when the parameters determined for a particular
viewpoint differ significantly from any of the models in the database. We call such
viewpoints uninformative. Here, the large covariances that result produce wide dis-
tributions that do not sufficiently overlap any of the reference distributions. In three
cases (the wooden block) false-positive recognition did occur. This happened when
the block was scanned face-on, leaving it unconstrained in several directions such
that the resulting parameters were closer to the rounded block than to any other
reference object.

Figure 3 shows some specific examples of recognition attempts of the block from
different viewing positions. In the first two cases, the procedure correctly identi-
fied the objects as corresponding to the block despite wide fluctuations in their size
parameters. This is due to the fact that the models encompass the uncertainties
corresponding to these parameters in their representations. The reference model also
learned of these possible variations during training, incorporating them it its rep-
resentation. Therefore, the distributions were close enough to that of the reference
block to make a correct identification. This reinforces the hypothesis that objects
need not be represented by extremely accurate descriptions. Rough size and shape
representations are sufficient as long as the reference object has learned about these
possible fluctuations in the training stage. In the third case, the system could not
identify the object as being any of the known models. One can see that this model
does not visually resemble any of the references in size or shape. In the final case,
the system incorrectly identified the block as being the rounded block. Here, one
can see that the model is visually closer to the rounded block. Despite permitting
fluctuations in size, the reference block is quite certain about its shape parameters,
and does not permit rounded edges. This is indicated by the black shading around
the block reference model’s edges.

Table 4 shows the belief distributions resulting from incremental attempts at rec-
ognizing the lemon and the block. Here, data is collected from single views at 40°

10
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In the top boxes are the square block and rounded block reference models. Below these are four
different attempts at recognizing the square block from different viewing positions. In each case
the model is compared to the each of the six references in turn, and beliefs in each are computed.
Above each model one can see the result of running a maximum likelihood algorithm on the
results. C'indicates a correct recognition, ¢?2¢ indicates an undetermined state, and XXX refers
to a false recognition. Here, the system identifies the square block as being the rounded one. The
objects are shaded according to their uncertainties (see figure 2).

FIGURE 3. Examples of recognition of the block from single views
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Viewpoint Big sphere Block Cylinder Lemon Small sphere Rnd Block

0° 0 0 0 2.97x107% 0 0
40° 0 0 0 6.93x1071° 0 0
80° 0 0 0 0.18 0 0
120° 0 0 0 2.44x1075 0 0
160° 0 0 0 8.07x107? 0 0
200° 0 0 0 3.38x1071 0 0
240° 0 0 0 1.10x 10716 0 0
280° 0 0 0 0.31 0 0

a) Belief distributions of the lemon

Viewpoint Big sphere Block Cylinder Lemon Small sphere Rnd Block

0° 0 4.00x107% 0 0 0 1.16x107°
40° 0 0 0 0 0 0
80° 0 0.33 0 0 0 0
120° 0 0.05 0 0 0 0
160° 0 0 0 0 0 0
200° 0 0.21 0 0 0 0
240° 0 0 0 0 0 0
280° 0 0.05 0 0 0 0

b) Belief distributions of the block

Displayed above are the first six attempts at successively recognizing the block at 40° increments.
Shading is in accordance with parameter uncertainties (see figure 2). The results of running a
maximum likelihood algorithm are found above each box (see figure 3).
TABLE 4. Results of incremental recognition of a)lemon and b)block
viewed from 40° single viewpoints
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intervals in an equatorial plane. One can see that the beliefs are considerably weaker
than in the previous case consisting of complete information. The first iteration in
the recognition of the block produced a false-positive identification. In this case, the
resulting distribution did overlap with the distribution of the reference block. The
belief in the rounded block is quite low, indicating that the system is quite uncertain
about the identification. In fact, whenever a false-positive identification occurs, the
system produces very low beliefs. This suggests that if the threshold for undeter-
mined states were raised, the incorrect identifications would become undetermined
states.

The preceding suggests the possibility of an incremental recognition procedure. It
is based on the following observations obtained empirically over successive trials:

i) Uninformative views generally result in undetermined states. Detection of
such events is a clear indicator that further sampling is required.

ii) Informative views are generally accompanied by high confidences (beliefs), but
with the possibility of a false-positive indication.

iii) The likelihood of successive false-positive indications is very small. First, this
is a consequence of the high selectivity of the reference distributions which
result in low frequencies of false-positive indications in the first place (e.g. Ta-
ble 3). Second, it is unusual for observer motion to result in similar viewpoints
in two successive views (general position assumption).

In the longer version of this paper we argue that as a general rule, three consistent
identifications suffice for a stable scene. An example is shown in Table 4 which shows
a sequence corresponding to the first 6 entries in the second half of Table 4. Iteration 1
is inconclusive, the object is either a square or rounded block (However the results
of running a maximum likelihood algorithm indicate that the object is a rounded
block). In iterations 2 and 5 the object is undetermined. Iterations 3, 4, and 6, on
the other hand, consistently support the correct classification of the unknown object
as the square block.

4. CONCLUSIONS

In this paper we have presented a new framework for parametric shape recogni-
tion based on a probabilistic model of inverse theory introduced by Tarantola [12].
We have shown how a Bayesian recognition strategy can be derived automatically
by applying the theory and have demonstrated its implementation in a system for
recognizing 3-D objects based on superellipsoid parameters.

The results indicate that the strategy is quite robust, not only in situations where
complete surface information is available but also in those cases where it is only par-
tially accessible. This leads to the possibility of an incremental recognition strategy
where the beliefs associated with each different hypothesis can be used to control
further acquisition of data until a prescribed degree of certainty is met. Our results
demonstrate that it is indeed possible to differentiate between informative and un-
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informative viewpoints, a key requirement in such a mechanism. We have shown
that the case of false-positive indications can be effectively dealt with by insisting on
a consensus between three different viewpoints in affirming a particular hypothesis.
Simply put, the same maximum likelihood match would have to be present from at
least three different viewpoints before a label is assigned. An incremental, active
recognition strategy based on these ideas has proved successful in our laboratory.

Some observations are in order regarding the autonomous explorer, the system used
to automatically generate the database models used for recognition. In the numerous
trials performed during the course of this research we were able to consistently obtain
stable parametric descriptions of the model database. These were largely indepen-
dent of viewpoint, variations in sampling, and the trajectory chosen by the mobile
laser scanner. The generation of stable, salient object models is clearly an essential
ingredient in the implementation of a successful object recognition system. Future
work will involve exploration guided by feedback from the recognition system. This is
possible because all sources of knowledge are made explicit within the framework de-
scribed. Therefore, the system could actively acquire information needed to correctly
classify the objects.

The system described exhibits a high degree of selectivity in matching object prim-
itives, paving the way for recognition of more complex objects. We are currently de-
veloping a scheme for multiple-part object recognition that involves a graph-matching
procedure. We believe that this paper outlines a sound, statistical method for com-
paring the nodes. Given its success in discriminating based on partial information,
the search-space for the graph-matching problem should be considerably reduced.
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