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ABSTRACT

Abstract

Thisthesis deals with the problem of recovering the local structure of surfaces from discrete range data. Itis
assumed that thisrecovery isdone mostly in abottom-up fashion, that is, without the hel p of apriori knowledge
about the viewed surface.

Because the problemisill-posed, we neverthel ess need to place constraints on the recovered structure to
get a unique solution. In a bottom-up approach, these constraints must come from generic assumptions that
apply to all surfaces.

Many methods of bottom-up surface reconstruction have been proposed up to now, some of them deal-
ing with intensity surfaces, some with range surfaces. Each of these methods either explicitly or implicitly
appliesa set of constraints on the data. The way in which the constraints are applied also varies from method
to method. The main contribution of thisthesisis some success at unifying a number of those methods under
a common formalism of energy minimization, which will permit to better compare the choice of constraints
between methods. We also show that the most successful surface reconstruction methods form idempotent
operators, which we argue is to be expected.

One method, Sander’s curvature consistency, is studied in more detail than the others because it has not

been studied much elsewhere yet.
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to method. The main contribution of thisthesisis some success at unifying a number of those methods under
a common formalism of energy minimization, which will permit to better compare the choice of constraints
between methods. We also show that the most successful surface reconstruction methods form idempotent
operators, which we argue is to be expected.

One method, Sander’s curvature consistency, is studied in more detail than the others because it has not

been studied much elsewhere yet.



SOMMAIRE

Sommaire

Cette these considerele probleme de la récupération de la structure locale des surfaces & partir de données
télemétriquesdiscretes. |1 est supposé que cette récupération est faite principalement du basversle haut, ¢’ est-
a-dire, sans|’ aide de connaissances preétablies sur la surface observée.

Parce que le probleme est mal-posé, nous devons cepandant placer des contraintes sur la structure
récupérée, de maniére a obtenir une solution unique. Dans une approche du bas vers le haut, ces contraintes
doivent venir de suppositions génériques qui sont applicables atoutes surfaces.

Plusieurs méthodes de reconstruction de surface ont &té proposéesjusqu’ici, certaines traitant avec des
surfaces d'intensité, certaines avec des surfaces de mesures télémétriques. Chaqune de ces méthodes ap-
pliguent un ensemble de contraintes sur les donnees, que ce soit explicitement ou implicitement. L’ approche
utilisée pour appliquer ces contraintes est différente d’ une méthode a I’ autre. La contribution principale de
cette these est quelque succes al’ unification d’ un nombre de ces méthodes sous un formalisme commun de
minimisation d énergie, ce qui va permettre de mieux comparer le choix de contraintes entre les méthodes.
Nous montrons également que les méthodes de reconstruction de surface qui ont le plus de succes sont des
opérateurs idempotents, ce a quoi on devrait s attendre, selon nous.

Une des methodes, celle de la compatibilité des courbures de Sander, est étudiée en plus de détails que

les autres, parce qu’ elle n’ a pas été beaucoup étudiée ailleurs jusgu’ici.
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1.1 ORIGINS OF THIS WORK

CHAPTER 1

I ntroduction

Thisthesis deals with the problem of recovering the local structure of surfaces from discrete range data, as a
bottom-up process.

Many methods of bottom-up surface reconstruction have been proposed up to now, some of them dealing
with intensity surfaces, somewith range surfaces. Each of these methodseither explicitly or implicitly applies
aset of constraints on the data. The way in which the constraints are applied usually varies from method to
method. The main contribution of this thesis is some success at unifying a number of those methods under
a common formalism of energy minimization, which will permit to better compare the choice of constraints
between methods. We also show that the most successful surface reconstruction methods are idempotent op-
erators, which we argueis to be expected.

One method, Sander’s curvature consistency, is studied in more detail than the others because it has not

been studied much elsewhere yet.

1. Originsof thiswork

In hisdoctoral thesis Peter Sander [56] presented anovel method for recovering the differential structure
of surfaces from noisy discrete data. One major difference with other surface reconstruction work is that his
method dealt with three-dimensional images produced from magnetic resonance imaging, rather than with
graph surfaces such asintensity or range images.

Sander suggested, as a possible research topic, to investigate the applicability of his method for
rangefinder data. The method should apply straightforwardly, because range datacan be represented asathree-
dimensional image in which the surface is restricted to be a graph; the problem is therefore less general and
the method directly applicable. Furthermore, the trace is explicitly given in the case of range data, so trace
inferenceis not required, only the recovery of the differential properties of the surface need to be achieved.

One of the aspects of this thesis is the forementionned application of Sander’s method to range data.

This was to be the main contribution of the thesis, but early in the research, it became quite clear that some
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fundamental questions were left unanswered in Sander’s original work. The application of Sander’s method
to range data was therefore the spring board to research on more fundamental issues of surface reconstruction
in general. The consideration of these issues (to be detailed later) is now the main contribution of thisthesis.
The usual review of previouswork on the subject, normally part of the introduction, will also be part of the
main body of thisthesis. It will be shown that most major paradigmsfor surface reconstruction can be unified

through the use of an energy minimization formalism.

2. Background

2.1. Surfacesdefinethe3D world.  Vision (or perceptionin general) permitsan agent to interact with

the world that surroundsit. Here is an enumeration of some commonly cited visual tasks:

e Object recognition,
e object manipulation,
e obstacle avoidance,

¢ highly specialized tasks such as reading, recognizing faces, etc.

Depending on the task at hand, the world might be more or less restricted. For example, when reading
text, one may consider his visual world as being strictly two-dimensional. In general, however, our world is
three-dimensional, and objectswithin it occupy volume. Because objectsare usually opague, most of what we
can visually perceive of themistheir surfaces, which are the two-dimensional boundariesthat separate matter
types. Thisiswhy the perception and the representation of surfacesis agood starting point for the perception

of objectsin general, as wasfirst strongly proclaimed by Gibson [28, p.8#1].

2.2. Cooperation between curve and surface sensing.  There has been and still isalot of research
in the perception of two-dimensional curvesin intensity images [54, 51] [46, 42, 4][34]; thisresearch isin-
teresting in its own right, because as for the reading example above, there are a number of visual tasks that
can be restricted to a two-dimensional world. But methods that are successful in some dimensionality are
not necessarily easily extended to higher dimensions,* so there is a need to tackle the perception of surfaces
directly.

Surface reconstruction and curve reconstruction must act cooperatively. The occluding contour of a
viewed object (a 2D curve on the image plane) gives information about the surface of that object [5, 52]. In
the other way, the structure of an intensity surface or of arange surface may be used to find 2D information,

such as the contours of characters embossed in a metal plate.

1For example, Leclerc [36] designed avery effective method for finding discontinuities in graph curves. His extension of the method to
graph surfaces necessitated much too many constraining assumptions to be practical, however.
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2.3. Intensity versusrange surfaces.  The now widespread availability of range-sensors gives re-
searchersthe possibility to work on datathat directly relates to the geometry of surfaces. The geometric per-
ception can therefore be studied without the need to consider surface reflectance and light source descriptions.

A number of the surface reconstruction paradigms studied in this thesis were designed to reconstruct
intensity surfaces rather than range surfaces. Intensity surfaces do not directly represent the geometry of the
scene which generated it. For example, surface markingswill producefeaturesin theintensity surface but not
in the range surface. Nevertheless, we will treat the problem of intensity surface reconstruction and of range

surface reconstruction as equivalent for the purpose of thisthesis.

2.4. The recovery of local surface structure as a bottom-up process. It is accepted that vision
makes a great deal of use of high level reasoning. Perception, a“controlled hallucination” [17], uses gen-
eral contextual knowledgeto restrict and to guide recognition. Nevertheless, it is also accepted that thereisa
fair part of perception that is bottom-up (rather than top-down). [10] cites psychophysical studies suggesting
that

... inthefirst stage of visual recognitiontheimageis categorized on perceptual groundsonly,
whereas a perceptual category is given semantic content in the second stage.
The bottom-up parts of perception use generic assumptions that do not rely on a specific context in order to
make certain features of the world explicit, and available for higher level processesto use. These low-level
processes can be “hard/wet-coded”, and therefore more efficient. Biological support for such low level pro-
cesseshasbeen found. For exampl e, orientation, disparity, motion, and curvaturedetectors have been detected
[32, 20], which al make explicit some featuresimplicitly present in the visud field.

In thisthesis, the recovery of loca surface structure will also be considered as alow-level, data-driven

process, which should neverthel ess be open to suggestions or constraintsimposed by ahigh level process. An

example of such top-down influence on low-level processes can be seenin [38, Fig. 14, plate 2].

2.5. Semantics.  Finally, let usinterpret the meaning of “recovery of local surface structure” in the
context of thisthesis. Seen asalow-level process, it isto make explicit featuresthat are only implicitly present
inthe input data. The featuresthat relate to the local (geometric) structure of surfaces are of two kinds. First
arethe differential properties, up to a certain order, of the continuous parts of the surfaces. Seen as geometric
entities, the first two low order differential properties tranglate to surface orientation and surface curvature.
Second are the surface discontinuities, also up to a certain order. Steps and creases (height and orientation
discontinuities) areusually considered [59, 26, 13, 29], aswell as curvature discontinuities sometimes[49, 36].
Global properties, such as how a surface may enclose avolume, are not considered here.

The expression “ surface reconstruction”, which | have already used above, is more popular in the liter-

ature. It isless specific than the previous expression, and its meaning varies dightly from one author to the
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other. However, becauseit issimpler towrite, | will useit hereto mean the same thing astherecovery of local

surface structure.

3. Congtraints and their satisfaction

Given that the initial data consistsin (possibly noisy) samples of a surface, and that the end product of
our low level processisalocal differential structure, there still lacks something to the problem definition. In
terms of regularization theory, the problem is till ill-posed [47]. Informally put, there could be avery large
number of answers explaining any particular set of data. If the goal isto get stable and meaningful solutions,
additional constraints must be added to enforce stability and “meaningfulness’, but the information content
of the data must not be lost. For example, it is natural to assume that “nothing extraordinary” happensto the
surfacein between the points that were sampled, even if anything could happen in reality.

In this thesis, we consider the surface reconstruction problem as one of constraint satisfaction. That is,
in order to make theill-posed problem well-posed, we constrain the answer to lie within aregion (aconstraint
subset) determined by a set of constraints, and for given data, we choose the point in the subset closest to that
data. Such aclosest point problem forms an idempotent operator, and we argue that idempotency isarequired
property of surface reconstruction algorithms.

Once a problem is well-posed, one remainsto find the now unique solution to it. Even if the solution is
known to exit, to be unique and to be stable, it is not necessarily simple to find. For example, the traveling
salesman problem iswell-posed, but it is also NP-complete. The satisfaction of the constraints must therefore
be attained by the use of some computationally practical algorithm, and many such algorithms have been pro-
posed inthe computer vision literature. Most of these methods do not express the problem as one of constraint
satisfaction, and a number of them do not dissociate between the problem statement and the problem solution
process. Within our framework, the dissociation is straightforward: The problem solution isthe minimization
of some functional, and the problem statement is the functional to minimize and the type of minimization to

perform.

4. Organization of thethesis

Theformalism to be used throughout this thesis when talking of constraints and their satisfactionis pre-
sented in the next chapter. It isbased on constraint subsets and energy minimization. Detailed analysis of the
work of Sander has not been published on a large scale, and its adaptation to range imagery has only been
given an overview in papers using the method [22, 23, 24]. It is therefore a good choice as a case of a sur-
face reconstruction method to be described in detail. Thisis donein chapter 3. The description of Sander’s
method is followed by a comparison with other methods in chapter 4. It is shown in that chapter that a num-

ber of methodsare actually equivalent. The conclusion first summarizesthe findings of the preceding chapter.
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Then, suggestionsfor future work that could originate from thisthesis are presented. A number of appendices
areincluded. A review of differential geometry isrelatively standalone. The other appendicesrelate directly

to the contents of some chapters. These will be introduced within the relevant sections.

5. Contributions

The two most important contributions of thisthesis are the unification of popular surface reconstruction
methods, based on the functional minimization framework, and the proof of idempotency of some surfacere-
construction methods. Also, the adaptation of Sander’slocally constant curvature updating to 2—1 /2D (range)

data and an in-depth analysis of the method are worthwile contributions.
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CHAPTER 2

| dempotent operators, constraint subsets, and energy minimization

1. Introduction

This chapter presents the formalism that will be used in the following chaptersin order to analyze and
compare different surface reconstruction methods. This formalism uses constraint satisfaction and energy
minimization. Many surface reconstruction methods are not formulated as energy minimization problems
from the outset, and we consider useful that anumber of generating theories, consisting of the problem defini-
tion, context, starting assumptions, that lead to a particular formulation, be presented. These different gener-
ating theories can provide insight into the interpretation of the basic problem. Such theoriesinclude physical
models such as membrane and plates under tension [60], [13], stochastic models such as [26], information
theoretic models such as Minimum Description Length (MDL) [36], evolutionary theories such as dynamic
shapetheories[35], etc. However, once atheory has been established, a paradigm designed to solve aproblem
within this theory, and computer code generated to implement the paradigm, say, on a Turing machine, one
noticesthat there are much less different patternsin the code asthere are generating theories. Itisin an attempt
to reduce a number of theoriesinto a small number of problem classes that we use constraint satisfaction and
energy minimization as the formalism in which to view surface reconstruction problems.

Also, we claim that a surface reconstruction operator should be idempotent. Under some conditions, an
idempotent operator can be expressed as an energy minimizer, so it can be expressed within our formalism.
Not all surface reconstruction methods that have been proposed have this property.

In this chapter, we first present the notion of idempotency and its properties. Then, the associated notion
of constraint subset isintroduced, followed by examples of idempotent operators. Inthefollowing section, we
describe three classes of energy minimization problems and show how they relate together and to idempotent
operators. These classes will be used as abasisfor comparing different surface reconstruction methodsin the

following chapter.
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2. Idempotency requirement

A surface reconstruction algorithm may be considered as an operator® in functional analysisterminology.
An operator has a domain and a range, such that it performs a mapping from an element in its domain to an
element in its range. In this chapter, it is argued that one of the required properties of an operator that is to
perform surface reconstruction isidempotency. An operator g isidempotent when its composition with itself
yieldsitself2

2.1 (gog)(d) =g(d).

The argument in favor of the idempotency requirement isinformal: If the goal of the operator isto re-
cover avalidinterpretation frominitial data, then applying the process one moretime on the supposedly valid
interpretation should not change it. Otherwise, how can we say the first interpretation was valid in the first
place?

A perpendicular projection is an operator that is both idempotent and self-adjoint. [61] was among the
first to advocate that a signal restoration operator should be a perpendicular projection. More recently, [45]
arguesthat edge detection should be a projection, and [25] enforce an integrability constraint as a projection,

in a shape from shading algorithm.

3. Constraint subsets

If asurface reconstruction operator isidempotent, then we will denoteits range asits constraint subset?,
because thefunction constrainsthe answer to liewithin that set, and does not modify argumentsthat already lie
init. We use “subset” rather than “set” because the range of an idempotent operator is a subset of its domain.
If apoint lies outside of the range of the operator (but isin itsdomain), the operator will causetheanswer tolie
in the constraint subset (itsrange). If the argument of the operator liesin its range, then the operator will act
astheidentity operation, becauseit isidempotent.* In other terms, al the pointsin the range of an idempotent
operator are “fixed points’ of the operator [1]. If a surface reconstruction operator is not idempotent, then we
cannot identify its range with a constraint subset: Even if the argument to the function liesin its range, the
result is not necessarily equal to the argument.

For the surface reconstruction function to make sense, the meaning of elements of its domain must bethe
same as the meaning of the elements of itsrange. Thisis not to say that the domain and the range must have
the same dimensionality in the initial problem statement. Rather, the cardinality of the range must be lower

than or equal to the cardinality of the domain [37]. A few examplesarein order.

1An operator is more general than afunctional or afunction. It will therefore be used unless we want to be more specific.

2See[37] for areview of functional analysis.

SWhich is not quite the same as the constraint set, or feasible region, of nonlinear programming [33, p. 1096].

4The proof is trivial. If x liesin the range of f, then there exists a y in its domain such that f(y) = z. By the idempotency of f,
f(f(y)) = f(x) = x, which completes the proof.

10



2.3 CONSTRAINT SUBSETS

In [45], thefunction isto produce a binary feature map corresponding to the edges and lines of the input
image. Inthiscase, evenif theinput image is not a binary image, the result is nevertheless avalid image that
consists only of binary lines. Applying the function once more on thisimage should therefore give the same
result back.

Thefunction f : ®* — R consisting in taking the norm of avector in R™ lowers the dimensionality of
theresult to one. However, the meaning of the components of the argument and of the result may be the same.
For example, the average of a set of heightsisaheight. In order to represent this function as an idempotency,
we view the result as the parameter ¢ of the one-dimensional manifold u(t) = (¢,t,... ,t), u € R™. Taking
the average can then be seen as the perpendicular projection of the argument onto the constraint subset de-
fined above. The operator can then be applied onitsresult, which produces no effect, since the argument now
already satisfies the constraint (that all the components of the vector be equal).

Now, let us consider an operator which hasarangewith a higher dimensionality thanitsdomain. Thisis
an important consideration in surface reconstruction in the case of sparse dataand multi-sensor integration. In
this case, | dightly generalize the definition of idempotency. Aslong as a subspace of the range corresponds
to the domain, it is possible to test for a generalized idempotency of the operator. For example, consider an
operator that takes as argument a vector y representing the depth of points sampled on a planar curve, and
that produces a piecewise continuous polygonal estimate of the underlying curve, while satisfying some set
of constraints. If the input consists of n depth values, then the result will consist in n new depths and in the
n orientations of the polygonal segments. If the operator isidempotent with respect to the depth information,
applying the operator on the resulting depth should give the same polygonal estimate. In this example, the
reason for the idempotency requirement is again clear. If the goal is to obtain the best (under a fixed set of
constraints) n segment piecewise continuous polygonal approximation to the underlying curve, it would not
make sense that the data generated by the first application of the operator generate a different approximation
upon a second application of the constraints.

Here are some more properties of constraint subsets. A constraint subset does not have to be a smooth
manifold in the domain A C R™. It could consist of the union of any number of sets of any dimensionality,
as long as they can be embedded in A. For example, it could consist of a C'* regular surface of dimension
m < n, either bounded or of infiniteor partialy infiniteextent. It could consist of asubset of 7, of dimension
n. It could also consist of a disconnected set of m pointsin ®™. Figure 2.1 shows examples of the three.
The cardinality of the constraint subset is one indication of how information reducing the operator is, but the
“volume” occupied by a bounded subset is also informative in the case of an n dimensional subset of ™,

because the cardinality of both these setsis the same [37].
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i

VA

FIGURE 2.1. Examplesof constraint surfaces. From left to right, amanifold in ®™, an n dimensiona
subset of R™, and a set of disconnected points in ®™. The arrows represent the solutions of closest
point problems on these constraint subsets.

4. Sometypes of idempotent operators

The perpendicular projection of apoint d on aconvex constraint subset isidempotent. When aset is not
convex, d may perpendicularly project on morethan one point, and the operator is therefore not well defined.

Given an arbitrary constraint subset, the closest point operator is the one that finds the point in the con-
straint subset closest to thedatapoint d. Theclosest point problem for aconvex constraint subset is equivalent
to the projection operator. Figure 2.1 gives examples of the closest point operator for different types of con-
straint subsets. If the constraint subset is not convey, it is possible that a data point has more than one closest
point on the constraint subset. The operator is unstable at these points.

When restricted to Euclidean spaces, the closest point operator is of limited use. We borrow on thetermi-
nology of field theory [43] to conceptualize the closest point operator in any curvilinear orthogonal coordinate
system. In such a system, we designate one set of coordinates as flux lines, and al the other coordinates as
equipotential, with the constraint subset having a constant potential by definition. From a data point in this

space, the idempotent operator consists in following the flux line from the data point to the constraint subset.

5. Three classes of energy minimization

We now present the energy minimization problem, and divideit into three classes. The division between
the classes depends both on the problem to be solved and on the approach used to solveit. That is, the same

problem usually can be formulated by more than one class of energy minimization.
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5.1. Minimization of convex energies. The simplest energy minimization problem isthe minimiza-
tion of convex energies. Numerical methods for such minimizations abound, and the process is well under-
stood [64]. It is sometimes possible to solve the problem analytically, especially when the parameter space
issmall. In most cases, however, numerical methods are more practical. Some idempotent operations can be
formulated as minimization of convex energies. For example, perpendicular projection of apoint d on acon-
vex manifold r(u) can be expressed as minq (d — r(u))?, where the function to minimize is convex. This
problem can be solved numerically using gradient descent approaches, that use local differential properties of
the energy function, such asitsfirst, and even second, partial derivatives. Notethat the problem is completely
defined by the energy function to minimize, and that this energy function combines both the constraints of and

the argument to the operator.

5.2. Global minimization of non-convex energies.  The second family of energy minimizationisthe
most difficult to solve, and many methods of surface reconstruction currently fall in this energy minimization
class. Problemsin this class consist of finding the global minimum of a non-convex energy function. For
the problem to be well posed, there must be no more than one point with the minimum value of the function
over the domain of interest. What differentiates between this class and convex minimization problemsisthe
problem itself. The formulation of the minimization is the same, but some problems will produce convex
energies, while somewill not. Asfor convex energy minimizations, the argument to the operator is part of the
energy function, in this case.

When the parameter spaceis small, it is possible to solve this problem exactly using dynamic program-
ming approaches[2]. However, this approach becomes inefficient very fast as the dimensionality of the pa-
rameter space and the required accuracy increases. Numerical methods fall mostly in two categories. One
is ssimulated annealling, which performs a kind of informed random search on the energy function [26]. The
other approach has actually been developed independently for computer vision algorithms[13], and is gener-
ally known as the continuation method [1]. It consists in smoothing the energy function to make it convex,
and to track the minimum as the function is gradually unsmoothed back to its original shape. Thetrackingis
similar to zero crossing tracking in the scal e-space of Witkin [65].

The closest point in aconstraint subset »(u) to apoint d can be found by solving minag, (d — r(u))?. If

r(u) isnot convex, this problem is a non-convex globa minimization.

5.3. Local minimization of non-convex energies. Thisisthe second simplest energy minimization
problem to solve. In this case, the problem data consists of a possibly non-convex energy function, together
with a starting point in the parameter space of the function, called an initial estimate to the solution. The
problemisto find the minimum of thefunctionlocal to that point. Local, in this case, may have two meanings.

In one case, the local minimum is considered as the minimum closest to the initial estimate in the parameter
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Initial
estimate

Same pit minima

Closest minima

FIGURE 2.2. The closest local minimum to theinitial point is not necessarily the same as the same-
pit local minima, asthis example shows. The point to the left is much further from theinitial estimate
than the point to the right, but it liesin the same pit asthe initial estimate.

space. We call this problem the closest minimum problem. Inthe other case, the solutionisthe local minimum
that one would obtain by gradient descent from theinitia point. We call this problem the same-pit minimum
problem. Figure 2.2 shows that these two problems do not necessarily give the same solution. If the energy
function has some symmetry with respect to its minima then both problems may be equivalent, as is the case
for energy defined by adistance transform[14]. In any case, the same-pit minimum makes more sense as an
energy minimization problem because the closest point minimum makesno use of the energy function elsethan
to find the set of local minima. In terms of problem complexity, the same-pit minimum problem s equivalent
to a convex minimization, since it can be solved by using only local properties of the energy function. The
second caseis not as easy because thelocal structure of the energy function does not provide any information
as to the direction where the solution lies.

The same-pit energy minimization will bethe one used for thelocal energy minimization classintherest
of thisthesis. It istrivial to show that alocal energy minimization is an idempotent operator. For the closest
point problem, for example, the corresponding energy function, mentioned above, is the distance transform
of the constraint subset. Contrary to the previous classes, the function to (locally) minimizeis only defined
by the constraints, and not by the argument to the operator. The argument istaken astheinitia estimate, that

determinesthe “local pit” of the energy function.

5.4. Comparison between global and local ener gy minimization methods.  Thedifferencebetween

the global and the local minimization class is partly in how the problem is posed. We saw in section 4 that
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2.5 THREE CLASSES OF ENERGY MINIMIZATION

alocal energy minimization problem can be expressed as a distance transform in an appropriate curvilinear
orthogonal coordinate system. Any local minimization can therefore be posed as a global minimization by
constructing the parametric equation ¢(¢) of the boundary of the constraint subset in the distance transform

space, and by expressing the problem as
(2.2 mtin(d —c(t))%

Figure 2.3 illustrates this duality between global minimization and local minimization problems.

However, not al global energy minimization problems, even convex ones, can be expressed as local
minimizations, because these operatorsare not necessarily idempotent, and we know that alocal minimization
problemisidempotent. A local minimizationismuch simpler to solvethan anon-convex global minimization,
but the local energy function itself might not be easily computable, however.

In local minimization problemsone needsan initial estimate of al the featuresto be explicitly produced
by the operator. However, some features can beimplicitly represented. For example, the position of disconti-
nuitiesin asurface can bederived fromthe junction of the Monge patch surfacesthat were explicitly computed,
asisdonein [36]. In contrast, global minimization methods permitsfor datathat is not explicitly provided to

be explicitly produced, such asthe line processin [13].

5.5. Stability. Inany problem that hasto be solved numerically comesthe question of stability. Even
if aminimization is solved exactly, there can be instabilities inherent to the problem itself, for certain data
Slight changesin unstable datamay produce very large changesin the result, and that may be considered asa
type of ill-posedness [47].

In terms of an energy minimization framework, numerical stability has to do with the shape of the en-
ergy functional near the global or the local minimum that isto be found. A very small curvaturein the neigh-
bourhood of the minimum makes the exact localization of the minimum hard to find numerically, even if it
isactually well defined. A gradient descent process will tend to wander around the minimumiif it sitsin an
almost flat area. In surface reconstruction, the minimization takes place in a multidimensional space where
each dimension usually represents a particular pixel siteintheimage. In that case, the minimum may be very
localized along some axes, but not along others.

The datainstabilities differ in their instantiation depending on the type of energy minimization. No such
instability can exist for a convex minimization, because such a minimization does not take any decision [13].
Inthe case of aglobal but non convex minimization, datathat isunstable (with respect to the problemto solve)
will have some of itslocal minima at almost the same value (or even at the same value) as the “global” one,
in at least one direction in the problem space. The process looking for the global minimum will therefore
not know which one to choose. In local minimization, the energy functional does not change with the data.

Therefore, it is the position of the data point on the energy functional that determinesiits stability. Data will
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FIGURE 2.3. Relation between global minimizations and local minimizations. The point @ is the
data. The thick curve is the constraint subset, expressed parametrically as ¢(t): only points on this
surface satisfy all the constraints. The problem is to find the closest point uo to @ that lies on the
constraint surface. One way to find u is to build the distance transform of the constraint surface,
pictured by the shaded surface with level curves, and to find thelocal minimum of thisfunction. This
isdone by moving from @ al ong the path of steepest descent (the dashed line) to the solution. The other
way isto find the global minimum of (@ — ¢(t))? interms of ¢. However, the function to minimize
is non-convex (the crosses indicate where the local minimawould occur).

FIGURE 2.4. Numerical stability in one dimension. The minimum of the left energy will be much
more stable than the minimum of the right energy.
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FIGURE 2.5. Numerica stability in two dimensions. The minimization will be more stable in the
highly curved direction than in the other direction.

STABLE UNSTABLE

FIGURE 2.6. Stability in global minimizations.

AN

FIGURE 2.7. Stability in local minimizations.

be unstableif it isat alocal maximum of the functional, along at least one direction in the problem space. In
that case, agradient descent approach can decide to proceed on either side of theridge, giving two completely
different results.

What | have termed numerical instabilities and datainstabilitiesarein fact related. If thelocal minimaof
an unstable global energy functional close up together to the point where they touch inthelimit, the result will
bealargeflat minimum, causing numerical instability. Also, when acontinuation method is used to “smooth”
an unstable global energy functional, the resulting functionals will tend to be flatter, as can be seen in [36,
Appendix B]. In the case of alocal energy functional, if the local minima are connected, then there are no

ridges separating them, and the unstability will be a numerical one.
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6. Summary

| have put forth argumentsfor the requirement that a surface reconstruction operator be idempotent. In
such a case, the range of the operator can be considered as a constraint subset. An argument that isalready in
the range of the operator is considered to satisfy the constraints of the operator, and an argument that isnot in
the range will be made to adhere to the constraint subset.

In order to compare surface reconstruction operators, either idempotent or not, | have adopted an energy
minimization formalism. Thethree classes of energy minimization | consider are global convex minimization,
local minimization, and global non-convex minimization. The distinction between the global convex and the
global non-convex energy minimizations depend on the type of problem to solve. The distinction between |o-
cal and global minimizationsdependson theformalism adopted to solve agiven problem. Local minimization
problems always correspond to idempotent operators and can always be expressed as a global minimization
problem, although the reverse is not necessarily true.

In the next chapter, we present the locally constant curvature constraint algorithm of Peter Sander [56],
which | have adapted for surfaces presented asagraph rather than asadensity image. Thismethodis presented
herein more detail because it has only been outlined in the literature [23, 22, 24], and because it involvesall
thekey issuesthat will be considered inthefollowing chapters. Immediately followingisachapter comparing
anumber of well known surface reconstruction methods under the formalism of this chapter. In particular, we
areinterested to know which methods are idempotent operators. Or, equivalently, which methods are associ-
ated with awell defined constraint subset.
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3.2 SUMMARY OF SANDER'S ORIGINAL WORK

CHAPTER 3

Sander’svariational relaxation

1. Introduction

This chapter presents the adaptation of the locally constant curvature approach of Peter Sander to the
reconstruction of graph surfaces. The first part gives an overview of the original work of Sander [56]. The

rest of the chapter presents its adaptation to graph surfaces and an analysis of the algorithm.

2. Summary of Sander’soriginal work

This section briefly overviews the original work presented in Peter Sander’s doctoral thesis [56]. The
emphasisis on the implementation of the method, as it was applied to magnetic resonance images. Thefibre
bundle formalism introduced by Sander will not be used at all, sinceit is felt it does not add anything to the
understanding of the method.!

2.1. Goals. The goalsof Sander’s method are to infer the trace points (see appendix A) of surfaces
in three-dimensional images (analogous to inferring the trace points of curves in standard two-dimensional
intensity images), and to estimate the differential geometric properties of these surfaces, in the form of an
augmented Darboux frame (to be defined later) at every sample point. Sander’smethod doesnot attempt tofind
step and crease edgesin the surfaces, as many other methodsdo. Rather, the surfaces are assumed everywhere

smooth.?

2.2. Representation of the surface.  The differential geometric properties that are to be explicitly
recovered by the method are the surface orientation and principal curvatures[19]. Specifically, an augmented
Darboux frame ¢ p3 is stored for every trace point P. The frame consists of the coordinate P of its origin,

the surface normal IN at P, the principal directions M ;; and M ,,,, and principal curvatures x,; and &y,

1Actually, even Sander does not refer much to the formalism outside of the section where it is presented.

2Referring to appendix A, smoocth isinterpreted as C2, sincethisis sufficiently regular to perform all the computations of the algorithm.
SActually, principal frame [6, p. 20] would be a better designation, since Darboux frames do not have to correspond to frames on the
lines of curvatures. Nevertheless, this notation will be kept for compatibility with Sander’s work.
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3.2 SUMMARY OF SANDER'S ORIGINAL WORK

at P [56]. Thevectors N, M s, and M ,,, are all unit vectors, and form a direct orthonormal frame in $23.
Although the principal directions are represented as vectors, the only information content isin their direction.

Appendix A reviews the relevant differential geometric concepts.

2.3. Initial Estimates.  Itisnecessary for thismethodto haveinitial estimatesof all the quantitiesto be
produced by thealgorithm. Thisdoesnot automatically provethat the method fallsinto the local minimization
family. The estimates are the coordinates of the trace points, and their associated differentia propertiesin the
form of their augmented Darboux frames, to be described later.

The initial estimate of the position of the trace points and of their associated normalsis obtained in a
way similar to the use of edge operators on two-dimensional images, except that the operators are now three-
dimensional. Details can befound in [67]. Basically, theimageis convolved with a 3D edge operator at a set
of discrete orientations. The image positions at which an operator response is above a threshold, and which
survive a local maxima selection are chosen as the trace points, and the normal is taken as the orientation
of the operator which produced the response. It still remains to estimate the principal curvatures and direc-
tions. These could be found by estimating the second order derivatives using difference operations over the
trace points, but Sander argues that better estimates can be achieved by using a more robust surface fitting
method [56, Chapter 3]. From differential geometry, we know that the osculating paraboloid to a surface has
same principal curvaturesand principal directions at the point of osculation [48]. The required quantitiesare
therefore estimated by fitting a parabol oid to the putative trace point and its neighbours. Thefit includes both

positional and surface normal information.

2.4. Refining estimated differential properties.  Theinitial estimates obtained in the previous sec-
tion are not yet satisfactory. This can easily be seen in examples, such as the one in figure 3.12. It is well
known that signal noise is magnified in the computation of its derivatives, and second order quantities have
to be computed in this method. The principal directions are known to be especially noisy [56]. The initial
estimates are computed locally, and consistency between neighboursis not insured. The initial estimates are
therefore further refined by an iterative process which enforces alocally constant curvature constraint over
the trace points. Sander attempts to do thisin aframework similar to the relaxation labelling process used to
extract image curvesin [46] and [34]. However, the complexity of the representation precludesthe use of a
discrete set of labels, asin relaxation labelling. Instead, Sander appliesthe samelocal minimization principle
using continuous values and variational methods, thus the name variational relaxation.

The iterative updating processis now described. Most of the figureswill represent planar curvesinstead
of surfaces. Thisisclearer, and theprinciplesareeasily transferredin 3D throughthemind’seye. Theupdating
process refines the set of augmented Darboux frames 5}, for every point P that is part of the putative trace.

Thesuperscript 7 indicatestheiteration at which the Darboux framewas produced. Thedataestimated fromthe
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3.2 SUMMARY OF SANDER'S ORIGINAL WORK

preceding section provide the updating algorithm with 533. At any given iteration, all the points are updated
inparallel.

At iteration i + 1, the new frame 53;1 at point P is determined from the frames at points Q,, that are
members of the contextual neighbourhood N;, of point P at iteration ¢. This contextual neighbourhood con-
sists of the points within a sphere of radius r centered on P that satisfy a contextual neighbourhood criteria
on the point. This criteriaisthat P lies within a “thick trace” of width ¢ of the dual paraboloid patch (see

appendix A) s, of fba. I ssues concerning the thick trace will be addressed in the next section.
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FIGURE 3.1. Darboux frames of the trace points, and how to determine the contextual Neighbourhood.
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Figure 3.1 illustrates the ideas presented above. Inthefigure, thethick curvesarethe actual surfacesthat
were sampled using the grid shown. The grey grid elements are the trace of the curve, as determined by the
3D edge detectors. The coordinate axes at every trace point represent the vector components of the Darboux
frame, and a section of the osculating paraboloid isincluded to represent the magnitude of the curvature at the
trace points. All the Darboux frames are for iteration i, so the superscripts are not shown.

The contextual neighbourhood of point P is a subset of the trace pointsincluded in a sphere of radiusr
(2 pixelsinthis case, as indicated by the dashed circle) about P. For aneighbouring point Q , to beincluded
inthe contextual neighbourhood, point P must liein the thick trace of the oscul ating paraboloid to the surface
a Q.. Thethick trace of point Q,,, which is two pixel widein this case, is indicated by the hashed pattern.
The thick trace at point Q, indicated by a grid pattern, does not include point P, so point Q is therefore not
part of the contextual neighbourhood of point P.

Giventhe contextual neighbourhood, §3‘§1 isobtained by minimizing afunctional implementingalocally
constant curvature constraint on the neighbours. The first step is to “transport” the Darboux frames at the
neighbouring points to the point to be updated. Given Qfx enN pi» and its associated Darboux frame fba,
the updating frame at P from Q;,, denoted fZPa' is obtained as the Darboux frame of a point of the patch
so. Thispoint on the patch is obtained by projecting P on the patch along the direction of NV Qo Infigure
3.2, where the iteration subscripts were omitted, point P is projected on the osculating paraboloid of point
QQ, along the normal of QQ , in order to obtain the updating frame ¢ gga . Thetransported framesare shownin
dashedlinesfor « = 1, 4, and 5. Thearrowsindicatethe projection of point P onto the oscul ating paraboloids
of points @, and Q;, along the normals of the neighbours.

The updated frame 53‘;1 is the one that minimizes the sguare of the euclidean normed distance to all
the updating frames f},a.“ The components of f}}rl are found separately, as the quantities that satisfy the

following least-squared minimizations.

n

(3.1 kit = min Z;(HM — KMPa)’s
o

(32) Ii::é = I’I’lln (/im - ’imPoz)Q,

fom a=1
33 N = min N — Npo)? + A\(N? - 1),
(33 5 N,A;( Pa)® +A( )

' n

(3.4) ML= min > (My - Muypa)” + (M — 1) + A(My - N).

MHALA2 Ty

The Lagrangemultipliers A, A1, and A» enforce the required conditionson the vector quantities. 7 isthe num-

ber of non-umbilic pointsin the contextual neighbourhood of P. The value of M ;ﬁ is directly determined

4Actually, the frames 53,(1 that are determined to come from umbilic points do not contribute to the update of the principal directions.
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FIGURE 3.2. Obtaining the updating frames from the neighbours.

by cross product since it is required to form an orthonormal framewith M4}, and N4, Althoughitisin-

dicated in Sander’s thesis [56, p. 34] that the set of trace points are also updated, it is not clear how thisis

achieved (thisis not important for the adaptation of Sander’s method to range images).

Although the energy minimizationsare donelocally at each point, and not globally over the entireimage,

it is possible to conceive the total energy of the system as the sum of the local energles The tota residual

energy of alocal leapt-squared fit is called

the overall squared résidual

-Z\rPoz)2 9
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theresiduals R(eﬁjl ). The number of iterationsto be performed by the algorithm can therefore automatically

be controlled by atest on the convergence of the global residual.

3. Adaptation of Sander’s method for range images

In this section, the method previously described is adapted to data presented as atwo-dimensional graph,
where the trace of the unique surface is given explicitly. Thetext will specifically refer to datain the form of
range images, but the adapted algorithm can deal with other input data, such as surface orientation graphs
produced by shape-from-X algorithms [22]. Some of the modifications to the original algorithm are due to
the difference in the type of data. However, some modifications are to correct deficiencies that also apply to
the original algorithm. Whether modifications apply only to the adapted al gorithm or to both will be specified
in the text. In any case, the modifications keep the method within the original paradigm, that is, an iterative
refinement of initial estimates of surface depth, orientation and curvature, using alocally constant curvature

constraint.

3.1. Thegeneral outline.  Theoutline of the adapted algorithm ismostly the same asthe original one.
First, initial estimates of the augmented Darboux frame must be found at every point of the map. The differ-
ence is that the trace points are already assumed to consist of all the discrete points of the two-dimensional
map. Then, the augmented Darboux frames are iteratively updated in parallel, asin the original method. The
main differenceliesin how the contextual neighbourhood is determined. The transport and updating are con-

ceptually identical.

3.2. Initial estimates.  Inthe case of range data, the initial estimates of the trace points are explicitly
givenin the data. Theinitial estimates of surface orientation and curvature can be obtained by using finite
difference operations, or by performing local fitting of quadric surfaces, of which the differential properties
can be obtained analytically [6]. Fitting local quadricsisless sensitive to noise than using finite differences,
and using the smallest possible symmetric neighbourhoodsdoes not overly smooth the data. Since the method
assumes the surface to be everywhere smooth, there is no need to use robust fitting methods [7], [66]; least
squared fitting is currently used in the implementation. The goal at this stage of the development does not
include the detection of discontinuities; however, in order ensure the validity of the smoothness assumption
in the experiments, the bounding contours of surfaces may be explicitly given, and the local neighbourhoods
are then restricted to smooth connected regions of the surface. The same explicit discontinuity informationis

also used to prevent cross-boundary updating in the iterative updating.

3.3. Determiningthecontextual neighbourhood. Intheorigina algorithm, which dealt with athree
dimensional grid of pseudo intensity data, the neighbours of the frame were taken from a sphere (actually a

cube) centered on the point to be updated. Furthermore, points within the sphere would be included in the
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FIGURE 3.3. Difference between anintensity surface and arange surface (illustrated with 2D curves).
In (a) is a continuous surface, together with the discrete intensities it could generate as the output of
an “intensity camera’. The neighbourhood relation existing at points of such animageisasphere. In
(b) is the same surface sampled by a range camerain the direction of the arrow. The neighbourhood
relation for apoint isnow acylinder of infinite extent. (c) illustratesthat the sampling separation of a
regular surface by an intensity cameraishbounded, whilethe sampling separation dueto arange camera
is unbounded.

averaging only if the point to be updated was inside a thick trace of the extrapolating patch of the neighbour.
In the case of range data, the neighbourhood rather consists of adisk (actually asquare) sincethe dataare two
dimensional. If the dataare seen as“2 — 1/2D”, the neighbourhood can be seen as a cylinder. There can be
no limit to the extent of the cylinder, because surfaces with a high slope have a sparse sampling of the surface.
This is not the case for sampling along three axes, in which case surfaces with any orientation are sampled
almost identically (surfacesat 45° are sampled more sparsely by afactor of 1/2), and the neighbourhood can
be constrained along every axis.

Also, the thick trace was not used in the implementation of the algorithm for range data. The only valid
purpose of the thick traceisto prevent frames coming from pointsthat are in the same spatial neighbourhood
(which consists of aspherein thiscase), but not in the same neighbourhood on the trace or the traces on which
they lig, to interact with each other. See figure 3.1 for such an example. Therefore, it is mostly to handle the
case of two parallél traces that are close to each other; it is not intended to handle discontinuities within the
sametrace, as Sander assumes the surfaces are smooth. Range data samples the surface of objects asagraph,
thus providing a single trace covering the sampling grid. The case of two nearby but distinct traces cannot

OcCcur.
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3.4 EXTRAPOLATING PATCHES

Sander cited, asanother reason for thethick trace paradigm, theinclusion of spuriousdatapoints.® Again,
in the case of range data, since the connectivity of pointsis assumed to correspond to the sampling grid, even

theinitial estimates do not handle spurious points such as those created by shadow edges[30, p. 27].

4. Extrapolating patches

In hisoriginal algorithm, Sander used a parabolic patch to extrapol ate the darboux frame of a neighbour
to the location of the point to be updated. This patch is one of the easiest to implement since it only involves
second order polynomials, but it has the disadvantage that the origin of the paraboloid is where curvatureis
maximum; all other points of the patch have lower curvature. If extrapolation is done locally to the origin of
the paraboloid, curvature will only be approximately constant, and however small the bias, it will always be
towards lower values. A large cumulative biasis likely to occur if alarge number of iterationsis performed.
Thisistruefor both the original method and its modification.

The equation of a paraboloid in alocal coordinate frame based on the Darboux frame of the neighbour

isgiven below. The w axisis along the normal and the v and v axes are along the principal directions.
1 2 2
(3.7) w= §(l<;Mau + Kma¥”)

Paraboloid patches for positive and negative Gaussian curvature are shown in figure 3.5(a).

One of the easiest possible extrapolationsis not to extrapolate at al, i.e., the darboux frame of the neigh-
bour is ssimply used directly as the update frame. The principal curvatures are therefore considered locally
constant, as required, but the normal is not extrapolated either, while it obviously should, if the surfaceisto
remain consistent (if the surface has curvature, then the normal vector should not remain constant). In order
to satisfy the constant curvature constraint consistently, the normal should be extrapolated on an arc of acircle
with constant curvature. Although such an extrapolationiswell defined for one component of the normal, one
does not know how to update the component of the normal in the direction perpendicular to the direction of
extrapolation. One component of the normal is undetermined because thereis no knowledge of the underlying
surface to which the constant curvature arc belongs. It is like attempting parallel transport [19], [56, p. 38]
along a curve without knowing the embedding surface. Figure 3.4 illustrates this problem. That iswhy it is
necessary to use an extrapolating patch, to completely determine the extrapolated normal.

Inan attempt to find asurface patch that satisfiesaconstant curvature constraint asmuch as possibleby it-
self, we considered atorus patch, and another patch having aconstant normal curvature property. A toruspatch
with origin on the extremal outer or inner rim has constant normal curvature along the principal directions at

theorigin. However, normal curvaturesin other directionsthan the principal directionsare not constant. Torus

5Asanother method of dealing with spurious data points Sander mentions cross-validation techniques [18]. But cross-validation does not
deal with spurious data point in the sense of “outliers’, it israther aimed at estimating the “optimum” smoothness parameter of smoothing
splines for data with additive uncorrelated white noise.
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FIGURE 3.4. Transport of the normal on a constant curvature curve leaves one component undeter-
mined. The surface shown hasnormal curvature asindicated by thethick arc of circle, inthe direction
in which the extrapolation isto take place. The extrapolated normal could lie anywhere in the normal
plane to the curve at the projected point Py, unless the surface embedding the arc is known.

patches with positive and negative Gaussian curvature are shown in figure 3.5(b), and the equation is given
below. (Inthe equation found in [19], the w axis passes through the donut hole; in this equation, the w axis

passes across the plane of the donut.)

38) we L \/[1_’;_M(1_Wn2_u%_1

KM m

It is simple to derive the equation of a surface patch which satisfies the requirement that every normal
section passing through the origin has constant curvature. Thisequationis presented below, anditsillustration
can befoundin figure 3.5(c).

u? + v?

Kapru? + K02

1
- 2 2 2 2y _ 2 2\21 _
(3.9 W= - u2+/<;mv2\/(u + v2) [(u? + v?) = (kpmu? + £pv?)?]

It should be noted that neither of these two types of surfaces have umbilic points, whereas a paraboloid
patch with positive Gaussian curvature may have lemon umbilics[6]. Also, projecting the point to be updated
on the extrapolating surface may miss for these two, since they do not have infinite extent, as the paraboloid.
It is fair in this case not to consider the corresponding neighbour in the update, i.e., to exclude it from the

contextual neighbourhood.

5. Least squarefit of curvaturefields

A curvaturefield is not avector field as such sinceit isnot oriented. Only the direction matters. Further-

more, it is not possiblein general to assign an orientation to every line of adirection field in order to obtain an
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FIGURE 3.5. Possible extrapolation patches. For al patches, the top patch has negative Gaussian
curvature, while the bottom one has positive Gaussian curvature. (a) shows parabolic patches. Their
undesirable property isthat the magnitude of normal curvatures is maximum at the origin. (b) shows
torus patches. The two surface curves passing through the origin in the principal directions are arc of
circles. They aretherefore closer to enforcing a constant curvature constraint. However, other planar
surface curves passing through the origin do not have constant curvature. (c) shows patches for which
all planar surface curves passing through the origin arearcs of circles. It therefore enforces a constant
normal curvature constraint at the origin.

everywhere smooth vector field, because of the presence of umbilic points. Figure 3.6 illustrates such a case.

Onewould betempted to think that this problem was avoided in the original method by detecting umbilic
points and not using them in the update of principal directions. However, as figure 3.6 shows, the disconti-
nuities in the vector field do not only occur at the umbilic point, but along complete contours on the surface.
Also, the detection of umbilicsis not robust in the first iterations of the algorithm. We chose to include ev-
ery point of the contextual neighbourhood in the updating of the direction field, without attempting to detect
umbilics at this step. However, the updating rule for the principal directions has been modified to ignore the
orientation of the vectors representing the principal directions. This modification is presented in appendix B.
With the new updating rule, the results are very stable and preserve the umbilics without having to explicitly

detect them.
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FIGURE 3.6. A direction field cannot always produce a smooth vector field. The figure shows a di-
rection field (dotted lines) in the neighbourhood of alemon umbilic. The two smoothest vector fields
produced from this direction field are shown as arrows. In both cases, thereis aline of discontinuity
wherethe vector field isundefined. Note that the field can be undefined at pointsthat are not umbilics.

Asfor other methodsof refining the direction fields, those that consider only smooth vector fields, such as
[41], are not useful, because our vector fields may have discontinuities. Work as also been done on curvature

fields, for example, [62].

5.1. Extrapolation of the curvaturemagnitudes. In Sander’s updating of the principal curvatures,
the new principal curvature at a point was simply taken as the average of the principal curvatures of the ex-
trapolating patches at the projected neighbouring points. This has been modified, because it is felt that this
guantity does not represent the normal curvature along the principal direction at the point to be updated. Fig-
ure 3.7 demonstrates this point. The solid lines represent the extrapolated principal directions of the neigh-
bours of the middle point. The dashed lines at the middle point represent the updated principal directions.
Now, the updated principal curvatures at the central point should correspond to the normal curvature of the
surface along those principal directions. Therefore, the principal curvatures should be the average of the nor-
mal curvatures of the neighboursin the required directions (the dashed lines) rather than the average of their
extrapolated principal curvatures (in the direction of the solid lines). The updating of the principal curvatures
at a point must therefore be done after the update of the principal directions is known. Given the updated

principal directions M} and M}, the curvaturesto be averaged are then

(3.10) Ky Pa = KhiQa €O 00 + Kloo Sin” Oy,  Where 6y = ZM 1
(3.11) Kl b = /iﬁvaa cos? 0, + /iana sin®0,,, where 6, = ZMH5,
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ey
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FIGURE 3.7. The principal curvatures of the neighbours do not directly correspond to the principa
curvatures at the updated point.

instead of the principal curvaturesthemselves.

As for the modification of the updating of the principal direction fields, this modification is significant
only around umbilic points. Elsewhere, the direction field does not vary much in a neighbourhood, and both
methods give similar results. However, the consistency between the curvature magnitudes and the curvature

field at umbilic pointsis greatly improved. Figure 3.8 illustrates the improvement on an ellipsoid.

5.2. coordinate system and projection method.  One detail that has not been discussed in detail yet
is how to determine the coordinate of the point at which we want the extrapolation. The method used by
Sander consistsin projecting the point P to be updated onto the extrapolating surface along the local w axis
(in (u, v, w) coordinates) of the neighbour @, which is actually N¢, . Other choices are possible, however.
The projection used to obtain this coordinate should be either in a coordinate frame intrinsic to the surface, or
in ameaningful extrinsic frame. Figure 3.9 shows three possible choices.

Thefirst choice, represented as P,,,, inthefigure, isthe oneused by Sander. It consistsin projectingaong
the normal of the neighbour Q. Another choice is to project perpendicularly on the interpolating surface.
Thiscaseis denoted as P,,,. Finally, yet another choiceisto project the point to be updated along the global
z axis onto the interpolating surface patch. This case is denoted by P,,.. In the two first cases it makes a
difference whether the global z position of the point P is known or not. However, this value is not known
from the outset if the initial Darboux frames come from a shape from shading process [22] rather than from
arange sensor. These two projection methods can be qualified as intrinsic, since they do not depend on the

embedding of the surfacein space. Thefirst method, however, isextrinsic tothe surface, andwill givedifferent

31



e | mn | max |

analytic 0064 (7.7) | 0691 (228

old 0301 (6,5 | 0.649 (22.8)

new 0014 (7,6) | 0.647 (22.8)
@

3.5 LEAST SQUARE FT OF CURVATURE FIELDS

(b)

e o e .

P
R
e T e

P A
e

e
e
T

P

e e e e e
N A
B

T T T TR

e

©

(d)

FIGURE 3.8. Comparison between old and new extrapolation of curvatures for an ellipsoid. The
line segments indicates one of the principa direction, the intensities correspond to ||kar —
Kml||/ max(||kar]], ||&m|])- (b) are the results analytically computed from the eguation of the ellip-
soid. (c) , the old method, uses the principal directions as updates. (d) uses normal curvatures in ap-
propriate directions. Both results correspond to 2 iterations of the updating process using torus ex-
trapolation and the new field update rule. (a) indicates the min and the max values, as well as the
coordinate at which they occur.
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(uv)

(x.y)

FIGURE 3.9. Possible projections onto an extrapolating patch. Theillustrations arein 2D, but they
generalize directly to 3D projections.

resultsif the surfaceisimaged at different orientations. The reasons for using such an extrinsic projection is
because it is neverthel ess meaningful with respect to the sampling of the data and its noise contents (mostly
along the view axis of the range sensor). One choice that does not seem useful is projecting along the normal
of the point to be updated. Indeed, as Sander argues, one should not rely on the very information that is to be
updated, in principle.

Projection normal to the extrapolating surface is non trivial, even for a parabolic patch. It is possible,
however, to use approximate methods, such asthe onein [44].

The update of the depth of a point is obtained by averaging the z component of the projections on the
extrapolation patches. In the two first projection methods, the global = and y coordinates of the point may
also be modified by the projection operation, but those are ignored to preserve the initial format of the range

image, for computational simplicity.

6. Results

Results of some experimentsare now presented for the modified method. These are limited to one range
image (taken fromthe CNRC database[53, image#139], and one anal ytically generated surface. Other results
canbefoundin[23]. Largerangeimages (256 x 256) are useful for qualitative evaluation of the method, and
for discovery of unsuspected behaviors. However, testing the convergence properties of the method on such
largeimages provesimpractical dueto the amount of time needed to execute the updating on aserial machine.
Furthermore, once a peculiar behavior has been observed, it isrequired to trace its source. Small numerically
generated surfacesweretherefore used to test the method morerigorously. Small imageshavethe advantageof
permitting alarge number of iterations of the method. Numerically generated surfaces permit to comparethe

differential quantitiescomputed by the system with those computed analytically from the generating functions.
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(b) Approximate shaded image.

(a) Raw range data.

fluffy unicorn.

Initial data

FIGURE 3.10.

Figure 3.10(a) showstheinitial range data presented as amesh, and (b) shows

6.1. A fluffy unicorn.

and the satisfaction of the smooth surface assumption at almost every scale of obser-

frame). Thisimage was chosen among those we experimented with because of the very textured surface, the

a shaded image generated from finite difference estimates of the surface normal (part of the initial Darboux

richness of the shape,

.8 A rough occluding contour of the unicorn was obtained beforehand by thresholding the range data,

vation

and the algorithm was provided with this information so that it did not smooth over the boundary. The drops

and by a shadow edge in the fold of the upper leg

in the range data caused by the specular surface of the eye,

were left as they were. Parts of the shadow edges also remained on the boundary of the shape.

Four iterations of the algorithm were performed on a Symbolics Lisp Machine. The projection method

was aong the w axis. The new field update rule and the new principa curvature updates were used. The
extrapolating patch was a paraboloid, because using a torus patch considerably increases the running time of

6From the shaded image, we humans can detect some step discontinuities, even the ones on either side of the ribbon on the neck.
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FIGURE 3.11. Refined depths for the unicorn. (@) shows the new depth map after refinement. The
initial data can be seen in figure 3.10. (b) isthe difference between the two maps.

the algorithm, and four iterationswere not sufficient to produce asignificant biasin the curvature magnitudes.

Theinformation contained in the initial estimates of the augmented Darboux frames and in those refined by
the algorithm is presented below in many forms.

Figure 3.11 shows the refined depth, and the difference with the

initial depth data. In the difference map, the bump on the lower leg is unexplained, and does not seemto
appear in theinitial data. All the spikes correspond to the shadow boundaries and the specularity of the eye,
which produced step discontinuities in the original data. It is therefore normal that the algorithm deviated
considerably from the data to enforce the smoothness assumption of locally constant curvature. Note how-
ever that these effects have remained very locaized.” Asfor the rest of the difference map, it shows that no
significant warp of the shape occurred.

Figure 3.12 shows one of the principal directionfield. It isclear that theinitial estimate of the field does
not have any apparent structure, besides, maybe, on the horn and on the back. The results of four iterations
of the algorithm show a lot more structure. From our own qualitative appreciation of the curvature of the
surface of the unicorn, the field seems satisfactory on the legs, the front of the head, the neck and the body.
The structure of the ribbon has apparently been logt, but this is understandabl e since the agorithm assumes

7Using aneighbourhood size of 5 x 5 for 4 iterations can influence points within an 8 pixel radius, while we observe much more localized
spikesin the results.
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55]. Figure 3.13 shows the effect of the algorithm

An elipsoid was used as a demonstration of the convergence prop-

@

FIGURE 3.12. Refined principa directions for the unicorn, sampling every three grid points. (a)
shows one of the initial principal direction field. (b) shows the same field after refinement.

the surface is smooth. Thetail and the back of the head present noisier fields, but these areas were noisier in

the data itself.

The segmentation of smooth surfaces following regions determined by the sign of mean and Gaussian

curvatures has been proposed by many authors[8, 66, 15,

on those regions. Qualitatively, the results are comparable to those obtained by [55] (the experiment has also

been run on the indian mask).

It has also been proposed to segment surfaces at local maxima of positive curvature (adopting the con-

vention that the surface normal points outside of the surface, or towards positive z values, in the case of range

data) [10]. Figure 3.14 shows how useless such a segmentation would befromtheinitial estimates, but that the

refinement would permit it. Note that by explicitly storing the principal directions, the local maximaof posi-

tive curvature are assigned a direction aswell as a position. This facilitates their aggregation into continuous

surface curves, aswas donein [23].

6.2. Experimentson aéllipsoid.

ertiesof thealgorithm. Inthiscase, the augmented Darboux framefield of the shape can be computed fromthe
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@ (b)

FIGURE 3.13. Refined KH sign map for the unicorn. (&) shows the map produced from the initial
estimates. (b) is after refinement.

analytic expressions of the surface derivatives. The initial estimates fed to the algorithm were these analyti-
cally computed ones. Hopefully, the algorithm should leave thisdata unchanged, sinceit isaready consistent.
Thisis not the case at convergence, however, as the following figures show. This means that if the algorithm
forms an idempotent operator, then ellipsoids are not part of the corresponding constraint subset. Unless oth-
erwise noted, the same methods for the unicorn were used here.

First, we compare the effect of the choice of extrapolation patches. Figure 3.15 shows the results. That
theresultsat 100 iterations are close to the results at convergence can be seen from figures 3.17 to 3.21, which
showsthe global residual energy of the system, and its breakdown over theindividual terms of equations 3.5.
As expected, we see that using the paraboloid patch tends to flatten the surface at convergence. Recall that
this is due to the bias of a paraboloid patch towards lowering the curvature of its neighbours. The surface

obtained from torus extrapolations has comparable curvature magnitudes, but the shape of the surface has
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FIGURE 3.14. Refined local maxima of positive curvature for the unicorn. (a) shows the trace seg-
ments produced from theinitial estimates. (b) is after refinement.

obvioudy been warped considerably. The exact nature of thiswarp and the quantitative changesin curvature
have not been studied in detail.

Asfigure 3.16 shows, the structure of the principal directionfield istotally lost after 100 iterations. From
theresult after 10 iterations, we see that the umbilics are progressively pushed away until they disappear. The
corresponding drop in residual can be seen in figure 3.19(b). Considering that a torus patch does not have
umbilics, better results would be expected for a paraboloid patch, but the field behaves similarly when a pa-
raboloid patch is used (notice the same energy drop in figure 3.19(a)).

Figures 3.17 to 3.21 show the sums of thelocal residuals during the updating process. In figure3.17, we
see that the total energy does not decrease monotonically in the case of the paraboloid, (thereis alocal max-
imaaround the 40th iteration). In both cases, however, it isclear that the processwill asymptotically converge
to someresult. In figure 3.18, we see that the residuals of the least-squared fits for the curvature magnitudes
quickly go to zero. Thisis not surprising, considering that the update consists in a simple averaging of scalar

guantities. Aswas aready noted, the residuals for the principal directions updates quickly convergeto zero
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FIGURE 3.15. Thisfigure compares the refined depth at convergence using paraboloid and torus ex-
trapolation patches. (@) isthe original depth data. (b) isthe result of 100 iterations using a paraboloid
patch, and (c) isthe result of 100 iterations using atorus patch.
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FIGURE 3.16. Lossof structure of the principal direction fieldsat convergence. (a) istheinitial field,
as computed analytically from the equation of the éllipsoid. (b) isthefield after 10 iterations (using a
torus patch). (c) isthe field after 100 iterations.

oncethe umbilic structures have disappeared. Note also that these residualsform asignificant part of the com-
pound residuals, which was not the case for the principal curvature residuals. The two last residual plots are
for the normal s (figure 3.20) and for the depth (figure 3.21). The depth residuals are dightly more significant
than the normal ones, but both are less significant than the principal directions residuals. The convergence
of these residuals is much more eventful than the two previous ones. In general, we have not found any cor-
relation between the positions of the local extremas and the observable behavior of the augmented Darboux
frames, as was donein the case of the principal directions residuals. We noted, however, that the torus patch
extrapolation produced convergence sooner than with the paraboloid patch, as can be seen by observing the

position of the last local maximum, and the slope of the curve at the 100th iteration.
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FIGURE 3.17. Compound residuals
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FIGURE 3.18. Residuas of principa curvature updates

41




3.7 DISCUSSION

Finally, we show the result of the updating process on the ellipsoid with 10% additive Gaussian noisein
the z direction. Figure 3.22 showstheinitial data, aswell asthe refined depth after 5iterations. The surfaceis
smooth, but isobvioudly badly warped compared with the noisefreeellipsoid. Thelocal featuresdo disappear
after more iterations, but the global warping observed above takes place instead.

Figure 3.23 shows how the method can recover the structure of the principal directionfield. Inthis case,
theinitial augmented Darboux frameswere computed numerically, with the result shownin 3.23(a). The next
figure shows thefield corresponding to thefifth iteration. One of the umbilics has been recovered, but not the
other. In any case, as was shown above, even the recovered umbilic would disappear if the algorithm were

left to iterate to convergence.

7. Discussion

7.1. The hidden scale parameter: number of iterations.  Let us discuss the effect of varying the
number of iterations on the updating process. From the experiment with the ellipsoid and other analytically
generated surfaces, it is obviousthat the “locally constant curvature” constraint becomes a globally constant
curvature constraint at convergence. Itisnot clear at this point how the normal curvature can vary in different
directions on the surface at convergence, i.e., we do not expect the resultsto be always spheres. For example,
acylinder already satisfies the constraints if a torus patch is used (note that the osculating torus to a point
on acylinder degeneratesinto a cylinder), so a cylinder would not be warped by the process. Even then, the
constraint seemstoo restrictiveif the processis ran to convergence. All the small scale features of the surface
will belost. If thelocally constant curvature constraint was applied to plane curves, then it is clear that the
result of the algorithm at convergencewould alwaysbe acircular arc, the radius being the only free parameter
of theclass of curves satisfying the constraint. It isnot as straightforwardto find the compl ete class of surfaces
that satisfies the locally constant curvature constraint, because the extrapolating surfaces (such as the torus)
are much more complex than the arc of circle that would be used for curves.

Oneapparent solutionto theglobality of the constraintsisto control the number of iterations. Thenumber
of iterationsisat least in part a scal e parameter, because the updating processislocal, and the only meansfor a
point on the surface to influence a point further than itslocal neighbourhood is through anumber of iterations.
However, we are now back to the same problem than with regularization theory: the choice of the scale (or
smoothness) parameter.

Another solution is to attempt to find a better set of constraints, that would not be as restrictive as the
constant curvature one. Then, the process could be run to convergence every time. However, this does not
solve the question of scale. Scale is an important component of perception, and if the updating process is
always run to convergence, a new scale parameter has to be found, possibly in the computation of the initial
estimates.
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FIGURE 3.19. Residuals of principal directions updates
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FIGURE 3.20. Residuals of normal updates
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7.2. Type of energy minimization.

3.7 DISCUSSION

@

(b)

FIGURE 3.22. (a) is the previous ellipsoid with 10% Gaussian noise added. (b) is the result of 5

iterations of the updating process.
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FIGURE 3.23. (8) istheinitial estimates of the principal direction field. (b) istheresult of 5iterations

of the updating process.

application of the algorithm as alocal energy minimization.

In the previous section, we saw that letting the iterations run
to convergence gives some globally simple surface as a result, and that controlling the number of iterations
amount to setting the value of a scale parameter. When the process is ran to convergence, it is obviously an
idempotent operator. Indeed, taking theresult at convergenceastheinitial estimate for another application of
the process is the same thing as attempting another iteration on the first application of the process once con-

vergencehasbeen reached. Thiswill let the result unchanged. It istherefore possibleto expressthis particular
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The global residual energy computed to measure convergenceis given by the sum of

REE) =D [(N = Npa)® + (ka1 — 6arpa)” + (K — Gmpa)’]
a=1
(312) +Z(MM — Mrpy).

a=1

at every point of the surface. The function will be zero for surfaces that can be exactly fitted by the chosen
extrapolation patch, at every point. In the case of atorus patch, the function will be zero for spheres and
cylinders. These surfaces can be considered as part of the constraint subset of the idempotent operator. The
iterative process does not perform alocal minimization on this function however, because the residual does
not monotonically decrease during the process, as can be seenin figure 3.17. Therefore, although the process
isidempotent, it is not the global residual energy computed by Sander that isthe function to locally minimize.

When the number of iterationsis controlled, then the operator is not idempotent. If a second application
of the process is attempted with the result of the first one asinitial value, the second processwill simply con-
tinue where the first one left off, to bring the result closer to the result at convergence. This operator cannot

therefore be expressed as alocal energy minimization.

7.3. A secondary effect of the thick trace.  In view of the considerable warping of surfaces after
a large number of iterations of the updating process, we wondered why such an effect was not detected in
Sander’s experiments. One possible reason is that a large number of iterations were never performed. An-
other reason is the use of the thick trace to determine the contextual neighbourhoods, in the case of Sander’s
original method. There were reasons to use a thick trace paradigm in the 3D case, but this thick trace does
not only perform the intended task, it may also prevent the algorithm from running to the intended conver-
gence. Because of the distortion introduced in the surface after agiven number of iterations, the extrapolating
patchesarelessandlessliketheir initial estimates, which were obtained by |east-squared fit to the neighbours,
and therefore were necessarily passing close to the neighbours. As the surface distorts, less and less neigh-
bourswill satisfy the thick trace constraint, and at some point, updating will cause no change in the Darboux
frame to be updated, because not a single neighbour satisfies the thick trace constraint. The thickness of the
thick trace will artificially limit the amount of distortion caused by the algorithm, and this distortion effect
may go unnoticed. By not having the thick trace constraint in this implementation, the distortions were no-
ticed more easily. Note that in this case, the thickness of the thick trace can be considered as another version

of ascale parameter.

7.4. Advantagesof Sander’sapproach. Becausetheiterative updating doesnot usefinite difference
equations, it is easily extended to non regular, or non orthogonal grids. It was noted in section 5.2 that the

update of the depth was done along the global z axis. This was done because it was more computationally
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practical, and also becauseit isknown that most of theimage noise produced by the triangulation range sensor
used is in the depth measurements [3]. However, in principle, there is nothing requiring a regular sampling
grid or an update of the depth in the z direction. Even sparse sampling of the surface is acceptable, as long
asthe surface is smooth and the sampling still gives sufficient information about the larger scal e shape of the
object.

The method uses curvature constraints, which are view independent. Regularization methods, such as
thethin membraneor thethin plate models[59], [13], can be moved one order up to smooth the third derivative
of the surface, but the constraints will not be view independent. There are some regularization methods that

have approximately view independent constraints.

7.5. Possibleimprovements.  The following improvements are meant to |eave the philosophy of the
method intact, and are therefore mostly technical (aswere those that were implemented and discussed above).
The following chapters discuss more fundamental problems of surface reconstruction.

One modificationto the variational rel axation that would takeit closer to relaxation labelling isto keep a
confidencevaluefor each Darboux frameinthegrid. When updating apoint, the extrapolated Darboux frames
would be obtained in the sameway, but they would be weighted by their confidence when doing the variational
updating (averaging). The new confidencein the update frame would be afunction of the residual of thelocal
update. The original confidence value would be afunction of the residual of the fit needed to find the initial
estimate of the darboux frames.

There should also be a confidence value associated with the principal directions, that would be based
on the closeness of the point to being an umbilic. Indeed, an umbilic point does not carry any directional
information on the curvature of the surface. Its confidence in its “principal directions’ (which are computed
by the algorithm at every points) should therefore be zero. At pointsthat are far from being umbilic, i.e., that
have a large absol ute difference between their principal curvatures, the confidence in the principal directions
should be high. The confidence in the principal directions could therefore smply be the absolute value of
the difference between the two principal curvatures. It is not necessary to normalize this confidence, because
it will vary smoothly among neighbouring points of a smooth surface. But a normalized confidence could
always be formed by

[£ar = Kml
max([lkarl], |5ml])

(3.13)

We fedl that this would be much better than trying to explicitly detect umbilics, as Sander did, in order to pre-
vent umbilics to contribute to an update. For example, alot of umbilics are detected in the initial estimates
of avery noisy surface[56, p. 70]. Using Sander’s approach, alot of points would be prevented from con-

tributing to the local updates. Using the confidence scheme, most points would have more or less the same
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(low) confidence, and would therefore contribute equally to the updates, which is what we want until some
structureis found in the data.

Thereason for not having implemented these improvementsisthat it was clear that the approach is defi-
cient in more fundamental ways than such technicalities. It was decided to consider more theoretical subjects
rather. The next chapter considers other popular surface reconstruction methods, and attempts to unite them
along the energy minimization framework developed earlier.
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CHAPTER 4

Study of well known methods

Now that Sander’s method and my adaptation of it have been described in detail, | will compare it with a
number of other surface reconstruction methods. There is a need to study the methods in isolation and to
compare them together in various ways. | have decided to structure the chapter by placing the emphasis on
one method at atime, and to include in appendices any involved comparison between them. This permitsthe
discussion on one method to freely make cross references through the appendices.

The methods that | included are Terzopoulos' regularization method [59], Geman and Geman's
MAP method [26], Blake and Zisserman's weak continuity method [13], Sander’s variational relaxation
method [56], Bedl and Jain variable order surface fitting [9], and Leclerc’'s MDL method [36]. These meth-
ods are only a selection of available ones, but they are considered representative of the principles that have
evolved in surface reconstruction. They are presented in their chronological order of appearance, in order to
show that evolution. These methods are preceded by a discussion on regularization methodsin general.

For each method, a brief description of the problem isfirst given, followed by a description of how the
problem is solved. The adequacy of the problem itself is considered more important in this thesis, so the
method used to solve the problem, or even the feasibility of the solution will not be described in great depth.

Themethodisthen compared to others, and the propertiesof the method arediscussed in general. Finally,

the method is classified in the energy minimization formalism.

1. Regularization based approaches

1.1. Overview of regularization.
1.1.1. Problemdescription. Regularization, as used by [47], denotes:
... any method used to make an ill-posed problem well posed.
Since surface reconstruction is an inherently ill-posed problem [59],
[31, 47], and since the goa of any surface reconstruction method is to obtain a solution to a well-posed

problem (even those including the detection of discontinuities), any surface reconstruction method is a
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4.1 REGULARIZATION BASED APPROACHES

regularization method in that sense. In this section, we study the “ standard regularization methods” [47]. In
standard regularization, the problem isto make well-posed (to regularize) the problem of solving the equation
Az = y for z, by introducinganorm || - || and a stabilizing functional || Pz||. For standard regularization, A

and P arelinear operators, and || - || is quadratic. The well posed problem is then to solve
(4.1) min(||Az — y[|* + A Pz]]*),

where X is the regularization parameter.

In computer vision, the data y is usually a discrete set of measurements. However, z can be either a
discrete set of values or afunction to be evaluated at discrete pointsfor comparison with y. In thetext below,
the theory is usually presented in terms of functions, that will explicitly be denoted as such, e.g. z(z;). The
regularization functionals used in computer vision usually use the discrete case, which is explicitly denoted
using indices, e.g. z;.

1.1.2. Problem solution.  The literature on solving convex optimization problems such as the ones
produced by regularizationis extensive. The most practical methodsin computer vision areiterative updating
of an arbitrary initial value by the use of some kind of gradient descent along the energy functional. [57] is

one of the many standard books on such methods.

1.2. Characterization of the method.

1.2.1. Comparisonwith other methods.  Terzopulos'smethod, when discontinuitiesareincluded apri-
ori or are detected after the surface reconstruction process, is standard regularization. The stabilizing func-
tional P isnon-linearin Terzopoulos' variational continuity control, in Blake and Zisserman’ sweak continuity
method, and in Leclerc’s ML D method; these are therefore not standard regularization methods.

Similarities between Terzopoulos' variational continuity control and Blake and Zisserman’s weak con-
tinuity are discussed in section 4.

1.2.2. Choice of stahilizing functional.  The particular norms and stabilizing functionals used up to
now in the reconstruction of surfaces were often chosen rather ad hoc. Grimson [31, section 6.3] performed
an analysisof second order functional's, and has concluded that all may be expressed asalinear combination of
the square Laplacian and the quadratic variation. Boult [16] studied a large range of stabilizing functionals,
based on a subjective ordering of the functionals by human observers who rated the reconstructed surface
from what they personally perceived from raw (pointwise) data. One choice of stabilizing functional that |
consider particularly ad hoc isthe use of physical model anal ogies such asthin membranesor thin plates under
tension.! As Blake argues [11], there is no reason in favor of using such physical models for visual surface
reconstruction. In the same paper, Blake proposes a stabilizing functional based on curvature, which is an

intrinsic property of surfaces.

1Actually, the models are the small deflection approximations [58].
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1.2.3. Characterization of the solution to regularization problems.  In this section, we will first con-

sider the one-dimensional regularization with stabilizing functional

zb
42) J(z) = / (=™ (2))? da.
Theregularization problemisto find z that minimizes
1 n
4.3 - Z(z(x]) —d;)? + M (2).
j=1

In general, the solution which minimizes this functional is a polynomial smoothing spline of order 2m — 1.
That is, every curve segment fromz; to x;+1 isapolynomial of order 2m — 1, where each polynomial isjoined
such that the overall curveis C?™~2, There are well known particular cases [63]:
e If d can be interpolated exactly by some polynomial of degree less than m then that interpolating
polynomial is the solution of the minimization.
e If A\ — oo and d cannot be exactly interpolated by a polynomial of degree less than m, then the
solution isasingle polynomial of degreem — 1 best fitting the datain a least-squares sense.
e If A — 0andd cannot beexactly interpolated by apolynomial of degreelessthan m, then the solution
isthe polynomia spline of degree 2m — 1 that interpolatesthe data d.

Thetwo last cases are very special in that the corresponding operators can be shown to be perpendicular
projections, and thus, idempotent. Thisis obviousfor the first case, since aleast-squaresfit is by definition a
closest point problem [50, p. 197]. Proof for the other case can be found in [40]. Asisshown in section 1,
however, the operator is not idempotent in general.

The two-dimensional case is slightly more complicated, especially if the sampling grid is not uniform.
Also, the solution to the minimization cannot be expressed as a piecewise polynomial surfaceingeneral. How-
ever, the same principles hold.

For the two-dimensional case, the stabilizing functional is given by

zb yb m
(4.9 / / < — > dzdy,
v ox! 8y !

¢ =0
which correspondsto the thin membrane model for m = 1 and to the thin plate for m = 2. Modelssimilar to
those were used by [31] and [59] for surface reconstruction.
We now generalizetheremarksmade earlier for the one-dimensional case. In general, the solution which
minimizesthis functional isaC?(™—1) surface, which is part of the Sobolev space #? of order two [58], and

isgiven by [21]:

(4.5) S Vi) + pm(ey), m>2,

i=1
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where p,, (z,y) isapolynomial of degree < m, and r?(z,y) = (z — z;)*> + (y — yi)?. n isthe number of
data points. Note that the solutions were C2™~! in the one-dimensional case. Nevertheless, the three cases

above generalize directly to two dimensions [63]:

e If d can be interpolated exactly by some polynomia P(z,y) of degree less than m (P(z,y) =
Z?}r}io ai;z'y7) then that interpolating polynomial is the solution of the minimization.

e If A\ — oo and d cannot be exactly interpolated by a polynomial of degree less than m, then the
solution isa single polynomial of degree m — 1 best fitting the data in aleast-squares sense.

e If A — 0andd cannot beexactly interpolated by apolynomial of degreelessthan m, then the solution

isthe C?(m—1 surface given by equation 4.5 that interpolates the data d.

Again, the two last cases correspond to perpendicular projections[40], but the regularization operators
are not idempotent in general.

1.2.4. Choice of regularization parameter.  In surface reconstruction, the stabilizing functional usu-
ally imposes a maximum order constraint on the surface. The value of A\ can then be seen as an arbitrator
between a “closeness to data” constraint and a “zero order m derivative” constraint, for some given integer
m. Aswasimplied in the previous section, if A isvery small, then the resulting surface will not necessarily
be very smooth, but it will closely interpolate the original data. If A isvery large, the resulting surface may
poorly interpolate the data, but it will be C2(™~1) smooth. Setting ) at one of these extremes is considered
uninteresting in terms of regularization (although it is seen as useful by other formalisms such as Leclerc's
and Geman and Geman'’s, as will be seen later). \ has also been interpreted as a scale parameter [13]. Thisis
intuitively correct, since at one extreme, a global polynomial isfitted to the data, and as the value of A moves
toward zero, more and morelocal features are permitted, up to the point where every known local feature (the
sampled points) are interpolated.

The most important problem of regularization methodsis to find the “optimal” value of the parameter,
and to define the meaning of optimality. In the particular case when the noise characteristics of the signal are
known a priori, optimality may mean to have the smoothest result that retains the known noise characteristics
of the data. There are theoretical results to handle this case [18].

If however the “noise” characteristics of the signal are not known (which | will claim later is always the
case in computer vision), they may be estimated by statistical means. [18] developed such a method, called
generalized cross-validation (GCV). Theideaisto use the ability of regularized functional s done without one
of thedata pointsat predicting the value of the missing point, asameasure of thegoodnessof theregularization
parameter. Another approach is the Min-Max principle, which is succinctly presented by the authors [27]:

Themaindifficulty inchoosing A isthat if it iseither too low or too high, one of the objective

functionswill beinadequately representedin thetotal cost, and thetotal cost will betoo low.
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Oneway to ensurethat the total cost will not be too low isto pick (A giving) the maximum

cost solution.
Here, the “cost” isthe residual of the solution of the regularization problem, and the objective functions cor-
respond to the closeness to data term and the smoothness term.

Here, | argue that knowing the acquisition model of the datais not sufficient to find an optimum val ue of
. Furthermore, | claim that there is no single optimum value of A for the purpose of surface reconstruction.
Thereasonsfor both these claimsis the same. When using regularization as a data processing tool, thegoal is
to easetheinterpretation of the data by specialists, or to interpolate or extrapolatethe signal. Inthat case, what
congtitutesthe signal iswell defined, especially if the noise processis known. In the case of computer vision,
the goal isnot only one of signal processing, but also of automatic signal interpretation. What constitutesthe
signa (in the sense of the information we are interested in) is not aswell defined in this case. For example, if
the surface under observation has some small scaletexture (relativeto the scale of interest), then thistextureis
part of the signal in a data processing sense, but not in a surface reconstruction sense, where we may consider
thetextureasinsignificant. Estimating oneoptimal valueof X isnot necessarily good either. A surface may be
covered by a“ mid-scaletexture” itself covered by asmall-scal etexture, and we may consider any combination
of those asthe signal of interest. Basically, thisisthe problem of scale-space[65]. It will be discussedin other
sections aswell.

1.2.5. Method classification.  In standard regularization, the choice of stabilizing functional and of a
guadratic norm is done to ensure the convexity of the functional to minimize. The standard regularization
methodsthereforefall in the global minimization of convex energies class.

The attempts made at finding the right stabilizing functional for regularization were concernedin alarge
part with the limitations of the regularization approach, such as the need for asemi-norm property [47]. What
ismost important however istheknowledgeof the constraint subset, if it exists, or asexpressed by Terzopoul os
[60, p. 434]:

... thesurfacemodel can berelated to expectationsregarding the class of admissible surfaces.
Itistruethat thereisarestricted class of surfacesthat satisfy aparticular regularization problem. For example,
the admissible class for thin plate splines is the Sobolev space of order two [58]. However, even when the
initial datacan beinterpolated exactly by one of the surfacesin the admissible class, the regularization operator
may choose another (approximating) function of the admissible class instead of the interpolating one. More
generally, it is shown in section 1 that an operator defined by standard regularization (with fixed values of A
and other parameters) is not idempotent. The class of admissible functionsistherefore not a constraint subset

in the sense of section 3.
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However, we have seen in a previous section that when the regularization parameter is either 0 or oo,
the regularization method becomes a perpendicular projection. In these extreme cases, then, the method is

idempotent, and can be expressed as alocal minimization.

2. Terzopoulos controlled continuity splines

2.1. Overview of the method.

2.1.1. Problemdescription.  In his method, Terzopoulos wanted to be able to handle the presence of
known step and crease discontinuities on the surface. In order to achieve this, the stabilizing functional may
belocally

e disabled,

e the thin membrane functional, or

¢ thethin plate functional.

Therefore, the value of the stabilizing functional at a point depends not only on the differential properties of
the solution surface at the point, but also on the knowledge of the desired continuity at that point.

Theregularization is discrete, and is the solution of the minimization of
(4.69) Epr(v) = Spr(v) +P(v)

where S, (v) isacombination of the thin membrane and of the thin plate energies, where p and = control
thelocal continuity of the surface. P(v) isthe closenessto data term. It can aso include surface orientation

information, but thisis not included here for simplicity.

1
Sw) =3 > piss T [(Um,j — 20,5 + vi-1,5)°
i

2
+2 (Vit1,j4+1 = Vij+1 — Vig1j + Vi)

+ (vig1 — 205 +vijo1)’

(4.6b) 1= 7ig] [(Ois = vis) + @iger = vig)?] ¢,
1 2
(4.60) P(v) = 5a g(vi,i —d; i)’

Depending on the required continuity at point ¢, j, the values of p and 7 are set as

4.7 pij =0, at a C° discontinuity,
(4.8) pij = 1,1 ; =0,aaC"' discontinuity,
(49) Pij = ].,Ti,j =1, otherwise.
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Terzopoulos aso introduced a variational continuity control method, in which the energy functional is
minimized with respect to p and T as well as with respect to v. A new term D(p, ) is added to the energy

functional in order to penalize the introduction of discontinuities:

(4.10a) E(v,p,T) = S(U,p,T) +P(U) +D(pa7—)
where
(4.10b) D(p,7) =Y [BaDij(p) + Bo0i;(7)].

]
D; ;(p) and O; ;(7) are weights that depend on the structure of the discontinuities near the central point, and
B4 and B are scaling parameters. The configuration of those weightsis similar to Geman and Geman’'sline
process, although in this case, discontinuities can be either steps or creases. Steps and creases do not interact
with each others in these weighting functions. Such interactions should be included if al possible surface
intersections are to be considered.

If one does not want to consider the structure of discontinuities, the ssmplest expression of D is

(4.100) D(p,7) =Y [Ball = pi] + Boll — 7]

2]
Even then, the energy function is not convex anymore, and the problem cannot be considered one of standard
regularization.
2.1.2. Problemsolution.  Thefirst method presented by Terzopoul os producesa convex minimization
problem. Therefore, al the standard methods of convvex optimization can be used. The variational continu-
ity control produces a non convex functional, for which the global minimum has to be found. Terzopoulos

attemptsto find the global minimum by performing a number of minimizations over afamily of functionals

(4.11) Eﬁdﬂo (’U, Ps T)

that are controlled by the values of 5; and 5o. These values are first set very high, disabling discon-
tinuities, and making the functional convex. This functional is minimized using a gradient descent method,
and the result is used as the initial value for a gradient descent on a new functional with lower values of 3,
and (o (first lowering 3, in steps and then lowering 3, in steps), and so on, until aresult is obtained for the
desired functional. Although this approach was not formulated as a continuation method by Terzopoul os, this
updating processis very similar to the graduated non-convexity solution of the first order plate of Blake and

Zisserman.
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2.2. Characterization of the solutions.

2.2.1. Comparison with other methods.  Thefirst method presented by Terzopoulosis standard regu-
larization, where « is the regul arization parameter. Sincethisis discrete regularization, the result of the algo-
rithmis not a surface, but a new set of discrete points. Theintent of Terzopoulos' method was to interpolate
in between sparsely sampled data points, such as those produced by feature based stereo [28, 39]. If the reg-
ularization parameter is set at the high extreme, then the solution will exactly interpolate the initial data, and
will also provide depth estimates at the grid points where no datawas available. In the case of dense data, i.e.
every grid point has avalue, then discrete regularization with o — oo will behave as an identity operator. For
either dense or sparse data, setting « close to zero will fit planesto the data within these regions delimited by
the known discontinuities. Aswas said earlier, this produces an idempotent operator.

In the variational continuity control method, two other parameters, 3; and 8o, control the formation of
discontinuities. Asavariational method, the weak continuity constraint of Blake and Zisserman comes closest
to this method. However, the weighting of discontinuities based on their local structure has more similarity

with Geman and Geman’s method (as acknowledged by Terzopoul 0s).

3. Geman and Geman’s MAP estimate and stochastic relaxation method

3.1. Overview of the method.

3.1.1. problemstatement.  Geman and Geman use a Markov Random Field (MRF) model of the un-
derlying image and formul ate the problem as a maximum aposteriori probability (MAP) estimation. Because
of the equival ence between the MRF model and a Gibbs distribution for the probability of the underlying sur-
face, the problem is equivalent to minimizing a Gibbs energy functional dependent on the sampled data and
the known data acquisition process.

Given a degraded image G, the method seeks the image f that has the MAP probability of being the
underlying image F' that has produced G. Using Bayes rule, this probability, for any f, is given by

P(G =g|F = f)P(F = f)

(4.12) P(F=flG=g)= PG =g)

Because we want to maximize this expression with respect to f, we can ignore the denominator on the
RHS, since it does not depend on f. The second term in the numerator on the RHS depends on some a priori
assumptions made on the probability of existence of an underlying image. Geman and Geman use a MRF
model to determine this probability. In such amodel, the probabilit that a pixel has a certain value, given the
values of all the other pixelsin the image, is only afunction of the pixelsin a finite neighbourhood of that

pixel. This probability is given by
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—U(,Z)

T

(4.13) P(F=f)=¢

VA

where Z isanormalizing factor, T' is atemperature parameter used to control the simulated annealling
process, and U (f) is an energy function based on local properties of theimage f.
In order to compute the conditional probability in the numerator on the RHS of equation 4.12, theimage

formation process must be known. If the original imageis given as F', the degraded image, G, is given by

(4.19) G =Y(¢(H(F)),N)

where H isablurring matrix, ¢ issome non-linear transformation, NV issomearbitrary noise, and ¥ (a, b)
issomeinvertible function with inverse ®(g, #(H(f))). If the noiseisknown to be additive white noise, the

conditional probability functionis given by

(4.15) P(G = g|F = §) = (210%)~M/?e= =G 0(H ()’

where M is the number of pixelsin theimage, 1 and ¢ are the known mean and variance of the white

noise. If we multiply this conditional probability with P(F = f), we obtain

-uvPJ)

(4.16) P(F=fIG=g) ="

where Z¥ is anormalizing factor, and

(1 —2(g,0(H(£))*

202

(4.17) UP(f)=U(f) +

It isequival ent to maximizing the Gibbsdistribution of equation 4.16 and to minimizing the Gibbs energy
of equation 4.17.

3.1.2. problemsolution.  The Gibbs energy to minimize is not convex in general, so gradient descent
methods are not sufficient to find the global minimum. Geman and Geman’s formulation of the problem asa
MAP estimate permitsto directly use a stochastic relaxation method to find the global minimum. Thismethod,
as for the continuation methods used by Blake and Zisserman and Leclerc, produces a sequences of images
that convergesto the global minimum. In this method, the sequencing parameter is the temperatureT’, which

isfirst set at ahigh value, and then gradually lowered towards zero. When interpreted as a statistical sampling
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method, the process evolves from a purely random sampler (T = o) to a purely deterministic one (T' = 0).
Geman and Geman have given alower bound on the cooling schedule of T' for which they have shown that the
MAP estimatewill befound by themethod. [12] comparesthe stochastic rel axation method with the graduated

non-convexity method.

3.2. Characterization of themethod.  The three models used to compute the a priori probability in
[26] have been admittedly chosen ad hoc by Geman and Geman. Thefirst of these models, the*“blob process’,
isshown to give an energy functional equivalent to the piecewise constant case of Leclercin section 1. In this
comparison the data acquisition model was assumed to be additive Gaussian noise, but both Geman and Ge-
man’'s and L eclerc’sformul ations can accept more complex image formation modelsin the energy functional.
Since Blake and Zisserman's energy with A — oo has been shown to be equivalent to the piecewise constant
case of Leclerc, it isalso equivalent to the blob process of Geman and Geman.

Theblob process does not make use of line processesat al. When such amodel is used in the second ex-
ample of Geman and Geman, consisting of constant intensity rectangles (with sides aligned with the sampling
grid) degraded by additive Gaussian noise, theresult of their algorithm givesrather jerky sides. Application of
Leclerc’'salgorithm on similar data (also with additive Gaussian noise), also gives jerky sides at low contrast
boundaries.

Theaddition of alineprocessintheapriori model permitsthe use of knowledgeabout thetypesof images
processed. If the Gibbs energy is expressed algebraically (asin appendix C), it resultsin the addition of more
Kronecker deltas to the function for the blob process. The energy, corresponding to the a priori model used
in their second example, is presented in section 2. Since the line variables have only afew discrete values, it
would not make much sense to use L eclerc’s continuation method on the Kronecker deltatermsinvolving the
line variable. But thisis a detail of how to solve the problem. On the study of the problem statement alone,
one should note that the line process used fits very well with the data in the example. A more complex line
process hasto be used for the third example, which consistsin amore natural “roadside scene” [26]. Among
other things, line elements with different orientations must be allowed to take into account diagonal lines.

Itis not obviousif aline process could be found that would be more useful than no line process at all if
no priori assumptions can be made on the contents of the image. For example, it would have been interesting
to see the result of using the blob process on the roadside scene.

One should note that the number of discrete intensity levels handled by the method is rather small (Due
to having to sample aprobability density), contrary to other methods such as Blake and Zisserman an Leclerc,
where the intensity can be practically considered continuous.

Theapriori models used by Geman and Geman in their examplesare very restricted in that they assume

piecewise constant images. There is nothing preventing the use of higher order models, but this would in
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turn require the distinction between different types of line processes, one for each type of discontinuity (as
Terzopoulos does). Thiswould involve rather complex expressions.

Because it can be expressed as the minimization of a gibbs energy functional, the method enters the cat-
egory of global minimizations. Due to the equival ence between the blob process and the piecewise constant
case of Leclerc, the method with the blob process gives an idempotent operator, asis proven for Leclerc in
section 3. This method could therefore be expressed as alocal minimization problem. Idempotency has not
been demonstrated for the other line processes, but we are tempted to think that these methods are idempotent

aswell.

4. Blake and Zisserman’s weak continuity method

4.1. Overview of the method.  This method is very well described in the book [13]. The method
isvery similar to the variational continuity control of Terzopoulos, but it facilitates the determination of the
global minimum by aclever combination of the smoothnessfunctional and of theline processfunctional. How
this is done will be shown here for the detection of step discontinuitiesin 1D, using a weak string model.
Detection of 1D creases and of step and creases in 2D, using the same approach, are also discussed in the
book.

In the weak string model, the energy to be globally minimizedis

(4.18) E=D+S+P,
where
N
(4.19) D= (u; — d;)?,
=0
N
(4.20) S =X (ui—ui—1)*(1—1),
i=1
N
(4.21) P=a) .
i=1
(4.22)

and!; isoneif thereisadiscontinuity betweensite: —1 and 4, zero otherwise. Theenergy E isto be minimized
with respect to w and [.

This problem is equivalent to minimizing an energy F' with respect to w alone, where

N
(4.23) F=D+> g(ui—ui)
i=1
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where
(4.24) Jax(t) = miniego,1y (A()*(1=1) + o)

Theenergy F' isnot convex in general. Blake and Zisserman attempt to find the global minimumto F' by
using a continuation method they call graduated non-convexity. It consistsin sequentialy finding the minima

of the family of functions
N

(4.25) F®» =p 4 Zg(p)(ui — wi1)
i=1

starting at p = 1, and using the result of one minimization as the starting point for the next. The family of

functionsis chosen such that 1) isconvex, and such that F (), p — oo tendsto F'. Thisisachieved by using

A2t2, if |t| <q
(4.26) I =3 a—c(lt| —r)?/2, ifg<|<r
a, if [t| >r
where
ct o, 2 1 o
(427) C:;,T :a<g+p>,andqzﬁ

and ¢* is chosen such that F() is convex.

4.2. Characterization of theresults.

4.2.1. Relation with other methods.  The graduated non-convexity introduced by Blake and Zisser-
man, although not a novel concept (see [1] for areview of continuation methods), introduces a useful for-
malism in the domain of automatic discontinuity detection for surface reconstruction. Besides the formalism,
however, their method is very similar to the variational continuity control of Terzopoulos, at the algorithmic
level. The differenceis mostly that Blake and Zisserman do not mix membrane and plate energies, whereas
Terzopoulosdoes. Althoughit isnot presented asformally asin Blake and Zisseram’swork, Terzopoul osalso
uses some kind of a continuation method in order to find the global minimum of the regularizing spline with
step and crease line processes. Indeed, the scaling factors for depth and orientation discontinuities are first
set to ahigh value[59, P. 49]. The depth discontinuity factor isthen gradually lowered, a minimization being
performed each time, the preceding result used as a starting point for the current minimization. Only after
the depth discontinuity factor islow enough is the orientation discontinuity factor lowered in steps, repeating
the same sequential minimization process. Practically, the sequential lowering of the discontinuity factorsis

similar to the lowering of p in graduated non-convexity, and keeping the orientation discontinuity factor high
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during the detection of stepsis very similar to the 1st order plate approach of Blake and Zisserman [13, p.
106).

Leclerc’'s method and Geman and Geman’s method are still to be presented, but we state at this point
that Blake and Zisserman's method is very similar to those methods when the regularization parameter tends
to infinity. These similarities between the methods are presented in sections 1 and 2.

4.2.2. Sability measure.  Although it is not stated explicitly in their book, the discontinuities found
in Blake and Zisserman’s method can be assigned a stability measure. Indeed, at any given minimization
whilethe graduated non-convexity parameter p islowered from 1 to avery small value, adiscontinuity will be
either unambiguousor ambiguous[13, p. 139]. A discontinuity that is unambiguousat agiven step will never
disappear during subsequent minimizations, while an ambiguousone may disappear. It istherefore natural to
assign the value of p at which a discontinuity becomes unambiguous asits stability. This measure of stability
issimilar to the one described in [36].

4.2.3. Computational feasibility.  Blake and Zisserman have extensively studied the feasibility of their
method. They have showed that their algorithm did find the global minimum of the energy functionin the case
of the weak string with non-interacting discontinuities[13, appendix E]. They have not been ableto provethat
the global minimum is found in other cases, however.

4.2.4. Gearing a problem statement from the available solution method.  The approach of Blake and
Zisserman is an example of producing problem statements geared towards a particular method of solution.
The graduated non-convexity method was naturally introduced for aweak string. A number of concessions
had to be made however, to apply the functional to higher order energies, or in two dimensions. For example,
the smoothing energy of the membraneis separatedinto thex and y componentsof the gradient, so that the one
dimensional function g(t) can be used [13, p.115]. The method of Blake and Zisserman is therefore limited
in the choices of regularizing functionals and of line processes, due to the requirements of the graduated non-

convexity process.

5. Sander’svariational relaxation method

5.1. Overview of the method.  The variational relaxation method of Sander is described in detail
in chapter 3. Recall that the method consists in iteratively satisfying alocally constant curvature constraint,
starting from an initial estimate of an augmented Darboux frame at every image point, and iterating until a
convergencecriterion is satisfied. However, it was noticed that iterating to convergence removed most of the
local information content of the data. In experimentswith computer generated and real data, it was observed
that best results are obtained when the iterations are stopped possibly well before convergence. The number

of iterations performed were interpreted as a scale parameter.

62



45 SANDER'S VARIATIONAL RELAXATION METHOD

5.2. Characterizationof themethod. When usingthe parabolic extrapolation patch, we saw in chap-
ter 3 that the result at convergenceis equivalent to the least square fit of aplane, globally, to the data points.?
Aswas noted in chapter 3, the parabolic patch does not implement the constant curvature constraint anyway,
after alarge number of iterations. At least, it servesthe purpose of disproving the possibly intuitive conclu-
sion that the surface at convergenceis a gobal instantiation of the local extrapolating surfaces (aplaneis a
parabolic patch, but it is not as general).

When using thetorus patch, the constant curvature constraint is better implemented, but what constitutes
the constraint subset is not clear anymore. All spheresand all cylinders are obviously elements of the subset,
because atorus patch may degenerateinto asphereand into acylinder, and al so because of the symmetry prop-
erties of these shapes. It is equally trivial to show that planes are included in the constraint subset. Besides
these, it is not even obviousif torus surfaces are part of the constraint subset. Thisis because the torus patch
osculating ageneral point of another torusdoes not necessarily osculatethetorus everywhereelse. Evenwith-
out knowing the constraint subset exactly, we can neverthel ess say that its element surfaces may have nonzero
second partial derivatives, from the inclusion of sphere and cylinders, as well as intuitively. If we associate
the effect of running Sander’s algorithm to convergence with the effect of regularization with A — oo, then
the stabilizing functional of the equivalent regularization method should involve at least third order partial
derivatives of the surface, which is one order higher than for the thin plate.

Experimentally, the method gives good results when it is not iterated to convergence. Only a few it-
erations are usually sufficient to remove noise from the principal direction fields. Also alocal minimum of
the overall residual, over the number of iterations, usually occurs after a few iterations, but what these local
minima correspond to has not been found yet.

5.2.1. Comparison with other methods.  As was mentioned in chapter 3, controlling the number of
iterations of Sander’s algorithm can be seen as controlling a scale parameter. The parameter A of regulariza-
tion methods can also be interpreted as a scale parameter [13]. The way in which the number of iterations of
Sander’siterative updating and the regularization parameter control the scaleis not quite the same, however.
An attempt at comparing these controlsis presented in appendix C. In the appendix, we note that using sim-
pler constraints than constant curvature, we can find similarities between the iterative updating formulas of
Sander and the iterative solution of regularization by traditional relaxation methods. In that sense, Sander’s
iterative updating is somewhat equivalent to the iterative solution of regularization problemswith A — oo,
which as we know is an idempotent operation. Then, controlling the number of iterations of Sander’s algo-
rithm would be similar to the iterative solution of regularization problem, where the initial value is taken as

the data (which usually does not matter in the iterative solution of regularization problems), and the algorithm

2Thisis a pretty expensive way of doing aleast square fit!
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is prevented from running to convergence. The effect of preventing the iterative solution of aregularization
problem from approaching convergenceis not discussed in the mathematical literature.

5.2.2. Method classification.  Sander’svariational relaxation, sinceit startsfrom an initial estimate of
the augmented Darboux frame at every surface point, and iteratively progresses toward a set of frames that
satisfy the constraints, is by definition an idempotent operator, if it is ran to convergence. The process could
therefore be expressed as alocal minimization, but the functional to locally minimizeis not expressed explic-
itly in this method, since it consists of a number of convex minimizations at every point rather than a global
one. A global energy functional is nevertheless defined in order to examine the convergence of the algorithm.
Thisfunctional isdefined as equation 3.5. Thisenergy function does not describe a constraint surface that has
an obvious geometrical meaning. Among other things, it has not been found yet if the constraint surface is
convex or not. Examination of this global energy showsthat isis not strictly decreasing as the algorithm pro-
gresses. That may be explainedin part because the computed energy is not necessarily the one being implicitly
minimized, at least not before alarge number of iterations.

The operator corresponding to running Sander’s algorithm without waiting for convergenceis not idem-
potent. Indeed, if the algorithmis ran again on a previously obtained result, the iterations will ssmply pick up
the minimization of energy were they left off, and the result after a given number of iterations will be closer

to the result at convergence.

6. Bed and Jain’svariable order surfacefitting

6.1. Overview of the method.

6.1.1. Problemdescription. Thegoal of Bed and Jain's variable order surfacefitting [8] isto recover
a piecewise-smooth surface from noisy samples of it. The smooth regions of the recovered surface are mod-
eled by polynomial patchesin their paper. The order and distribution of these patchesis to be adapted to the
underlying surface, such that the number of regionsis small (minimizing the number of discontinuities), and
such that the difference between the reconstructed surface and the datais small. Thisisabout asformal asthe
problem description of this method can be. The authors have purposefully not attempted to weight the close-
ness to data and the minimization of discontinuity terms, so no formal functional minimization is possible.
Rather, the method seems to have been developed more as a series of procedures, that are described in the
following section.

6.1.2. Problemsolution.  This method consists of two distinct steps. The first one consists in obtain-
ing apreliminary surface segmentation (an initial guess) based on classifying surface regionsin one of eight
surfacecurvaturetypes: peak, ridge, valley, saddleridge, saddlevalley, flat, and minimal. The curvatureprop-

erties of the surface are determined by estimations of partial surface derivatives using convolution operators.
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Theseinitia regions are then used as seeds for aregion growing process, based on function approxima-
tion over theregions being grown. The process proceedsiteratively one surfaceregion at atime, starting with
the largest region in the initial guess, and ending with the smallest one that has not been merged with some
other one.

For agivenregion fromtheinitial guess, thefollowing steps are performed: First, theregioniserodedto
asize sufficient to perform the polynomial fits. Then polynomial surfaces arefitted to the seed region, starting
with the lowest order surface (a plane), and continuing up to amaximum order, until afit satisfies some error
criteria. By proceeding in thisway, the lowest order surface that gives satisfactory results will be used. Once
the order of the polynomial has been selected, the seed region is grown by adding connected neighbouring
pixelsthat are compatible to the fitted surface, under some criteria.

Inthisiterative procedure, regionsthat are grown at agiven point may include apixel that had previously
been included in another region, if the surface fitted to that region better represents that pixel. The image
segmentation process is therefore reversible while the iterations are taking place.

After the iterative region growing process, the authors of the method mention some other stepsthat are
used to tidy up the results. Among other things, non adjacent regions that have compatible surface patches

may be merged to become a single region.

6.2. Characterization of the method.

6.2.1. Comparison with other methods.  This method is one of the few one presented in this thesis
that does not permit to directly express the problem as an energy minimization. The method of Leclerc gives
an end result that is very similar to this one, that is, a segmentation of the surface into polynomial patches of
the minimum possible order. Leclerc’s method is stated as an optimization, and the parameters that control
it are clearly defined. However, by freeing themselves of an optimization approach, Besl and Jain can more
easily includemore global conceptsin their method, such astheinclusion of non adjacent regionsinto asingle
surface patch model.

6.2.2. Classification of themethod.  Obviously, because it is not stated as a minimization problem, it
is not straightforward to classify this method as one type of energy minimization. Because of the amount of
steps in the process, and of the number of parameters and estimations involved, it was not attempted here to

classify the method or to determineif it was idempotent

7. Leclerc’'s Minimum Description Length method

7.1. Overview of the method.  The principle behind Leclerc's method [36] is to achieve the mini-
mum description length (MDL) of a degraded and sampled image. Informally, it is much more efficient to
describe the structured contents of a signal using a structured language, and to describe the noise contents of

the signal using a statistical language. By obtaining the MDL description of asignal, the structure and noise
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contents of thesignal will be naturally separated by the choices of descriptivelanguage. Practically, the avail-
able languagesto be used for the description must be enumerated beforehand, because there exists an infinity
of possible languagesin theory.

Leclerc chose to describe the structured parts of images with a polynomial model in which each image
pixel isassigned a polynomial patch. Leclerc used from Oth (piecewise constant) to 2nd (piecewise quadratic)
models. Leclerc does not use explicit line processes in [36]. Discontinuities are implicitly represented by
discontinuities between neighbouring polynomial patches. The description language used by Leclerc for the
non structured parts of images (the* noise”) includes Gaussian blur, sampling, quantization, and additivewhite
noise.

The goal of the method is therefore to describe a“real” image z as the sum of an underlying image u
and of noiser, such that the choice of w (and implicitly the choice of ) minimizesthetotal description length
of z. The problem is then another one of global energy minimization, where the functional to minimize with

respectto u is

(4.28) [Lu(u)] + |Lr(2z —u),

where £,, and L, are the languages used to describe the underlying image and the noise, respectively.
7.1.1. Problem solution.  The above energy is not convex in general. Leclerc uses a continuation

method which replaces Kroneker deltatermsin the original energy by exponentials of the form

(4.29) exp (%) _

Note that this expression tendsto §(¢) when s tendsto zero. The parameter s istherefore varied to pro-
vide a sequence of minimizations, from a convex one, to the desired one. Leclerc has not proven that his
continuation method finds the global minimum in general, but he showed that his method did find the global

minimum of problemsthat could manageably be solved exactly by dynamic programming.

7.2. Characterization of the method.

7.2.1. Comparison with other methods.  Aswas already stated in the preceding sections, it is shown
in appendix C that the piecewise constant case of Leclerc with known additive white noise is equivalent to
Geman and Geman'’s blob process, and to Blake and Zisserman’s process when )\ tends to co. In terms of
the understanding of the parameters of the weak continuity methods, this would seem to say that the contrast
sensitivity threshold hg = \/m of the piecewise constant case is 0, but let us not forget that the contrast
sensitivity of steps a apart, where a < A isincreased by \/)\—/a, and that thisis awaysthe case for A\ — oo.

It istherefore consistent that the contrast sensitivity of MDL bein auseful range. The same argument can be
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used to predict that the gradient limit g; isnot zero. Asfor theimmunity to noise, Blake and Zisserman found
that no spurious discontinuities will be generated when o > 202, approximately. Under the proportionality
relation « = (b/a)o? of section 2, and using the values of a = 1/(21og2) and b = 2 derived in Leclerc’'s
thesis[36, p. 86], we obtain a = 1.44¢%, which shows that the two methods are in close agreement on that
point.

The variable order surface fitting of Besl and Jain [9] is similar to the work of Leclerc in that the un-
derlying surface is to be described by a small number of lowest possible order polynomial graph surfaces.
However, the method used to obtain this result is very different from the one of Leclerc, and its bases are
much lessformal. Basically, alocally computed sign of curvature segmentationis used astheinitial estimates
for aregion growing process that finds the boundaries of the final polynomial patches. The order of apolyno-
mial patch isincreased as the algorithm progresses, if the current order does not describe the data adequately.
Thereis no explicit control of the continuity between the patches. That may cause the algorithm to produce
interpatch discontinuities of alower order than required by the maximum order of the polynomial patches.
The agorithm does permit non connected regions to be represented with the same polynomia patch, which
isafeature not yet implemented in the method of Leclerc. Finally, Bed does not seem to make a distinction
between underlying discontinuities and model discontinuities, as described bel ow.

7.2.2. Underlying discontinuities and description discontinuities.  Leclerc’s descriptive language is
composed of two parts: One describes the underlying surface, the other describes the noise (including in one
bag sensor noise, model induced distortion, surface noise, etc.), which isbasically what thefirst part of the de-
scription cannot account for. He does not distinguish, however, between underlying discontinuities and model
discontinuities. My claimisthat if a piecewise polynomial surface of order n is used to describe the underly-
ing surface, then the underlying discontinuities are those of order 0 < m < n, and the model discontinuities
are those of order n.

If an order n discontinuity is detected, then thereis no way to know if it was caused by adiscontinuity in
the underlying surface, or by atoo low order of the model. If it isknown a priory that the model is adequate
(piecewise), and only then, can the nth order discontinuities be considered to reflect discontinuities of the un-
derlying surface. Also, in the former case, the position of nth order discontinuitiesis likely to be arbitrary
and unstable. Examples of this can be found in the results presented in [36]. In the piecewise constant exam-
ples, the underlying surfaces are piecewise constant, so it is expected that the discontinuities will be located
accurately. Inthe description of afacewith piecewisefirst order polynomials, there are anumber of unstable,
apparently meaningless discontinuities which | assume are first order discontinuities due to the inadequacy
of this model. These discontinuities should obviously not be considered as features of theimage. A support
of thisinterpretation is that these meaningless discontinuities disappear when a second degree description is
used.
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Asfor lower order discontinuities (n), those are necessarily reflexive of discontinuitiesin the underlying
surface, because the model has one or more degrees of freedom that could be used to model the data instead
of introducing a discontinuity.

7.2.3. Where isthe scale parameter?  Scale relates to rejecting the insignificant and keeping the sig-
nificant in visual data. What is considered significant and what is considered insignificant depend in part on
the scale of observation. At some extreme, even the “noise” may be considered a significant part of the data.
In the description languages used by L eclerc, one part of thelanguage describesthe significant —the part using
piecewise continuous polynomials — and another part accounts for the insignificant — which is considered as
noise even if there actually is structureinit. An example of thislast statement is the application of the piece-
wise constant case on aplane with asmall enough slope for no discontinuitiesto be detected. In that case, the
description of the datawill consist in an horizontal plane, and the “noise” will be theinclined plane with zero
average value.

In Leclerc’'s method, the various coefficients a, b, ¢, etc., are determined from an information theoretic
point of view. The noisevariance o, however, may either be specified or determined as part of the problem, in
theunknown noise case. Inthe case wherethe spatially dependent noise varianceisautomatically determined,
the resulting values depend on how adequate the language for the description of the underlying surfaceis. In
asense, relating to the previous paragraph, the values of ¢; are found that leave as little structure as possible
in the noise part of the description language. However, if we intend the underlying surface to be described at
possibly different scales of interpretations, we might want some small scale structureto actually beincluded in
thedescription of thenoise. Therearethereforereasonsfor using different valuesof the s;’sfor the description
language.

Nevertheless, not all scales of observation are informative of the contents of the data. There exists a
finite set of discrete scales at which the data presents some meaningful structure. This discrete segmentation
of the scale axis must be combined with a segmentation of space to be the most useful. For example, while
observing awall with aplagque, one may simply consider the wall itself, ignoring the presence of the plaque.
Onemay consider the plague as arai sed rectangle on thewall, and one may consider thewriting on the plaque.
It is useless to use the scale required to segment the writing from the plague on the rest of the wall. We are
therefore considering a discrete areain space and in scale at the sametime.

Although it seems feasible to find the smallest informative scale, as does Leclerc, it is more difficult to
automatically find the complete set of interesting scales (and spatial regions). Witkin [65] attempts to obtain
ameaningful segmentation of the scale-space of asignal by generating an interval tree of the featurestracked
through scale-space, and by introducing a measure of stability of an interval. Uses of this automatic segmen-
tation method of scale-space have not appeared yet. In the case of the MDL problem with unknown noise, it

would be interesting to study the behavior of the local minimaof the description length asthe valuesof ¢; are
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changed. Hopefully, the value of these local minima seen as afunction of o;, may have themselves a number
of local minimathat correspond to the meaningful scales of observation of theimage. How to search for these
local minimais not obvious though.

Finally, one note on the decision of using a constant o within a continuous region. It has been noted in
section 7.2.2 that the discontinuities in the highest order of the description language for the underlying data
cannot be considered as discontinuitiesin the underlying data. Therefore, there should be no segmentation of
o due to these highest order discontinuities.®

7.2.4. Classification of the method.  Asitisstated in is PhD thesis, the method of Leclerc fallsin the
global minimization category. Also, in section 3, we prove that the method gives an idempotent operator for
the piecewise constant description language with known noise process. It istherefore possible that the method

can be represented as alocal energy minimization.

S3This introduces a problem, however. Although the discontinuities found by Leclerc’s process form closed contours, these contours are
not necessarily composed of the same order of discontinuity. By not considering order n discontinuities, regions may not be closed
anymore. What to do with the value of ¢ in this caseis not obvious.
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CHAPTER 5

Conclusion

Computer vision research balances between specific techniques being developed, implemented and tested,
and akind of research brainstorm, where questions are asked about what has been achieved and what should
be done next. In this thesis, the first part consisted in the adaptation of Sander’s method to range data. In
the other part, an organizing framework was established, methods were compared, and questions were asked.

This chapter is mostly a summary of this second part, followed by suggestions on what to do next.

1. Summary of framework

It was proposed to use an energy minimization framework as atool to compare surface reconstruction
methods. The two main minimization problems are global minimizations, where the problem data is part of
thefunctional to globally minimize, and local minimization, where the problem datais used asan initial point
for the local minimization. Global minimizations can be convex, when the problem does not involve decision
making. Itisbelieved, but hasnot been proven, that all local minimization problemscan be expressed asglobal
minimizations. However, we know that not all global minimizations can be expressed asloca minimizations.

Finally, local minimizations have the desirable property of being idempotent.

2. About surface reconstruction methods

Standard regularization methods (more particularly Terzopoulos' controlled continuity splines), Terzo-
poulos' variationally controlled continuity splines, Blake and Zisserman’s weak membrane and plate, Geman
and Geman's MAP estimate, and Leclerc’'s MDL method can all easily be expressed in terms of aglobal en-
ergy minimization. Thefirst method, which does not detect discontinuities, gives convex minimizations. The
three last methods are related in the following way: The weak membrane, when the regularizing parameter
tends to infinity, solves the same problem as Geman and Geman's MAP estimate, and as Leclerc’s piecewise

constant case with known noise. Also, because it was proven that this configuration of Leclerc’s method is
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idempotent, the two other method configurations are as well. This also means that they could possibly be
expressed as local minimization problems.

Sander’s variational relaxation method and Besl and Jain’s variable order surface fitting cannot easily
be expressed in terms of an energy minimization. Due to the updating process used, we know that Sander’s
method isidempotent (if iterated to convergence), but because we have not been ableto expressit asan energy
minimization, we have not been able to completely identify the constraint subset of the method. We know
only that it contains spheres, cylinders, and probably other less known surfaces with some globally constant
curvature properties. In the case of variable order surface fitting, the only similarity with other methodsisin
the form of the resulting surface, which is similar to Leclerc’'s method and its equivalent.

The goal of the comparison was to obtain a bette understanding of the problemsthey were attempting to
solve, it was not to find a best method out of those compared. Because of the argument presented for idem-

potency, however, we think that more research should be done on those methods that are idempotent.

3. Directionsfor research

The result of applying Sander’s method is still very much misunderstood. In particular the behaviour of
the overall residual, asthe iterations progress, is not understood. Arethe local minimain thisresidual caused
by numerical instabilities, or by the propagation of conflicting constraints from one surface neighbour to the
other?

The energy minimization framework needs to be studied in much more depth and more formally. Most
importantly, it should be determined if this formalism can in theory describe every surface reconstruction
method possible. (That Sander’s method and Bed and Jain’ method were not found an equivalent represen-
tation within our framework does not mean that one does not exist.) It would be interesting to determine the
relative complexity of using local or global minimizationsto actually solve an idempotent problem. Current
idempotent methods use global minimization. The problems would be easier to solve by local minimization
if the local energy functional was available, but it is expected that this functional would be very expensiveto
compute and to store (although it need be computed only once since it does not depend on the data).

Moreformal reasonsfor theidempotency requirement are needed. Theinformal reason presentedin this
thesisisthat avalid interpretation of some data should not be changed by another application of the interpre-
tation process. Also, the other propertiesrequired by an idempotent operator for it to be expressible as alocal

minimization problem should be identified.
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It is hoped that the questions raised in thisthesis, on the similarity of surface reconstruction methods, on
the establishment of a standard framework for their comparison, and on the requirement for idempotency of

surface reconstruction methods, will contribute to foster more work in thisfield.
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A.2 NOTATION

APPENDIX A

Review of differential geometry concepts

1. Introduction

In this appendix, we will review concepts of classical differential geometry, which is the study of local
properties of curves and surfaces [19]. Differential geometry takes singularities, or critical points, of curves
and surfaces into consideration, but a general theory of critical pointsis afield by itself [edlls. ?]. Global
differential geometry links differential geometry and topology.

The concepts will not necessarily be presented in all their formality. The reader is referred to [19] and
[48] for a more formal and complete treatment. Bedl [6] presents a nice summary of differential geometry
from the point of view of computer vision research. It is also only intended to cover those parts of the field
that are of interest for thisthesis.

The appendix is organized in the following way. First, definitions are given for the representation of
curvesand surfaces. Then, thosedifferential propertiesthat are of useinthisthesisare presented. Singularities

arefirst defined, followed by the properties of regular patches.

2. Notation

The following notational conventions apply to the whole thesis:

Inner Product: The general inner product will be denoted by <, >. However, the inner product in Eu-
clidean space will be denoted by -.

CrossProduct: x will denote the vector cross product.

Derivatives: The derivatives of a function of a single variable will be given by f'(t) to denote a first
derivative, f"(t) for asecond derivative, etc.

Partial Derivatives: The partial derivatives of afunction of several variables f(u, v) will be given by
fu for thefirst partia derivativewith respect to u, f,, for the second order partial derivativein v and

v, €etc.
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Orientation and Direction: To be sure that there are no confusions, we will adhere to the convention
that adirectionisdefined by aline, and that an orientation isdefined by avector. Thisisthe convention
usually used in mathematics.

3. Representing curves and surfaces

Although curvesand surfaces are represented in similar ways, it isimpractical to discuss both at the same
time. The representation of curves will first be discussed, followed by the representation of surfaces. The
section on surfaces, however, will directly generalize from the one on curves, whereit applies. Thereason for
considering curves at all istwofold. First, the differential geometric concepts are more easily introduced with
curves, and second, even if thisthesisis about surfaces, we might want to consider curves embedded in these

surfaces.
3.1. Curverepresentation.

DEFINITION A.1. Anelementary curve[48] may be considered astheimage of a one-to-one and bicon-

tinuous mapping r : I — R* of an openinterval I = (a, b) of thereal line R into R3.

If theimage of acurveis aplanar subset of 3, i.e., r : I — %2, then the curveis furthermore called a

plane curve.! A curved defined by such a mapping is called a parametric curve and is written as

(A1) r(t) = (2(t),y(t), 2(1)) ,

or, for aplane curve,

(A-2) r(t) = (z(1),y(1)).

Onetalks of (t) asthe equation of the curve, and of z = z(t), y = y(¢), and x = z(t) as the equations of

the curve.

DEFINITION A.2. Asimple curve has the same definition as an elementary curve, except that the map-

ping may be from either an open interval or a circumference, i.e., the curve may be closed.

DEFINITION A.3. A genera curveisthe image of a simple curve under a continuous and locally one-

to-one mapping.
A curvethat does not have a globally one-to-one mapping will have self intersectionsin its image.

DEFINITION A.4. Finally, aregular curve (of class C*) is one for which the parametric equation is k-

times continuousdly differentiable (¢ > 1) and» '(¢) # 0 for all ¢ € I.

1Thereis more similarity between a plane curve and a surface than for a general curve, because the plane curve is a mapping from R
to R +1, asfor asurface. For example, there is no torsion associated with a surface or a plane curve, but there is one for 3D curves.
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N

Elementary Simple General Regular

FIGURE A.1. Different types of curves. Thefirst three are each subsets of each others, and they do
not need to be C'*. A regular curve must be at least C'*, but it may be elementary, simple, or general,
asthe one pictured here.

A regular C* curveiscalled smooth.? A curvewhichisC° isnot regular, but iscalled continuous. Figure

A.1 gives examples of the types of curves defined above.
DEFINITION A.5. Theimageset r(I) C R? isalso called the trace of 7[19].

One must make the distinction between the mapping that produced the curve and the curveitself, which
is only the image of the map. It isimportant to consider the trace of curves and surfaces in detail, because
a sensor will at most be able to produce a sampling of the trace of a curve or surface; the parametrizationis
meaninglessin this context. An infinity of mappings may produce the same trace. In the case of elementary
and simple curves, curvesthat have the same trace are considered equivalent; the parametrization is therefore
not important in the geometric interpretation of the curve. For general curves, however, two curves with the
same trace may be considered as distinct curves depending on their parametrization. For example the middle
of theloop infigure A.2 may be seen astwo crossing lines, asin A.2(a), or astwo parts of the curvetouching,
asin A.2(b). Depending on the parametrization, the differential properties of the curve will change, and the

curves will be considered distinct.

DEFINITION A.6. As a convention, when context is not sufficient, a geometric curve will specifically
refer to the trace of a curve, while an analytic curve will refer to its analytic representation, which is usually

understood as parametric, although it could also be implicit, or otherwise.

Itis sufficient to consider only parametric representationsin thisthesis.
Note that the difference between asimple curve and ageneral curve hasto do with global geometry, but
the distinction is necessary to ensure that the trace of the simple geometric curve has only one corresponding

analytic curve.

2Here, we use the definition of smooth found in [48], because of its qualitative appeal in the context of perception. Indeed, aslong asa
curveis C'1, it will be qualified as smooth by humans [koend2: ?]. [19] defines a smooth (or differentiable) curve as one which is C*°.
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(O (>0

FIGURE A.2. These two curves have the same trace, but the arrows, indicating the direction of tra-
versal of the domain circles, show that the parametrization are different. In particular, pointsaand b
are singular, where points « and 3 are regular.

3.1.1. special parametrizations. A particular parametric representation which is useful in the context

of computer vision is agraph representation. If a planar curve can be expressed parametrically in the form
(A.33) z=t,y=¢(), tel

(alowing for the choice of coordinate axes), then the equation of the curve can be written in the graph form
(A.3b) y = ¢(x).

Notethat for aregular curve, it isalways possible, in asmall enough neighbourhood, and with the appropriate
choice of coordinates, to represent the curvein graph form [48].

Although it was said before that the parametrization of simple curves is irrelevant to the geometry of
the curve itself, it is possible to make the parametrization relevant. For example the unit speed, or natural,
parametrization identifies the parameter with the arc length of the curve. This other special parametrization

will be presented in section A.4.1. Other waysto represent curves will not be discussed here.

3.2. Surfacerepresentation.

DEFINITION A.7. An elementary surface [48], similarly to an elementary curve, is the image of a one-

to-one and bicontinuous mapping r : U — %2 of an open set (or elementary region) U € R? into 3.
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Its equation is usually written as
(A.4) (u,v) = (2(u,v),y(u,v),2(u,v)).

A simple surface cannot be defined as simply as was done with curves. A simple curve can always be
expressed as either theimage of an open segment, or astheimage of acircle. However, asimple surface may

not be representable as the image of adisk or of a sphere.

DEFINITION A.8. A surfaceis a simple surfaceif it is connected and if at every of its pointsthereis a

neighbourhood such that the neighbourhood and the point form an elementary surface.®

A simple surface may be closed, but the set difference between simple and elementary surfaces does not

only consist of closed surfaces, as was the case for curves[48].

DEFINITION A.9. The definition of a general surface generalizes directly from the one of a general

curve.

DEFINITION A.10. A regular surface (of class C*) is one for which the parametric equation is k-times
continuoudy differentiable (k¢ > 1) andr,, xr, # Ofor all (v,v) € U,i.e. r,,r, formalinearly independent

Set.

Figure A.3 shows different types of surfaces.

DoCarmo [19, P54] defines a regular surface in terms of a subset of 2 with conditions on the set
preventing self-intersection, but then he mentions (P. 78) that regular parametric surfaces could have self-
intersections. We rather keep the parametric definition, and qualify the so defined regular surface as el emen-
tary, simple, or general (in which case self-intersections are permitted).

Theimageset r(U) C R will also be called the trace of the surface. The same commentsas for curves
apply, that is, the geometry of simple surfacesis completely characterized by their trace, but thisis not truefor
general surfaces. Two simple surfaces are considered the sameif their image set correspond, but a one-to-one
and bi continuous correspondence must also be established between the domain sets for two general surfaces
to be considered equivalent. Geometric surface and Analytic surface will be used to explicitly differentiate
between a surface defined by its trace, and one defined as a mapping.

Because surfaces in the world are usually not perceived as self intersecting, as witnessed in our every-
day visual experiences, we will assume we deal with smple regular surfaces (as opposed to general regular

surfaces), unless stated otherwise.

3From now on, when speaking of aneighbourhood on a surface, it will be understood to be that neighbourhood that forms an elementary
surface.
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Elementary | Simple General Regular

FIGURE A.3. Different types of surfaces. Thefirst three are each subsets of each others, and they do
not needtobe C*. A regular surface must beat least C*, but it may be elementary, simple, or general,
asthe one pictured here.

3.2.1. Special parametrizations.  The generalization of the graph representation for curves appliesto

surfaces represented as

(A.53) r=u,y=v, z=¢(u,v), (u,v) €U
which can aso be written as

(A.5b) z = P(z,y).

It is always possible to represent a neighbourhood of a simple surface in graph form, with the appropriate
choice of coordinates. A graph representation of a surface is often called aMonge patch.

Theimplicit representation of a surface, defined as the set of points (z, y, z) which satisfy the equation
f(z,y,z) = 0,isoften useful asacompact definition of closed simple surfaces, and was often used to generate

test data for thisthesis.
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4. Singularities

Singularity theory [edlls: ?] is required in many fields, and the one of computer vision is not spared.
Indeed, curves and surfacesin the world are not always perceived as regular, or smooth* Recall that one of
the conditions for the regularity of curves and surfaceswasthat r’ # 0 and r, x 7, # 0, respectively. If
this condition is not met at apoint, then thispoint is called asingular point of the curve or surface (for amore
rigorousdefinition of surfacesingular points, see[48, p. 76]. Inthe case of surfaces, aset of connected singular
points forms a singular curve on the surface. In general, we will consider surfaces that are simple piecewise
regular surfaces. A piecewise C* regular curveis acurve r defined on an open interval [a, b] such that the
curveisC* regular on every openinterval [s;, si + 1], for afinite set of pointsa = s1,s2, ... ,b = sn. Fracta
curvesand surfaces, which are studied in the context of computer vision[pent,ben:frac: ?, pent,ben:frac: 7],
arenot piecewiseregular, but werather consider thefractal nature of asurfaceasatexturethat isto be separated
from an underlying regular surface at a given scale of observation. Finally, note that we often talk of almost
everywhereregular curvesand surfacesin computer vision. Thisisan important distinction which summarizes
the practical expectationthat asurface has* not many” singular points. Thisexpectationisenforcedin oneway
or another in al surface reconstruction methodsthat permits singularities, for example[26, 13, 56, 9], to name

afew.

5. differential properties

We are now ready to specifically discuss the differrential geometric properties of simple regular curves

and surfaces. As before, the discussion will be separate for curves and surfaces.

5.1. differential propertiesof curves. Theunit tangent vector (¢) of acurveat point ¢ is given by
the equation

,',,I

(A.6) T(t) = T
Theunit tangent vector is unique, up to its orientation, which is dependent on the parametrization of the curve.
Therefore, the tangent line, or tangent, isindependent of parametrization for simple curves. Thetangent isthe
line passing through r(t) and parallel to 7(¢). The meaning of the tangent can be intuitively understood in
many ways, here, we will note that the tangent isitself acurve, and that it isthe best linear approximation to

the curve at point ¢. We can see that the tangent of a curveis defined only at regular points, wherer ' # 0.

4The qualifying “perceived” is necessary, because, curves and surfaces are only mathematical concepts. After all, aphysical surface is
really mostly composed of “empty” space, at the sub-atomic scale.

82



A.5 DIFFERENTIAL PROPERTIES

We already introduced the arc-length of acurve when we talked about special parametrizations. Thearc

length of asegment 4(a < ¢ < b) of asimpleregular curve+y : r(t) isgiven by

b
A7) s(7) = / I (1)l

Thearc length can beinterpreted as the length of apolygon inscribed in the curve, as the number of polygonal
arcs tends to infinity [48]. Since the arc length is independent of parametrization, and defines a metric on
the curve, it is possible to use a standard parametrization, called the natural parametrization, to represent
any given geometric curve. This parametrization is the one that satisfies s(¥) = (b — a), or equivalently,
[l»'(t)]] = 1 Vt. A standard notation is to change the parameter ¢ for s if the curveis naturally parametrized.
The natural parametrization of a regular geometric curve always exists and is unique up to a sign difference
in the parameter.

We shall now introducethe concept of curvature of acurve. The curvature measurestherate of change of
the angle of the tangent linein terms of a displacement on the curve. Because the second derivative [|7 " (s)||
measures the rate of change of the tangent vector, and because the parameter s precisely measures displace-
ment on the curve (whichisnot the casefor other parametrizations), the curvaturex of anaturally parametrized

curveissmply
(A.8) K(s) = [Ir"(s)]-

Curvatureis an unsigned quantity by definition but a sign is sometimes assigned to the curvature of a plane
curve, because the orientation of such a curve can be defined.

Since the graph parametrization of a plane curve is another parametrization that can be considered spe-
cial, we shall show how curvatureis interpreted in the context of a graph representation. First, note that the
graph parametrization of a straight line segment parallel to the parameter axis is equivalent to the natural
parametrization of the curve. Also, the graph parametrization of a straight line segment in general is only
a constant factor away from the natural parametrization (for the curve z(t) = t, y(t) = a, s = tV/1 + a?).
These cases may seem uninteresting, since the curvature of a straight segment is zero everywhere. However,
these remarks also apply to the instantaneous orientation of the curve, as given by the tangent vector. Indeed,
at apoint to where the tangent vector of a plane curve parametrized as in equation A.3b is parallel to the pa-
rameter axis, the curvature will be
o
Ox?

(A9 k(to) = [Ir " (to)]] = \

Therefore, the curvature of a curve at any point ¢, may be seen as the magnitude of the second derivative of
the graph parametrization of the curve in a coordinate frame such that the tangent of the curve at point ¢q is

parallel to the parameter axis. Theidea of assigning adifferent graph parametrization at every point of acurve
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isimplemented by amoving frame. One such moving frame, the Frenet trihedron, isvery useful in differential
geometry. Explaining the Frenet trihedron, aswell asthetorsion of acurve, will be presented herefor the sole
purpose of introducing the Fundamental theorem of the local theory of curves.

A point s suchthat » /(s) = 0 iscaled asingular point of order 1. At all other points of a curve, there
isawell defined unit vector N (s) = r"(s)/||r " (s)||, called the normal vector to the curve at s. The plane
spanned by n(s) and ¢(s) = r'(s) (which are always perpendicular for a naturally parametrized curve) is
called the osculating planeat s. Thesetwo vector defineathird vector b(s) = ¢(s) x IV (s) called thebinormal
vector at s. These three vectors form an orthonormal moving frame parametrized by arc length, called the
Frenet trihedron. Thetorsion 7(s) = —b'(s) - IN(s) of acurve measuresthe rate of change of the osculating
planein terms of a displacement on the curve. Thevectorst'(s), N'(s), and b’(s) areall interrelated through
the curvature and torsion, by the use of the Frenet formulas, which will not be presented here. We are now
ready to present the following theorem, cited from [19], which sums up our geometric knowledge of a curve.

FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF CURVES. Given arbitrary regular
functions k(s) > 0 and 7(s), s € I, and k(s) > 0, there exists a unique (up to position in space) curve
r: I — R3 suchthat s isthe arc length, x(s) isthe curvature, and 7(s) isthetorsion of r. [48]

Wheat this theorem says, basically, isthat the geometry of a curve can be uniquely characterized interms
of its curvature x(s) and torsion 7(s), parametrized by arc length. In some other parametrization, we would
need the three quantities x(t), 7(t), and s(t), that we will call the intrinsic equation of the curve. It is not
surprising that we need three parametrized quantitiesin general, since the extrinsic parametrization of acurve
is represented by three quantities z(t), y(t), and z(t), and three bases are required to represent manifoldsin
3D space. What isinteresting is that we are able to use a basis where each base expresses a specific intrinsic
geometric concept about the curve, rather than extrinsic coordinates, which depend on the representation of
the embedding space. Finally, note that having discrete measures of curvature and torsion of a curve (even of
arc length) does not characterize the curve uniquely, no more than having discrete measures of its coordinates

in space.

5.2. Differential propertiesof surfaces. Asfor curves, we will begin this section with the notion of
tangency. Thetangent planetoasurface S at apoint P(u, v), denotedby T'»(.S), istheplanetrough P spanned
by the basis (7, (u, v), r,(u, v)), which aretwo linearly independent vectors tangent to the surface (recall the
regularity requirements). Any linear combination of thisbasisliesin the tangent plane, and iscalled atangent
vector tothe surfaceat P. Thevector N = (r,, x r,)/||r. X 7, || perpendicular to thetangent planeiscalled
the unit normal to the surface at P. The tangent plane of a surface does not depend on its parametrization.
The set (7, r,, IN) forms a moving frame on the surface, but it is not necessarily orthonormal, and more

importantly, it is not completely intrinsic to the surface.
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A curve C lieson a surface when every of its points belongsto the surface. Sincethe curveis embedded
in atwo-dimensional space (the surface), it can be expressed by only two equations, eveniif it isnot planar in
space. A practical way of doing thisisto express the curve in terms of the parameters of the surface, in the
followingway. Let C : r(t) beacurve onthesurface S : r(u, v). Then, the path of the curve on the surface
can be given asr(t) = r(u(t),v(t)), which is often smply denoted r(t) = (u(t),v(t)). The parametric
curves of asurface are given by r(u, b) and r(a, v), a and b constants.

Now that there is a unique tangent space assigned to every point of a simple regular surface, we can
introduce an operator, the first quadratic form, which is defined in this tangent space. This operator ssimply
performsthe inner product of vectorsthat lie in the tangent space of a point P of the surface, i.e., vectorsthat

can be expressed in the basis (r,,, r,,) of the tangent space. This quadratic form is defined as:

(A.10) Ip(d,8) = dudury,? + dudvry, -1y + dvdur, -7y + dvdvr, >

(A.11) = Edudu + F dudv + F dvéu + G dvdv

ou
(A.12) =(du dv) g g :
g21  g22 ov

and let Ip(d) denote Ip(d,d). In this equation, we use the notation of [48], which interprets the form as a
differential operator. Indeed, I»(d) measures the infinitesimal distance covered on the surface at point P in
thedirection d, and is called the element of arc length ds on S. The coefficients of thefirst quadratic form are
usually denoted by E,F', and G, and (g;;) is called the metric tensor of the surface at P. The formitself is
independent of parametrization, but theindividual coefficientsare dependent. Thefirst quadratic form permits
to measurethelength of curvesonthe surface, theangle of intersection of curvesonthe surface, and the area of
the surfacebounded by aclosed curveon the surface. The curvesof parametrization of asurfaceare orthogonal
when F' = 0 in this parametrization. Thefirst quadratic form, alone, does not uniquely characterize asurface;
more than one geometric surface may have the same first quadratic form.

There is another quadratic form of interest that is a'so an inner product of two vectors in the tangent
space of S. However, this quadratic form, called the second quadratic form, restricts one of the vectorsto be
dN p(v), the differentia of the normal at P in the direction of avector v of the tangent space of the surface.
Theform is defined as

(A.13) IIp(v) = —dNp(v) -v
(A.14) = (Pyu - N)du? 4 2(7yy - N)dudv + (7, - N)dv*
(A.15) = Ldu® + 2M dudv + Ndv*
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FIGURE A.4. Normal curvature from the normal section of a surface.

When v isaunit vector, I7p measures the rate of change of the surface normal in the direction v on the sur-
face. Thisquantity looks alot like the intuitive definition of curvaturefor a curve, and it is called the normal
curvature ., of thesurfaceat P indirectionv. Figure A.4 shows an intuitiveinterpretation of the normal cur-
vature, in term of anormal section. A normal section is the intersection of the surface with a plane spanned
by the surface normal and atangent vector v at point P. Thissectionisaplane curve, and its curvature at point
P isthe absolute value of the normal curvature of the surface at this point and in this direction. The signis
determined from the orientation of the surface normal. By rotating the intersecting plane about the normal,
one obtains all possible values for the normal curvatureat point P. The directions of that plane at which the
normal curvatureis minimum and maximum are called the principal directions of the surface at point P. The
actual value of the normal curvature at these directions are the principal curvatures of the surface, and are
respectively denoted by I7p(M,,,) = Ky and I1p(M pr) = kpr, My, and M unit vectors. These two
directions are aways perpendicular. A curve C'in S isaline of curvatureif at every of its points, its tangent
isaprincipal direction of the surface. Thelines of curvaturesform an orthogonal net on S, except at umbilic
points, where no lines of curvature ever pass. An umbilic point of a surfaceis apoint where k., = K, i€,
where the surface is locally spherical, or locally planar. The Gaussian curvature K is equa to k., k3. The
mean curvature H isequal to £=t5x  The

We end this section with the following theorem:
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FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF SURFACES (Bonnet). Suppose

(A.16) Edu® + 2Fdudv 4+ Gdv*

(A.17) Ldu® + 2M dudv + Ndv?

aretwo arbitrary quadratic formsthefirst of whichis positive definite. Suppose the coefficientsof theseforms
satisfy the Gauss and Peterson-Codazzi equations [48] Then there exists a surface, unique to within position
in space, for which these forms are the first and second quadratic forms respectively. [48]

Becausethesix coefficients E, F', G, L, M, and N must satisfy the Gaussformulaand the two Peterson-
Codazzi formulas, there are really only three independent coefficientsin the first and second quadratic forms.

This makes sense, since three coordinates must be used to represent surfaces.
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APPENDIX B. FINDING THE PRINCIPAL DIRECTION UPDATES

APPENDIX B

Finding the principal direction updates

Asits name indicates, the principal direction of maximum or minimum curvature on a surface is only a di-
rection — it is not oriented. If one uses vector notation to represent these directions, care should be taken to
ensure that the orientation of the vectorsis aways treated as irrelevant. The updating formulafor the prin-
cipal directions originally used by Sander [56] uses the same minimizing norm as the one used to update the
normals. The constrained minimization seeks the minimum of
n
(B.1) J =Y |IM — Mpg|]> + \Mi(M? = 1) + Xo(M - N),
a=1

where the two Lagrange multipliers introduce the constraints that the principal direction vector be unit

length, and that it be perpendicular to its associated normal (which was previously found from another mini-

mization). The minimization of .J with respect to M gives

L (S- (S-N)N>
(82 M= i( SN )
where
(B.3) S = zn:Mpa.
a=1

It issimply the normalized vector average of the principal directions M p,, extrapolated from the neigh-
bours, and projected on the plane defined by the corresponding normals IV p,,. Because avector averagetreats
the orientation of the vectors as relevant, the resulting vector will not necessarily be directed aong the aver-
agedirection of the vectors, asisrequired. Figure B.1 demonstratesthisfact with asimple exampleinvolving

only two vectors.
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FIGURE B.1. Vector averages are not the same as direction averages. The dotted vector is the nor-
malized vector average of the two solid ones. The dashed line is dong the average direction of the
two solid vectors.

The reason why the vector average gives an inadequate result in the example above is that the vector
field (composed of only two vectorsin this case) is discontinuousin its orientation, while the direction field*
iscontinuous. Itisnot possiblein general to produceaglobally smooth vector field by assigning an orientation
totheprincipal directionfield of asurface. Figure 3.6 showsan examplewhereany choiceof orientationwould
produce set of discontinuities, and not only at the umbilic point itself, even if the umbilic is the cause of the
non-orientability of thefield. Therefore, the minimizing functional wasreformulatedto takeonly thedirection

of the vectorsinto account.

(B.4) J:i:l—(N-Mpa)2,

a=1
which only measures the differencein directions, assuming all vectors are unit length.
Using Lagrange multipliersto enforce the required constraints on M proved impractical when .J had to

be minimized. Instead, the constraints were explicitly enforced on the answer by expressing M as

(B.5) M (6) = by cosf + basin b,

where by and b, satisfy

(BG) b12 = b22 = 1’

(B.7) by by =by-N =0.

Minimizing J with respect to # then gives the update rule
1A direction field assignsto each P € U aline r(t) in 2 passing through P [19].
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(B.8)
(B.9)

where

(B.10)

Results of using the old and the new updating rule on two iterations of the curvature consistency algo-

rithmonan ellipsoid are shownin figureB.2. Thenew updating ruleisclearly better at preserving the structure

of the principal direction field.

6 = tan

APPENDIX B. FINDING THE PRINCIPAL DIRECTION UPDATES

1| (Aaa — Aqp) + \/(Azz — A11)? + 443,

241

M (6) = by cosf + by sinf,

n

Ay = (Mpa - b;)(Mpq - bj).

a=1
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FIGURE B.2. Figure (a) shows the analytically calculated principal direction field of an ellipsoid.
Thisfield is provided to the updating process asinitial data. Figure (b) shows the result of two iter-
ations of the algorithm using Sander’s origina update rule, which take orientation information into
account. Figure (c) shows the result of two iterations using the new update rule presented in this ap-

pendix.
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C.1 EQUIVALENCE BETWEEN PIECEWISE CONSTANT MDL AND GEMAN AND GEMAN'S “BLOB PROCESS’

APPENDIX C

Details of comparisons between methods

This appendix contains a collection of detailed analyses of surface reconstruction methods, in completion of

the discussion of chapter 4

1. Equivalence between piecewise constant MDL and Geman and Geman’s “blob process’

The apriori Gibbs energy used in the first example of [26] used the eight-neighbor system and cliques

C = {r, s} of sizetwo, for which the potential was

1 _
€ e =4 7 T s g -,
3 fs?éfr

Thereisno line process, so the Gibbs energy of the a priory probability distribution is given by

(C2) Uf) =Y Vo(f)
C

- % Z {[25(10233' = fic1g) = U+ 26 (fij — fij—1) — 1]

ij=1

(C.3) 120 (fij — ficijor) =1 +[26 (fij — firrj-1) — 1]}
= g Z {[5(fm' - fifl,j) - 1]+ [5(fi,j - fi,jfl) —1]
i,j=1

+[6 (fij — fimrj—1) = U+ [6(fij — firr,j—1) — 1]}

8n?

(C4) - T,

(C.5)

wherethe 2/3 term is due to every clique being counted twice, one for each pixel site. If we assume that the

noise model is additive Gaussian noise with zero mean and variance o, without blurring or nonlinearities, the
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C.2 EQUIVALENCE BETWEEN PIECEWISE CONSTANT MDL AND BLAKE AND ZISSERMAN'S WEAK MEMBRANE
aposteriori Gibbs energy is given by
(C6) u” ) + Z (915 — fi.)2 /202,

where g isthedata. Thisenergy islinearly proportional to the energy of the piecewise constant case of MDL,
under the requirement that a/b = 3/8 = 0.38. The parameters used by Leclerc werea = 1/(21n2) and

b =~ 2, suchthat a/b =~ 0.36. The energiesto minimize, and therefore the operators, are very similar.

2. Equivalence between piecewise constant MDL and Blake and Zisser man’sweak membrane

The solution to the piecewise constant minimum description length problem (with known constant vari-

ance) [36] isthe minimizer of the functional

a
2
EpovioL = —5 Y (20 — uiy)
(i,9)el

(C.7) +g S>> (6w — k)

(6,7)€I (k,1)EN(, j)

a
== > (zij — uiy)?

(i,4)er

(C.8) —l—bz O(wij — wi—1,5) —l—bz O(uwij — uij—1)),

when N; ; = {(i — 1,5),(i +1,7),(¢,5 — 1),(4,j + 1)} (4 neighbours are used here, but Leclerc uses 8
neighbours).

The solution to the weak membrane model is the minimizer of the functional

Eweak membrane = Z(Ui,j - di,j)z

i,

(C.99) + Zga,x(ui,j —ui-15) + Z Jox(Wij — Uij-1),

i,j 4,3

where

(C.9b)
« otherwise

) = {)\2752 if [t] < \/a/A

First, we observe that
(C.10) }\lim ga () = a(l —4(t))

Proof: First, \*t* evaluated at |t| = /o /X isequal to . Second, limy o v/a/A = 0. therefore, go A— oo
isequa to o everywhereexceptat t = 0. [
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C.3 COMPARISON BETWEEN SANDER'S ITERATIVE UPDATING AND REGULARIZATION

1)}
Proof: By using equation C.10, we directly obtain

2
E\yveak membrane,\— 0o = E (Ui,j - di,j)
(2]

(Cll) +a Z(l — (S(Uiﬂ' — Ui_17]'))
i,j
(C.12) o> (1= 0(uij —uij1)),

i,j

and the proportionality relation is straightforward to compute.

3. Comparison between Sander’siterative updating and regularization

As explained previoudly, Sander’s algorithm is based on a constraint of locally constant curvature [56].
Thisconstraintisenforced by iteratively taking local neighbourhood averages of the magnitude of the principal
curvatures, of extrapolated normals, and of extrapolated principal directions, where the extrapolations take
place on a surface patch that satisfies the constant curvature constraint. This approach earned the name of
variational relaxation in section 2.4. The proof of convergence of such an algorithm is not obvious, because
of the many interpolated quantities being averaged. It is even less obviousto describe what the algorithmis
expected to convergeto if it does.

In this appendix, we compare Sander’siterative updating approach with adiscrete solution to regulariza-
tion problems. In order to keep the complexity of the comparison down, we lower the dimensionality and the
order of the constraints of Sander rather than formulating more complex regularization problems. We there-
fore consider the one dimensional string and rod models as regularization problems, and we compare their
solutions by finite element methods with iterative updating methods comparabl e to the one used by Sander.
The goal of this comparison is not to measure the effectiveness of the constraints used by Sander, since we
use lower order constraintshere. It israther to gain an understanding of the iterative updating process he uses:

Local averaging of quantities extrapolated from neighbouring patches instantiating a set of local constraints.

3.1. Comparison between a string model and a constant depth assumption.  For the Sander-like
updating to be of the same order as the iterative solution of a string model, let us use a congtraint of locally
constant depth (instead of locally constant curvature) in one dimension. Then, following Sander’s approach,
the algorithm would iteratively take local averages of the depth of neighbours (implicitly using an horizontal
line as the extrapolating patch in this case). Using a neighbourhood of size 3, the update formulawould be

k) . (k)

X Lt u,
c.13 (k+1) _ U; i+l
(C.13) e
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Now, wewill show that enforcement of acontinuousstring model givesasimilar iterative solution. Theenergy

of the string model is given by

(C.14) E=D+S
(C].S) = zn: (ui — dl)2 + )\2 zn: (ui — Ui—1)2 5

i=1 i=1
where D isthe faithfulnessto data (d) measure, and S is the smoothness measure. Since this energy function
is convey, its only minimum with respect to u can be found using the checkerboard Gauss Seidel iterative

relaxation method. Using this method, the updating formulais given by
(C.163) ult) = (k) (aE /o),

where T; = 92 E//0u? in order to ensure convergence. Computing the partial derivatives, we obtain

1
(C.16b) kD = g () _ Tio ( *) (1+2)2) — Azugi)l — a2 - di)
k k
(C.160 _ 22l %)+,
' 1+2)2

Thisis aweighted average that is very similar to equation C.13. The main differenceis that the data at
node i is not included in the average of equation C.13, and that there is therefore no weighting of the terms.
However, if welet A — oo, then the updating rules C.13 and C.16c¢ are identical.

Itisnow clear that asolution to satisfying alocally constant depth assumption can be reformulated as a

local energy minimization. In the case of equation C.13, the energy function would simply be
(C.17) E= Z —ui_q)

which only has, asitslocal minima, surfaces satisfying u; =constant,i = 1...n
Applying alocally constant depth constraint iteratively, without constraining the answer to stay near the
initial data, achieves a globally constant depth at convergence. Thus, although things are not so simple for a
locally constant curvature constraint, it appearsthat it will also be applied globally at convergence.
Thereisafina point that can still be discussed using the simpler constant depth assumption. Thisisthe
effect of varying the neighbourhood sizein Sander’salgorithm. Let the neighbourhood size be 2m + 1. Then,
the updating rule will be

k k k k
18 kD) _ u? a4l
' : 2m
O
1 k k k k k
(C.19) % (Qmu( ) “E—)m - = ul(_)l - u£+)1 - = u§+)m) .

94
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U2

i-2

FIGURE C.1. Update values of u; using a constant slope assumption.

We attempt to find a global energy functional E' such that

E
(C.20q) gu = 2MU; — Ui — *** — Ujm1 — Uip1 — *** — Uitm
and
9’E
(C.20b) a2 2m.

(3

The corresponding functional (up to the integration constant) is given by

n n

(C.21) E=Y(w—ui 1)+ + 3 (s — s )

=1 =1
Applyingtheiterative updating rule C.18 will find thew;’sthat minimizethisenergy functional. If the squared
termsareto beinterpreted as estimates of the squared gradient at ;, then the estimates are less accurate asthe
valueof m increases. Indeed, thefirst termisatruefinitedifference, but al the other termsare not normalized

properly and are not as well localized.

3.2. Comparison between rod model and constant slope assumption.  Moving one level up, we
can attempt to compare the updating rule of the Gauss Seidel solution to the rod model and the updating rule
of aconstant dope constraint, where the data being updated is again the depth itself.

In that case the updating of the depth values follows a method similar to the one used to update the
normals and the depths in Sander’s algorithm. First, interpolated w;’s are produced by assuming a constant
dope line passing through the neighbours. The projection is along the global z axis, as shown in figure C.1.
Then, these interpolated depths are averaged in order to produce the updated u;. Taking a neighbourhood
size of 3, and taking the slope estimate at u;; to be (u;+2 — u;—1)/3 and the slope estimate at u;_; to be
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(ui+1 — u;—2)/3, theinterpolated u;'s would be as follows (we omit the superscripts up to the final updating
rule): w;g interpolated from u;,, satisfies

Ujp2 — Uj—1 BUjp1 + Uim1 — Ujg2
———F—— = UWR =

3 3

(C.229) Ui+l — UiR =
and u;y, interpolated from u;_, satisfies

1 — Uj— w1 + u; — Ui
(C22b) Uil — Wip1 = w = wui = Ui—1 'U/;-i-l Ui—9

Taking the average of these two values gives

(C.220) u = dufy +4uf | —ub, —uf,
. = .
6

We would now want to compare this to the Gauss Seidel solution of the rod model. The energy of the

rod model is given by

D+S

n

(C.23) E

(ui — di)2 + ,u4 Z (Ui—l + Ujp1 — 2’11,2')2

1 i=1

(C.24)

where the smoothness term is now a quadratic term. The Gauss Seidel solution to minimizing this energy

function (refer to the more detailed derivation for the string model) is given by

(C.25) uEkH) = ugk) —

1 " 3 . . .
(1+6p%) () (14 6ut) = 'l — aptulET 4 ptull + 5D - di)
k k k k
26 _ 4M4UE+J{1) + 4N4Ul('_)1 . M4U§+)2 . M4U§_;1) +d;
' 1+ 6ut '

Again, this iterative solution is very similar to the one satisfying a constant slope assumption by local
averagings, asin eguation C.22c. Again, the only differenceliesin the absence of the closenessto dataterm,
which disappearsif we let © — oo. This comparison of the rod model and of the application of a constant
slopeassumptionusing Sander’ sapproachisnot quiteperfect. Indeed, if Sander’ sapproachwasto befollowed
exactly, the value of the slope of the curvewould be explicitly stored at every point, and thisslopevauewould
beexplicitly updated, rather than being implicitly updated by the depth updates. The dlopewould be estimated
from finite differencesonly at the first iteration, not at all subsequent iterations, as was done here. Also, the
projection of the point to be updated onto the extrapolation line would be done perpendicularly to the line.

The goal of the above comparisons was to demonstrate the similarity between Sander’s approach and

regularization method, when the regul ari zation parameter tendsto infinity. Finding aregularization expression

96
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which istechnically closer to Sander’s|ocally constant curvature constraint is surely possible, but it was not

considered necessary here for the purpose of showing the similarities between the two methods.

4. Comparison between Sander’smethod and regularization in terms of constraint subsets

In the previous section the approach of Sander was lowered to a constraint of locally constant depth and
of locally constant slope, in order to compare this constraint with the one of a string model. Here, we relate
the methods in the context of a constraint subset.

The constraint subset of aconstant depth assumption isthe one parameter hypercurvew(t) = t. Thedata
vector d is considered as theinitial value for Sander’s constant depth constraint algorithm. The value of the
solution u to Sander’s constant depth algorithm is the perpendicul ar projection of d onto the hypercurvewv(t),

and is given by
(C.27) 1/n> " d.
i=1

The solution to the string model for A = 0 isu = d [63, P. 366], which is equivalent to stopping Sander’s
agorithm beforedoing any iterationsat all. Thesolutionfor A = cois1/n ", d; [63], whichisequivalent
to letting Sander’salgorithm iterate to convergence. There are four major waysin which one can get interme-
diate results between these two extremes (a scal e-space of some sort). Oneisto vary the A parameter between
0 and oo in the case of the string model. The second, also in the case of the string, is to use some numerical
method (such as Gauss-Seidel) to achieve the minimum, but not to let the algorithm run to convergence. Nor-
mally, theinitial value used in iteratively finding the global minimum is unimportant. However, if the initial
value is taken as the data point, the intermediate results trace a path from the data to the global minimum of
the regularisation problem. It islikely that the scale of the results increases along this path, but the proper-
ties of this particular scale-space are unknown. Similarly, and thirdly, the number of iterations performed by
Sander’s algorithm can be controlled, with the same question being asked: what do these intermediate val-
ues correspond to? Finally, in view of the perpendicular projection interpretation, one could take intermediate
values along the straight hyperline joining the initial data vector to its perpendicular projection onto the con-
straint surface. Inall these cases, pictured in figure 4, theintermediate sol utions are obtained by moving along
aoneparameter hypercurvejoining theinitial dataand its perpendicular projection onto the constraint surface,
except in the case of regularization solved by a humerical method.
The values obtained aong the perpendicular projection to the constraint surface are given by

d; n (t/n)>_d;

2 i =
(C.28) Up 1+71 1+71

)

where the parameter 7 is zero when u,,; = d; and isinfinity when u,; = u;. Interpreting the formula shows

that these intermediate solutions are not very interesting. Indeed, the first term performs a uniform scaling
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FIGUREC.2. Intermediatevaluesbetweeninitial dataand itsperpendicular projection on aconstraint
surface. The data is composed of a vector of n points d. The constant depth constraint is embodied
in the hyperline v (t) = t. The value corresponding to projecting d perpendicularly on the constraint
surface, or to applying the string model with A = oo, or to running Sander’s a gorithm with a constant
depth assumption up to convergence, isthe point w on the constraint surface. Theintermediate values
along the perpendicular projection are u,,; theintermediate val ues obtained by varying A for the string
model are u; the intermediate values obtained by running Gauss-Seidel for the string model and a
given A, but stopping the iterations before convergence are u.,. ; the intermediate values obtained by
iterating alimited amount of times using Sander’s algorithm are u.s.

for all the points, and the second term is the trandl ation required to ensure that the average depth of the points
of the intermediate value is the same as the average depth of the initial data. Asfor the other two cases, the
behavior they have on the surfaceis not clear, but it seems obviousthat the intermediate valueswill be closer
to the constraint surface than theinitial value. Knowing what happenswhen limiting the number of iterations
of Sander’s method is important, because it is clear that thisis the only way in which the method will give
interesting results. The result of stopping the iterative solution of the string model before convergence, is
also not discussed in the standard literature, but it would be interesting to kown how such results differ from

changing the value of the regularization parameter.
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D.1 A CLASS OF NON-IDEMPOTENT MINIMIZATIONS

APPENDIX D

Supplementary detail on surface reconstruction methods

1. A classof non-idempotent minimizations

We claim that the operator
— i 72
(D.1) f(d)—m&n;(uz d;)> + S(u),  S(u)>0,

is not idempotent in general (with some continuity restrictionson S(u)).

Proof: First, apply the operator once on some data y, obtaining the result z.

_ . _ . 2 )\2
(D.2) z = min Ey(u) = min (Z;(ul vi)® + S(u))
Whether Ey(u) is convex or not, as long as itsfirst partial derivatives are defined in the neighbourhood of
the solution,
OF
(D.3) y (W) ‘ o
8ui u=2

for every u; inu.

Now, let us use the result as the argument to the same operator. The operator is then to minimize the

energy (with respect to u)
(D4 Ez(u) = zn:(ui —2i)% + S(u)
i=1
(D.5) = Ey(u) - Zn;(ui —yi) + Zn;(ui - z)?
(D-6) = Ey(u) +2 iUi(yi —z) + zn:(zf —y7).

i=1 i=1
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D.2 GIBBS ENERGY OF AN A PRIORI MODEL WITH A LINE PROCESS

Again, at the minimum of this function, the following equation must be satisfied for i from 1 ton

0Bz (u) O0Ey(u)
8’1” - 8ui

(D.7) +2(y; — 2;) = 0.

From equation B.15, the only way that this equation can be satisfied at uw = z isif y; — z; = 0 for i from
1 to n which is not true in general. Since idempotence of the operator requiresthat u = z, these types of
minimizations are therefore not idempotent. [

Methodsthat fall in this category are the standard regul arization methods and the weak continuity meth-
ods of Blake and Zisserman. The functional to minimize is similar to equation D.1 in the case of Leclerc’'s
MDL with known spatially varying noise. However, the partial derivativesof S(u) are not defined at the lo-
cal minima of the functional, because of the kroneker delta functions. Therefore, the above proof does not
apply for thiscase. Infact, we present a proof in section 3 that Leclerc’'s MDL piecewise constant operator is
idempotent. Finally, notethat using the continuation methodin MDL problemsmakestheintermediate S(u)‘s

differentiable, which meansthat these intermediate operators are not idempotent.

2. Gibbsenergy of an apriori model with aline process

In this section, we express the Gibbs energy of the apriori model used in exampletwo of [26]. Although
it isnot specified in the paper, | assume they use afour-neighbour system for the pixel sites, becausethisisin
accordance with the neighbour system for the line sites.

The line site between two pixel sites (i1, j1) and (i2, j2) isdenoted by I(;1 j1),(i2,52), ahd thevalue of a
line siteis either 0 or 1, signifying the absence or presence of aline (with fixed orientation).

(D.8a) UP(£,0) =UFID+U@) + D (11— (gi5, 6 (H(fi7))* /207,
i.j
where the energy of the underlying surface (dependent on the line process) and the energy of the line process

(which together congtitute the Gibbs energy of the a priori probability of f) are given as
U =23 {800,100 26 (Fij = fimr,) = 1]
i,
(D.8b) (Ui gy, (inj—1)) [26 (fij — fij—1) — 1]},

100



D.3 MDL PROBLEMS ARE IDEMPOTENT

and
U(l) =09 Z{35(l(i,j)1 + g2 + lig)s +lige —4)
i
20l + g2 + s + e —3)
30 i + g2 +lagps + e —1)
20(La gy + g2 + g3 +laja = 2)
(D.8c) (1= 0+ Ligys) = 0Gigye +Ligya)) }:
(D.8d) lign = lig)i-1.9)>
(D-8e) lagy2 = Ui (ii-1)
(D.8f) L)z = Liij—1),(i-1,j-1)s
(D-8g) lija = lig)i-1.5-1)>

which is the sum of the potentials for all the four element cliques in the neighbourhood system of the line

process.

3. MDL problems are idempotent

Itisintuitively understandabl ethat the standard regul arization methods are not idempotent, becausethese
methods smooth the data only by afinite amount: Subsequent applications of amethod just keeps on smooth-
ing the datafurther. However, Leclerc’'s MDL method smoothsall the noise out of the datain one application.

Section 1 doesnot proveor disprovethat Leclerc’smethod isidempotent, because L eclerc’senergy func-
tional is discontinuous at the global minimum. Let us consider the piecewise constant case with known vari-
ancewhite noise. By definition, the result of the minimum description consists of constant value patches (plus
the description of the noise that has been removed). Therefore, if the operator that produced this datais ap-
plied again and none of the previously detected discontinuities disappear, then it is obvious that nothing will
change within the regions either, since these can be fitted perfectly by the constant patch models. That means
that no new discontinuities can be created within the continuous regions by a second application of the op-
erator. The only possiblity for non-idempotency is that previously detected discontinuities are removed at
subsequent applications of the operator. If we can show that previously detected discontinuities are not re-
moved by subsequent applications of the operator, then we will have proved that the operator is idempotent.
Thisiswhat we do below.
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D.3 MDL PROBLEMS ARE IDEMPOTENT

Givenavector x of initial data, Leclerc’'smethod seeksthe vector y that minimizesan energy of theform

(D.9) Ex(y) =Y (zi—y:)* +A>_ Y (L—68(yi —v5))
iel i€l jEN;
If y isthe global minimum of thisfunctional, and if ¢ is avector identical to y except for m |less discontinu-
ities, then
(D.10) Ep(y) =) (ei—y)> +AY_ > (1=3(y; —y;)) = 2mA
i€l iel jEN;
(the 2 in 2m\ is dueto each discontinuity being counted twice) and
(D.11) Ez(y) < Ex(y') = > (zi—y})’ —2mA > (z;
i€l el

Sincewe assumed that y isthe global minimum of the energy function. To verify if the operator isidempotent,

we perform another minimization with y asinitial data. In that case,

(D.12) By(y) =AY > (1-68(yi —u;))
icl jEN;
(D.13) By(y)=> (wi—u)> +AY_ > (1—=6(yi —y;)) — 2mA
iel i€l jEN;

One of the conditions for the global minimumto bey’ isthat
(D.14) Ey(y') < Ey(y)
or, from equations D.10 and D.11

(D.15) > Wi -’ —2mA<0
iel
Assuming that the vectors (x — y) and (y — y') are perpendicular (this will be shown later) we can write
Phytagorean theorem:
(D.16) @iy = (wi—vi)* + Y (wi— i)’
iel iel iel

Subtracting 2m A on either side of this equation, we obtain

(D.17) Z(Jsl —yh? —2m\ = Z(x —

i€l iel

Z(yl —yh)? - Qm)\] :

icl
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D.3 MDL PROBLEMS ARE IDEMPOTENT

We know from equation D.15 that the term in square bracketsis negative. If we remove this term, we obtain
therelation
(D.18) D (@i—yi)’ —2mA <Y (v —ui)’

iel i€l
but this equation contradicts equation D.11, which shows that any y' with less discontinuitiesthan y isnot the
global minimum of a second application of the operator, which provesthat the operator isidempotent.

Thisproof isvalid only under theassumptionthat (z —y) and (y—y') areperpendicular. Thisassumption
will be shown to hold in genera here.

Inthe piecewiseconstant case, theresult y of MDL consistsof apartition of theimage, with each partition
aconstant value patch which is the average of the pixel valuesin the original image. If some of the partitions
are merged together in a second application resulting in y’, the merged partition will then be further averaged.

Assume that the elements of avector x of length k are segmented inm groups of n; elements per group,

1=1...m:
(D.19) x=(x1,T2,...,Tm)

={z11,%1,2, - T1ps 1 {821, %22, T2 n0 by s {Tm, Tm2s - s Tmnn }) -
If we perform an averaging in each of the m groups, we obtain the vector

(D.20) Y= ({wlz’ ’$1-i}’{$2~i,“.’$2~i},.“’{$m~i,“.’wm-i}>
ny ny no na Nm Nm

where i isthe identity vector. Finaly if we average all the groupstogether, we obtain

(D.22) Yy = (yé Y.

The path taken in vector space during these two averaging stepsis given by

1 - 1 €1 -1 X - 1
r—Yy= T — , 1,2 — yrer s Llpg T T
ni ni ni
o -1 o -1 o -1
T2,1 — , 2,2 y L2, 0y s (o
na U]
(D.22)
T - 1 T 1 T - 1
-Tm,l - ,mm,Z - g 7mm,nm - 9 )
'm Nm 'm
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and
y_y/: ({ ,’121 —yT(X’I'Ll tlmeS)},
To-t Y1 .
{ - . (Xns tlmes)},
(D.23)

{w:m’ - yT'i(xnm times)}).

These two vectors are perpendicular, because their dot product, given below, is zero:

@-v)w-y)= (- C ) @ - (B - i)+

ny k ny k

(D.24)

(a,:mz ~ (yk.i)> (i) (a::mz _ (yk-i)> (- 1)
=0.

4. Constraint subset for the piecewise constant case of L eclerc’'s method in atwo point config-

uration

In this section, we give an illustration of how such alocal minimization can be used through a trivial
examplewith animage composed of only two points, under the piecewise constant description. Thefunctional

to minimize over the two variablesis then

a a
E(Ul,UZ) = §(21 — U1)2 + E(ZQ — U2)2

(D25a) +b[]. — (5(’LL1 — Uz)]
Equivalently the energy can be reformulated as

a a
E(h) = F(Zo + h/2 — U1)2 + ;(Zo — h/2 — ’LL2)2

(D.25b) +0[1 — 6(uy — us)].

There are obviously two possible solutions to this minimization. Either u; = us = (21 + 22)/2,0rug = 21

and us = z,. By comparing the energies of these two cases, we find that the second case will occur if A >

104



D.4 CONSTRAINT SUBSET FOR THE PIECEWISE CONSTANT CASE OF LECLERC'S METHOD IN A TWO POINT CONFIGURATION

\WWW

FIGURE D.1. Leclerc’'s MDL method seen as a local minimization problem. The left figure shows
the constraint subset of the valid combinations of «: and w», including the line passing through the
origin. The right shows one possible energy surface used for alocal minimization statement of the
global minimization problem.

h-+/2bo? [a. We can easily expressthis problem as alocal energy minimization, asillustrated in figure D.1.

The energy function in the figureis simply

2bo2
(D.26) minlur — ], 1/ 22-),
a

The absolute value could as well have been replaced by (u; — us)?.

By adding more pixels to the image, the dimensionality of the energy functional would increase, and
the topology of the constraint subset would be much more complex. However the energy functional of the
equivalent local minimization problem has same dimensionality as the global one, and the topology of the
global energy is also very complex. Also, the local energy functional islikely to be much more symmetric,
sinceit includesonly the constraints, not thedata. 1n section 5 the constraint subset and alocal energy function

are found for athree point case.
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5. Constraint subset for the piecewise constant case of Leclerc’'s method in a three point con-

figuration

If the “image” consists of three points arranged in atriangle (i.e. al points are neighbours), then only
three categories of solution may occur. Either the three points are averaged, only two are averaged and the
other oneisleft unchanged, or all three points are left unchanged. The description length of such animageis

given by

a a a
FE = ;(Zl —’U,1)2 + E(ZZ —U2)2 + ;(23 —U3)2

(D27) —|—b[]. — (5(U1 — Uz)] + b[]. — (5(U2 — U3)] + b[]. — (5(U3 — Ul)]

Thefirst caseis for three points separated by an equal height A

(D.28) 2 =20 + hy,
(D29) 22 = 20,
(D30) zZ3 = Zo — hl.

The value of h; for which the description of the tree distinct points and of asingleregionisequal ish; =
(3b02)/(2a).

The second case is when one point as avalue very different from the two others

(D.31) 21 = 20 + h2/2,
(D.32) z2 = 20 — h2/2,
(D.33) 23 = 29 + oo.

Thethreshold ho for merging z; and z» isgiven by hy = /(2b02)/a.
Finally, if two points aready have same value, but the third one does not,

(D34) Z1 =22 =29+ h3/3,

(D35) Z3 = 2o — 2h3/3

The threshold for merging the third point is hs = /(3bo?)/(2a).

Figure D.2 shows the constraint subset for this case. It consists of aline corresponding to the caseu; =
us = ug, 3 pairsof (coplanar) half planes corresponding to the cases where only two points have same value,
and subsets of 3-space corresponding to the cases where the points keep their initial values. The distances
h; correspond to the three thresholds computed above (the primes are because the distances as shown are at

an angle, and are therefore not equal to the actual thresholds). Theright figure is a slice of the local energy
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FIGURED.2. Constraint subset and local energy for athree point case. Theleft figureisthe constraint
subset, consisting of a line, planes, and regions in three space. The right figure is a dice out of a
possible four dimensional local energy functional.

function given by

E = min(|u; — ua| + |ug — ug| + |ug — us|,
koluy — uz| + ki, kaluy — us| + ki, k2|us — us]) + ki1,

(D.37) ky

(3b0?)/a,
(D.38) k2 = (2 - V2)V3,
(D.39) ks = 4,/(3b02)/(2a)

taken on aplaneperpendicular tothelineu; = us = us. Notethat the vector fromtheinitial valueto thelocal

minimawill always be parallel to that plane anyway, because the average intensity of the imageis preserved
everywhere within the plane.
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