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A key problem in the recovery of scene descriptions from multiple views is the fusion
of information from di�erent vantage points. The contribution of this paper is a set of
algorithms for reconstructing surfaces obtained from overlapping range images in a common
frame of reference. Surfaces are assumed to be piecewise-smooth but not necessarily rigid.
Motion parameters, rotations and translations that describe correspondence between views,
are recovered locally under the assumption that the curvature structure at a point on a
surface varies slowly under transformation. The recovery problem can thus be posed as
�nding the set of motion parameters that preserves curvature across two views. We show
that an appropriate similarity functional can be devised that is convex in the vicinity of
the true motion parameters. This leads to an e�cient local algorithm that recovers motion
parameters in gradient descent fashion.

Fusion of information from di�erent viewpoints is accomplished by applying local mo-
tion estimates to map data points between frames. However, because these estimates are
determined locally, they are subject to the usual e�ects of noise and quantization error. To
increase the robustness of this reconstruction procedure the additional constraint of mo-
tion consistency is introduced, that variations in the velocities of adjacent regions are also
piecewise-smooth. This is cast as a second local minimization problem which seeks to �nd
the set of motion parameters that minimizes di�erences in the relative positions and orien-
tations at adjacent points. The resulting algorithm serves to smooth out local perturbations
and blend adjacent surface patches. In contrast to global rigid body motion approaches, our
procedure for reconstructing surfaces from di�erent viewpoints is tolerant of local errors in
correspondence and can accommodate objects that are articulated.
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Figure 1: The mobile sensor consists of a laser range�nding system with a 1 m3 �eld of view
mounted on the end-e�ector of an inverted PUMA 560 robot.

1 Introduction

Figure 1 depicts a problem common in dynamic scene analysis, the integration of scene
information from multiple viewpoints. In the example shown, a laser range�nding system
attached to the end-e�ector of an inverted PUMA 560 robot is used to explore the sur-
rounding workspace. Tasks such as these are becoming increasingly more common with
the current interest in active vision and mobile robotics [41]. In this paper we develop a
solution for the speci�c problem of fusing together in a common 3-D reference frame a set
of overlapping range images obtained either from laser range measurements or from stereo.
The traditional approach to solving this problem consists of �rst determining the motion
parameters (rotations and translations) used to describe the correspondence between points
in adjacent images, and then reconstructing a composite surface by mapping each data point
into a common frame of reference. The contribution of this paper is two-fold. One is an
algorithm for the recovery of local motion parameters on non-rigid surfaces, and the other
is a second algorithm for re�ning these estimates according to a physical motion model.

Motion parameter estimation is cast as a local correspondence problem in terms of dif-
ferential geometry. Surfaces are assumed to be piecewise-smooth and locally deformable,
encompassing a broad range of natural and man-made scenes. The result of this formulation
is an algorithm which is e�cient, robust, and void of overly restrictive assumptions, e.g., a
single rigid moving object. In fact, where the surface is known a priori to correspond to a
rigid structure, local motion estimates can be combined into a single estimate that is very
tolerant of errors in local correspondence.

The estimation problem is posed as �nding the sets of local motion parameters that
best preserve the curvature structure of a surface across adjacent views. Each set describes
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(a) (b)

Figure 2: Two views of a statue of an owl corresponding to a rotation of approximately
45� about the longitudinal axis. Data were acquired using a laser range�nding system and
rendered as shaded images corresponding to the two depth maps.

the motion of a single point or region depending on the rigidity of the underlying surface.
Non-rigid motion is accommodated provided that the curvature structure of the surface
varies slowly with respect to local deformations. In fact, because motion parameters are
estimated locally, articulations are possible in which di�erent sections of the surface can
move with di�erent velocities. The key to solving the estimation problem is devising a
functional D
T , that measures the similarity between two local neighbourhoods centered at
points x 2 I(i; j; t) and x0 2 I(i; j; t+ 1) in adjacent images, that is continuous in motion
parameters 
 and T. These are respectively the rotation matrix and translation vector
which map x to x0. In particular we show that by exploiting some well-known forms from
di�erential geometry [9], a D
T can be devised that is convex in the vicinity of the true motion
parameters. This leads to an e�cient local algorithm that recovers motion parameters 

and T in gradient descent fashion.

The second contribution concerns the robust interpretation of 
 and T and is best
illustrated by example. Figure 2 shows two views of a statue of an owl corresponding to a
rotation of approximately 45� about the longitudinal axis. The task at hand is to fuse the
corresponding range images into a single coordinate frame. To do so we �rst sub-divide each
image into a set of rectangular sub-regions1 and then apply our local algorithm to estimate

 and T for each. By applying the estimated motion parameters to each sub-region, one
can reconstruct a composite surface in the coordinate frame of either view (a) or view (b).
Figure 3a shows the result of this operation where each element of Figure 2b has been
mapped into the coordinate frame of Figure 2a. Notice that the results are quite noisy. In
fact, the situation gets worse as successive transformations are applied over a sequence of
images. This result is not surprising considering that motion estimates are based on regions
with limited support. Clearly some further interpretation is required.

One approach would be to apply a second stage of reconstruction to the composite surface
in order to smooth out perturbations due to errors in motion parameters [4, 21]. The problem

1This is done for computational expediency.
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(a) (b)

Figure 3: (a) Composite surface generated by directly applying local motion estimates. (b)
The same surface after �rst applying the motion consistency algorithm to the local motion
estimates.

here is that such errors tend to introduce structural changes which are di�cult to separate
out, e.g. the introduction of surface discontinuities. In addition care must be taken not to
over-smooth the surface, resulting in a net loss of information. However, one can gain some
insight into how to further interpret local motion estimates by considering the behaviour
of physical surfaces. The key observation is that adjacent particles are coupled and cannot
move independently. This implies that the corresponding motion parameters must be locally
coupled as well, and provides an important constraint that can be used to further re�ne local
motion estimates. We call this constraint motion consistency and show how it can be used to
devise a procedure that iteratively minimizes the local variation of motion parameters such
that the relative displacements and orientations at adjacent points are consistent with the
local surface model. Figure 3b shows the composite surface that results after applying the
motion consistency algorithm to the set of local motion estimates used to obtain the surface
shown in Figure 3a. The result clearly shows a marked improvement. In addition to re�ning
motion estimates, the algorithm also serves as a means of interpolating motion parameters
into regions of the surface for which local estimates cannot be obtained, e.g. umbilic regions
which are void of directional information.

1.1 Background and Methodology

Whether an image sequence is generated from the observation of a mobile observer in motion
about a stationary scene (Figure 1), or a mobile scene in motion about a �xed observer, or
some combination of the two, the essential task is the same - to determine the motion
parameters relating corresponding points on surfaces in adjacent views. This problem has a
long history in the computer vision literature. Approaches have included the determination
of point correspondences and analysis of point con�gurations [5, 19, 27, 46, 45, 8, 48, 42, 6,
30, 44, 7, 12, 11, 13, 25], the analysis of 
ow �elds [33, 29, 47, 2, 35, 36, 43], and photometric
methods [32, 31, 23, 1]. The method chosen is a function of both the data and how they are
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Figure 4: Local surface representation - the augmented Darboux frame

acquired.

In our application surfaces are assumed to be piecewise-smooth, hence salient features
can be di�cult to localize in the presence of noise. This suggests a continuous approach
to the recovery of motion parameters along the lines of 
ow analysis. The requirement of
determining local motion parameters further suggests that this 
ow should be expressed in
terms of the di�erential structure of the surface. A convenient representation in this regard is
what Sander [38] refers to as an augmented Darboux frame [9]. To each point x 2 I(i; j; t) an
augmented Darboux frame,D(x), is associated which describes the orientation and curvature
of the local neighbourhood of x. Each frame is composed (Figure 4) of three orthonormal
vectors, the unit normal, Nx, and principal direction vectors Mx and Mx lying in the
plane tangent to x, Tx. Mx and Mx correspond to the directions for which the normal
curvature at x (a directional property) takes on maximum and minimum values, �Mx and
�Mx respectively. The latter scalar quantities are referred to as the principal curvatures at
x. Collectively, the elements (x;Mx;Mx; Nx; �Mx; �Mx) are referred to as the augmented
Darboux frame at x, D(x).

With this representation in place, the problem of estimating local motion parameters can
now be precisely formulated as �nding that set of parameters, 
 and T which maps D(x)
to D(x0) for each x 2 I(i; j; t). However, correctly and e�ciently recovering local motion
parameters also depends on being able to accurately recover D(x). Such methods have been
investigated in [38, 21, 14, 16, 17, 15, 26], and form the basis of our current work. Brie
y, the
idea is to �rst use local approximation techniques to build initial estimates of D(x). Next a
specialized �lter is applied to these estimates which results in a surface whose variation in
curvature is piecewise-smooth. This �lter is obtained by minimizing a functional form that
represents local di�erences in D(x) under the assumption of locally constant curvature. The
principle is often referred to as curvature consistency [34].

With estimates of D(x) 8x 2 I(i; j; t) and D(x0) 8x0 2 I(i; j; t+ 1) computed, a similar
minimization strategy can be applied to solve for the local motion parameters. In this
case di�erences in D(x) and D(x0) are minimized over variations in 
 and T. From a
computational vantage point it is tempting to simply embed this temporal minimization
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within the curvature consistency framework. However, this approach does not work because
surface recovery is confounded by motion, i.e. the motion parameters that produce the
smoothest surface in terms of temporal curvature variation do not necessarily produce the
correct one. Thus our strategy is instead to �rst apply the curvature consistency algorithm
[38, 18] independently to I(t) and I(t+1) to obtain stable surface representations. The next
stage of processing then attempts to �nd for each selected candidate point in I(t) a set of
motion parameters that yields a corresponding point in I(t + 1) such that variation in the
associated frames D(x) and D(x0) is minimum.

The strategy used to smooth out variations in motion parameters is related to curvature
consistency. Rather than minimizing the variation of curvature over a spatial neighbourhood,
the idea is to minimize the variation of the surface over a temporal neighbourhood such
that local motion parameter variation is minimized, hence the term motion consistency.
In curvature consistency the augmented Darboux frame serves as a basis for comparison
between two local neighbourhoods and provides the analytical form on which an appropriate
minimization functional is devised [38, 21]. Motion consistency relies on a similar analog to
represent motion parameters, namely the rotation matrix 
 and translation vector T. By
expressing rotations as their equivalent quaternions [40, 39], and following a similar line of
analysis, one obtains a set of updating functions that forms the basis of an iterative �lter.
Finally, just as curvature consistency preserves the local structure of the underlying surface,
motion consistency preserves the structure of the rotation matrix 
 and translation vector
T at each sample point.

1.2 Overview

The remainder of the paper provides a theoretical justi�cation for our approach, describes
the technical details of the algorithms, and presents some of the results obtained on laser
range�nder image sequences. We begin in Section 2 by deriving a functional used to compare
local surface descriptions as a function of motion parameters and show that it is convex in the
vicinity of the true parameters. This leads, in Section 3, to the �rst algorithm that exploits
the convexity of this functional in estimating motion parameters. Section 4 describes how
the concept of motion consistency can be used to re�ne and interpolate motion parameter
estimates, and leads to the motion consistency algorithm. We also present the results of
experiments, in Section 5 that show how these two algorithms can be used to reconstruct
several overlapping range images in a common frame.

2 Estimating Local Motion Parameters

We begin by considering the relationship between two local neighbourhoods, N (x) centered
at point x 2 I(i; j; t) and N (x0) centered at point x0 2 I(i; j; t+1). The images I(i; j; t) and
I(i; j; t+1) are discrete samples of piecewise-smooth surfaces S and S 0 respectively. Surfaces
S and S 0 need not be rigid on a global scale, but are assumed to be locally rigid within N (x)
and N (x0), i.e. we can describe the displacement of each neighbourhood with a single set of
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parameters. Thus for any xi 2 N (x) there exists an x0i 2 N (x0) such that

x0i = 
xi +T; (1)

where


 =

2
64
C(�y)C(�z) C(�x)S(�z) + S(�x)S(�y)C(�z) S(�x)S(�z)�C(�x)S(�y)C(�z)
�C(�y)S(�z) C(�x)C(�z)� S(�x)S(�y)S(�z) C(�x)S(�y)S(�z) + S(�x)C(�z)
S(�y) �S(�x)C(�y) C(�x)C(�y)

3
75 ;

(2)

T =

2
64
Tx
Ty
Tz

3
75 ;

�x, �y, �z are rotations and Tx, Ty, Tz translations about/along the X, Y , and Z axes respec-
tively, and the abbreviations C() and S() are used in place of cos() and sin() respectively.

Knowledge of xi and x0i alone does not provide a su�cient basis from which to determine

 and T. Instead, consider the relationship between two corresponding frames D(x) and
D(x0) at x and x0 respectively,

D(x0) = T (D(x);
;T); (3)

where T () is de�ned as follows:

x0 = 
 x+T;
Mx0 = 
 Mx;
Mx0 = 
 Mx;
Nx0 = 
 Nx;
�Mx0

= �Mx ;
�Mx0

= �Mx :

(4)

As is shown in Figure 5, each frame has a position and orientation which is su�cient to
completely specify the rotation matrix 
 and translation vector T. Thus given the corre-
spondence between two frames the motion parameters are completely determined. However
in order to determine this correspondence in the �rst place, a view-invariant measure is
required which serves to identify corresponding frames. Observe in (4) that the principal
curvatures �Mx0

and �Mx0
are independent of 
 and T. We now consider the conditions

under which correspondence may be uniquely determined.

2.1 Determining Correspondence

A number of constraints serve to simplify the problem of determining the correspondence
between D(x) and D(x0):

- D(x) and D(x0) are constrained to lie on S and S 0 respectively, limiting the space of
motion parameters that must be searched.
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Figure 5: Mapping between D(x) 2 S and D(x0) 2 S 0.

- D(x) and D(x0) are continuous functions of S and S 0 [9].

- Initial estimates of 
 and T, 
̂ and T̂, can often be determined through operational
constraints, e.g. motion parameters provided by the manipulator system used to po-
sition the sensor, or speci�c knowledge about how the sensor or object can move in
relation to each other. These further serve to limit the space of motion parameters
that must be searched.

If 
 and T are such that x0 2 S 0, then the foregoing suggests the following. For a given D(x)
the corresponding D(x0) can be found without having to explicitly determine correspondence
by minimizing the following continuous functional,

min

T

kD(x0)� T (D(x);
;T)k: (5)

However for such to be the case we must �rst ensure the existence and uniqueness of D(x)
and D(x0).

First, in order for D(x) to exist, the surface S at xmust be C2 di�erentiable. Second, the
surface must be such that Mx and Mx have unique directions, that is, x is not an umbilic
point on S. Although these conditions ensure that D(x) exists and is uniquely directed at a
point x, this does not guarantee that no other point on S exists with similar attributes. One
way of visualizing this is by means of the Gaussian sphere, a mapping of the unit surface
normals of S to the center of a unit sphere G (Figure 6) [24]. In the example shown (Hilbert
& Cohn-Vossen 52, p199) S is a bell-surface consisting of an upper elliptical region and a
lower hyperbolic region separated by a parabolic curve along the circle of latitude shown.

Within each elliptic and hyperbolic region the orientation of the surface S expressed byNx
is unique since normals cannot be parallel on a curved surface for which �Mx��Mx 6= 0. The
same true for the directions of curvatureMx andMx, provided that in addition �Mx 6= �Mx.
However, consider the case of a region that contains both elliptic and parabolic points, e.g.
the region bounded by points 1-8 in Figure 6a. Notice that the mapping of this region
onto the Gaussian sphere shown in Figure 6b is not unique. The region is folded over the
parabolic line that separates it into elliptic and hyperbolic sections, leading to ambiguity in
computing correspondence. To ensure that this does not occur, comparisons are restricted
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Figure 6: (a) A bell surface containing both elliptic and hyperbolic points. (b) Mapping of
the bell surface onto the Gaussian sphere G (From Hilbert & Cohn-Vossen 52, p. 199).

to surfaces having Gaussian curvatures (the product of �M and �M ) of the same sign. Now
it is still possible that S may be composed of a number of elliptic or hyperbolic patches
with similar attributes that can ultimately confound any matching process. The only way
in which correspondence can still be estimated locally, other than assuming the uniqueness
of each patch on S (not a very realistic assumption), is to assume that initial estimates 
̂
and T̂ can be determined which limit the aperture of correspondence for x to the patch in
S 0 containing x0.

In this paper we consider two methods of determining 
̂ and T̂. The �rst assumes that

̂ and T̂ are provided by the sensor positioning system. Referring back to Figure 1, 
̂
and T̂ can usually be computed from displacements of the robot end-e�ector. Where such
information is not available, a second (default) method is used that assumes a limit on the
relative displacement between x and x0 due to a limit on the relative velocities between
camera and object. In other words, if I(x; y; t) are the coordinates of x, then I(x; y; t+ 1)
is assumed to lie on the patch in S 0 containing x0. The value of 
̂ is then calculated from
the di�erence in orientations between the surface normals at I(x; y; t) and I(x; y; t + 1)
respectively, and the translation component T̂ is set to [0; 0; 0].

2.2 Similarity Functional

In addition to existence and uniqueness considerations, the similarity functional de�ned in
equation (5) should also be convex to be of practical bene�t. We now demonstrate that
such is the case provided that certain restrictions are met. However, rather than apply (5)
directly we introduce the following modi�cation,

min

T

X
i

kDi(x
0)� T (Di(x);
;T)k; (6)

which improves the robustness of the measure by extending it over a larger local neighbour-
hood that encompasses neighbouring frames. If (6) can be shown to be convex, then 
 and
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T can e�ciently be determined using an appropriate gradient descent procedure from the
starting values 
̂ and T̂. Let � � S be a patch containing a point x and a set of frames
Di(x) that describe the local neighbourhood of x. The patch � is now displaced according
to 
 and T. Speci�cally, we observe that if

1. 
̂ and T̂ are such that the point corresponding to x on S 0 lies somewhere on the image
of � on S 0, �0,

2. � meets existence and uniqueness requirements with respect to Di(x),

3. � is completely elliptic or hyperbolic,

then a similarity functional, D
T , corresponding to (6) can be found that is convex in the
vicinity of the true values of 
 and T. We de�ne D
T as follows:

D
T =
X
i

8<
:3 +

j�Mxi � �Mx0i
j

j�Mxij+ j�Mx0i
j
+

j�Mxi � �Mx0i
j

j�Mxij+ j�Mx0i
j

� (Mxi �Mx0i)
2 � (Mxi �Mx0i)

2 � (Nxi �Nx0i)
2

9=
; (7)

where (�Mxi ; �Mxi;Mxi;Mxi; Nxi), and (�Mx0i
; �Mx0i

;Mx0i;Mx0i; Nx0i) are the components
of Di(x) and Di(x0) respectively. The functional is essentially a direct expansion of Equa-
tion (6), but implemented to yield a value of 0 for optimal values of 
 and T through an
appropriate choice of norms.

In order to prove this assertion it is necessary to substitute analytical expressions for �M ,
�M, Mi, Mi, Ni in terms of a parabolic quadric of the form h(u; v) = au2 + buv + cv2 into
(7) and show that

@D
T

@

=

@D
T

@T
= 0;

and that 0
BB@

@2D
T

@
2
@2D
T
@
@T

@2D
T

@T@

@2D
T

@T2

1
CCA (8)

is positive-de�nite. This analysis is quite complex because of the forms involved and we have
as yet been unable to derive a complete analytic proof. However, we have investigated the
behaviour of this functional through extensive numerical simulation.

Intuitively on examination of the mapping of S on the Gaussian sphere G, one would
expect (7) to vary monotonically since the orientations Ni and directions Mi and Mi vary
monotonically in the range [0; �]. The same holds true for �M and �M since they are in turn
related to the variations of Ni. This expectation is con�rmed by our simulation results, some
of which are shown below. In each of these experiments D
T is sampled by selecting a 5� 5
neighbourhood from an elliptic or hyperbolic surface, applying the transformation according
to 
 and T, and comparing the transformed result against the original surface from which
it was sampled according to (7).

10



Figure 7: Convexity of D
T as a function of (a) translation along the X and Y axes and (b)
rotation about the X and Z axes for an elliptic surface.

Figure 8: Convexity of D
T as a function of (a) translation along the X and Y axes and (b)
rotation about the X and Z axes for a hyperbolic surface.
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In the �rst example shown in Figure 7a, D
T is plotted against translations along the X
and Y axes with all other parameters held constant. The same behaviour is also apparent
in Figure 7b which shows D
T plotted against rotations about the X and Z axes. In both
cases, the location of the minimum corresponds exactly to the correct location of the selected
neighbourhood. The above experiments are now repeated for a hyperbolic surface and the
results shown below in Figures 8a and 8b. Again, the same results are observed.

3 Implementation of the Local Algorithm

The results of the previous section suggest an algorithm for the local recovery of 
 and T at
a point x. It is assumed that the input to this process consists of two range images I(i; j; t)
and I(i; j; t+ 1) corresponding to surfaces S and S 0 respectively. In addition, it is assumed
that the augmented Darboux frames D(x) and D(x0) can be computed for each discrete
sample point x and x0 in I(i; j; t) and I(i; j; t+ 1). The following steps are performed for
each point x for which 
 and T are required.

1. Determine 
̂ and T̂ from either manipulator displacements or velocity limit assump-
tions. It is assumed that D
T is convex in the vicinity of 
̂ and T̂.

2. Minimize D
T for each parameter of 
 and T, i.e. �x, �y, �z, Tx, Ty, and Tz. Because
D
T is assumed to be convex, this computation can be performed e�ciently.

3. Apply the resulting 
 and T to D(x) to obtain D(x0). Validate the result by verifying
that D(x) and D(x0) have non-zero Gaussian curvatures of the same sign.

We now elaborate on some of the technical details required for the algorithm to function
properly.

3.1 Computing D(x) and D(x0)

It is essential that the directional properties represented by Nx, Mx, and Mx at each point
x in I(i; j) be recovered with suitable accuracy. More speci�cally, it is the variation in the
orientations and directions of Di(x) in the local neighbourhood of x that are of importance.
The problem of recovering orientation and curvature has been investigated by a number of
authors. A common approach is to locally approximate S and estimate the components
of D(x) from the parameters of the approximation [3, 10, 20, 22]. Various techniques can
be used to optimize estimation in the presence of noise, but they largely fall short when
it comes to estimating directions [38]. For this reason we apply the curvature consistency
algorithm [38, 21] to precisely recover D(x) and D(x0) for each discrete sample in I(i; j; t)
and I(i; j; t+ 1) respectively.

The importance of this pre-processing stage is illustrated by Figure 9 which shows several
slices through D
T as a function of di�erent numbers of iterations of curvature consistency
for a single 5 � 5 neighbourhood in Figure 2. Figures 9a to 9d correspond to 0, 1, 3, and 5
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Figure 9: The e�ect of curvature consistency on the convexity of D
T . (a) 0 iterations (b)
1 iteration (c) 3 iterations (d) 5 iterations.

iterations of curvature consistency respectively. Without curvature consistency (Figure 9a)
it is not only di�cult to detect but also di�cult to localize the global minimum. Furthermore
the result is not robust to perturbations due to noise. With successive iterations, however,
the minimum becomes increasingly more distinct and better localized to the point where a
simple gradient descent approach su�ces. We will not go into the details of the curvature
consistency algorithm here, but will summarize the basic ideas for completeness. The reader
is referred to [38, 21, 18] for speci�c details.

The overall procedure consists of two stages:

1. Initial estimates of D(x) and D(x0) are computed for each x and x0 respectively. This
is done by �tting a quadric patch to the neighbourhood of each discrete sample point
and then computing the components of D(x) and D(x0) from the quadric parameters.
The approach is essentially that described by [3].

2. The curvature consistency algorithm [38, 18] is then applied to these initial estimates.

The algorithm is implemented as an iterative �lter which can be explained with the aid
of Figure 10. Two frames are shown, DP at point P and DQ at a neighbouring point Q.
Now if the surface is locally continuous in the vicinity of each point2, then one can transport
DQ�

at Q along S to P and obtain DP� . In e�ect DP� is an extrapolation of the surface at
Q to P according to the transport model de�ned by S. Formally, this mechanism is referred
to as parallel transport [9]. We use this transport model to enforce the constraint of locally
constant curvature [34]. By performing this operation for each neighbour of P one obtains
a set of frames, DP� , each providing an estimate of P from its associated neighbour.

The algorithm functions by iteratively applying transport and updating DP with a max-
imum likelihood estimate computed from DP� . Technical details regarding the updating
functions for DP in terms of DP� along with the transport model are described in [38] and
[21]. At each iteration a residual error is computed and summed for each frame on S. The
process is allowed to iterate until the change in this error converges to a threshold value,
generally within 5 to 10 iterations [21].

2The case of local discontinuities is discussed in [21].
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Figure 10: Local extrapolation using a quadric surface of the form au2 + buv + cv2.

3.2 Determining 
 and T

The convexity of (7) allows the parameters of 
 and T to be determined in gradient descent
fashion. An e�cient strategy is to apply a Newton-Rhapson procedure to equation (7) on
each of the 6 parameters. Recall that the e�ect of varying (�x; �y; �z; Tx; Ty; Tz) is to select
a new local neighbourhood in S 0. The procedure converges very quickly as it is already
constrained by having to map each x0 onto S 0. The only parameter that must be supplied
to the algorithm is the size of the local neighbourhood represented by the index variable i
in (7). This is in turn dependent on a priori knowledge about the elasticity of S as the size
of the neighbourhood is inversely proportional to it. Size also a�ects the robustness of (7)
as larger neighbourhoods tend to have more unique structures. However, there is a limit to
this size as one must ensure that the patch � is completely visible in both range images.

Once a set of parameters has been found the x0 corresponding to x is also determined.
Two additional checks are made on the result to validate the correspondence. First, the
sign of the Gaussian curvature at x0 is compared to that at x as they are required to
be identical. Second, the magnitude of D
T is compared against a threshold to ensure a
minimum similarity. The overall accuracy of local parameter recovery is very dependent on
reconstruction error in the presence of noise. This is especially true for smooth surfaces with
slowly varying curvature, and tends to either broaden the minimum of D
T or else introduce
additional minima for which a more complex minimization procedure is required. In the
former case, the e�ect is to reduce the resolution of correspondence.

4 Re�ning Local Motion Estimates

The example shown earlier in Figure 3 demonstrated that for purposes of image reconstruc-
tion, local estimation of motion parameters is inadequate for precise surface recovery. In this
section we show how the concept of motion consistency can be used to derive an iterative
�ltering procedure analogous to curvature consistency for the precise recovery of motion
parameters.
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Motion consistency can be thought of as a temporal analog of curvature consistency.
Even though surfaces can undergo deformations as they move, motions, and thus motion
parameters, are constrained by the coupling between local surface elements. In curvature
consistency the framesDi(x) and Di(x0) were iteratively �ltered such that curvature variation
was minimized according to the assumption of locally constant curvature [34, 38, 21]. A
similar strategy is employed in the motion consistency �lter, except that it is 
 and T which
are varied to preserve the local neighbourhood structure of x.

While the �nal position of x depends on both 
 and T, the �nal orientation of the local
neighbourhood at x depends solely on 
. This provides the necessary insight into how to
separate the problem. First, given values of 
 and T for x and each of its neighbours Q1i

(Figure 11), we determine a maximum likelihood estimate for each x0 that preserves the
relative displacements between x and each Q1i. T is then updated by adding the di�erences
between x0 and its updated value as an o�set. Next, updated values for each
 are determined
by using a similar strategy to �nd rotation matrices that preserve the relative orientation
between x and each of its neighbours Q1i upon transformation.

4.1 Updating T

Within the local neighbourhood of x we assume that motion is approximately rigid, i.e.
that the motion of x and its near-neighbours can be described by the same 
 and T. Now
consider a 3�3 neighbourhood centered at x consisting of the 8 points Q1i (Figure 11). The
position of x relative to any Q1i is given by

p1 = q1i + r1i; (9)

where p1 and q1i are vectors corresponding to x and Q1i in view 1, and r1i is the rela-
tive displacement of point x from point Q1i. Under the rigid motion assumption a similar
relationship must exist upon application of 
 and T, i.e.,

p2 = q2i + r2i; (10)

where the vectors p2;q2i and r2i are de�ned as before except for the indices indicating view
2.

The relative spatial arrangement de�ned by (10) suggests a method of updating the
position of point x0, given estimates of 
i and Ti computed independently for each Q1i. It
follows that

q2i = 
i(q1i �Ti): (11)

Similarly, the relative displacement between points Q1i and x in the coordinates of view 2 is
given by

r2i = 
ir1i: (12)

Then the position of x in view 2, i.e. x0, as predicted by its neighbour Q1i is therefore

p2i = 
i(q1i �Ti) +
ir1i: (13)
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Figure 11: Principle of motion consistency for displacement. The relative displacements
between x and its neighbours Q1i (left) are corrupted under transformation (right). Dis-
placements are represented by the vectors r1i and q1i for each neighbour. By applying that
neighbour's associated motion parameters, one obtains the vectors r2i and q2i that provide
an independent prediction for x0. A maximum likelihood estimate of x0 can be computed
from the set of predictions.
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Amaximumlikelihood estimate of x0 can be obtained by computing the predicted position
of x for each of its neighbours and taking a weighted mean, i.e.,

x̂0 =

Pn
i=1wip2iPn
i=1 wi

; (14)

where the wi take into account the rigidity of the object and the distance between neighbour-
ing points. The weights wi and the size of the local neighbourhood determine the rigidity
of the reconstructed surface. In our experiments a Gaussian weighting was used over neigh-
bourhood sizes ranging from 3 � 3 to 11 � 11. T is then updated with an o�set computed
from the di�erence of x0 and x̂0.

4.2 Updating 


The second part of the updating procedure seeks to enforce the relative orientation between
point x and each of its neighbours Q1i. However, under the assumption of locally rigid
motion, this is equivalent to saying that each point in the local neighbourhood should have
the same rotation component in its individual motion parameters. This would ensure that
the relative orientations between x and Q1i are preserved. The task, then, is to �nd the
optimal set of rotations that best preserves the local orientation structure given x and Q1i.

One di�culty in dealing with representations for rotation is that care must be taken to
preserve the structure of the representation. For example, an operation such as an average
of several rotation matrices has no physical meaning since it destroys important properties
of the rotation matrix in the process. To get around this problem we convert estimates of

i into their equivalent quaternions [40, 39]. According to Euler's theorem of rigid body
motion, a body having undergone any sequence of rotations is equivalent to a single rotation
of that body through an angle � about an axis n. These parameters are easily determined
from 
. The unit quaternion Q is then de�ned as follows,

Q =

8>>><
>>>:

sin(�=2) nx
sin(�=2) ny
sin(�=2) nz
cos(�=2)

9>>>=
>>>;
: (15)

The locus of unit quaternions traces out a unit sphere in 4-dimensional space. One of their
desirable properties is that metric distance between two quaternions is given by the great
circle distance on this sphere. For small distances, which is precisely the case for the rotations
associated with each Q1i, a reasonable approximation is given by their scalar product.

The computational task is now to estimate the quaternion corresponding to x, Qx, given
the quaternions Q1i at each Q1i by minimizing the distance between Qx and each Q1i. If
we de�ne the quaternions Qx and Q1i respectively as

Qx =

8>>><
>>>:

a
b
c
d

9>>>=
>>>;
; and Q1i =

8>>><
>>>:

xi
yi
zi
si

9>>>=
>>>;
; (16)
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then the distance between Qx and Q1i is

D (Qx;Q1i) = axi + byi + czi + dsi: (17)

The goal is to maximize this functional subject to the constraint

a2 + b2 + c2 + d2 = 1: (18)

Using Lagrange multipliers to enforce the constraint, the function to be maximized can be
written as

E =
X

(axi + byi + czi + dsi + �(a2 + b2 + c2 + d2 � 1)): (19)

As was the case earlier in updating position, the terms of this sum can be weighted to take
into account object deformability as well as the distance between x and Q1i, i.e.,

E =
X

(wi(axi + byi + czi + dsi) + �(a2 + b2 + c2 + d2 � 1)): (20)

Solving for a, b, c, and d we obtain the following partial derivatives

�E

�a
=
X

(wixi + 2a�) = 0; (21)

�E

�b
=
X

(wiyi + 2b�) = 0; (22)

�E

�c
=
X

(wizi + 2c�) = 0; (23)

�E

�d
=
X

(wisi + 2d�) = 0; (24)

�E

��
=
X

(a2 + b2 + c2 + d2 � 1) = 0; (25)

which after simpli�cation yields

a = �

P
wixiq

(
P
wixi)2 + (

P
wiyi)2 + (

P
wizi)2 + (

P
wisi)2

; (26)

b = �

P
wiyiq

(
P
wixi)2 + (

P
wiyi)2 + (

P
wizi)2 + (

P
wisi)2

; (27)

c = �

P
wiziq

(
P
wixi)2 + (

P
wiyi)2 + (

P
wizi)2 + (

P
wisi)2

; (28)

d = �

P
wisiq

(
P
wixi)2 + (

P
wiyi)2 + (

P
wizi)2 + (

P
wisi)2

: (29)

The two possible solutions correspond to two quaternions of opposite direction which,
in fact, correspond to the same rotation. By convention 
 is updated accordingly with the
positive solution.
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Figure 12: Interpolating motion parameters. The three black squares represent points on
the surface for which local motion estimates are available. A grass �re algorithm is used to
propagate these estimates outward until they meet up with other wavefronts. The motion
consistency algorithm is then applied to smooth out the resulting �eld.

4.3 Interpolation and Re�nement

The updating functions for 
 and T are applied iteratively to the set of motion estimates
obtained using the local algorithm. Since the e�ect of the motion consistency �lter is to
smoothly blend adjacent motions, this suggests a means of interpolating motion parameters
over those portions of the surface for which no estimates are available. This is illustrated
in Figure 12 which shows a surface consisting of three points (the black squares) for which
motion estimates are available. A grass �re algorithm is used to propagate these estimates
outward until they run into adjacent wavefronts generated by other the points. The motion
consistency algorithm is then applied to smooth out the resulting �eld.

Figure 13 shows the e�ect of motion consistency on the owl surface shown earlier in Fig-
ure 3. In this example we have also shown how motion parameters are iteratively propagated
over the surface in order to �ll holes for which no estimates are available. At 0 iterations,
the surface resulting from the fusion of Figure 2a and Figure 2b is sparse and noisy. With
successive iterations, however, holes become �lled and the surface becomes smooth in ac-
cordance with the real surface. At about 1000 iterations the process converges to the point
where each coordinate has the same motion parameters, i.e. rigid-body motion. The num-
ber of iterations acts as a � parameter, varying between the extremes of independent and
rigid-body motion. Where objects are known to be rigid a priori, the process can be allowed
to run its course to convergence (no further signi�cant change in parameters). In practice,
the number of iterations applied is data-dependent and is tied to the rigidity of the objects
in question.
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1 Iteration 5 Iterations

10 Iterations 50 Iterations

100 Iterations 1000 Iterations

Figure 13: Evolution of the surface of the owl as a function of varying degrees of motion
consistency.
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5 Experiments: Fusing Multiple Views

We now present the results of four experiments on fusing together range images from di�erent
viewpoints. The �rst two experiments address respectively the stability and robustness of
the algorithm and its ability to deal with non-rigid correspondence. In the second two
experiments, range images obtained with a laser range�nding system are fused together
from several di�erent viewpoints using the experimental set-up shown earlier in Figure 1.

The laser range�nding system is a National Research Council of Canada design [37] built
in cooperation with McGill. It has a working �eld of view of approximately 1:0 m3 with a
resolution of 256 � 256 � 1024 in the X, Y , and Z directions respectively. Accuracy is a
function of the Z distance to the object. At closest approach, roughly 10:0 cm, accuracy
is approximately 0:2 mm=pixel. At maximum distance, 100:0 cm, it falls o� to about 1:0
mm=pixel. The range�nder is mounted on the end-e�ector of a PUMA-560 robot inverted
from the ceiling. Absolute positioning accuracy in Cartesian coordinates is on the order3

of 1:0 cm. Consequently, 
 and T cannot be accurately determined from changes in the
position and orientation of the robot end-e�ector4.

The procedure we use to fuse range images is as follows:

1. The curvature consistency algorithm is applied to each range image in the input se-
quence.

2. A set of token points is selected in I(i; j; t) that spans S.

3. The algorithm described in Section 3 is applied and 
 and T estimated for each token
point.

4. The motion consistency algorithm is applied to the result of Step 3.

5. Steps 2-4 are repeated for I(i; j; t+ 1) : : : I(i; j; t+ n).

6. Using successive transformations, data points are mapped into a chosen coordinate
frame I(i; j; t+m);m 2 [1; n].

The selection process begins with the tessellation of I(i; j; t) with an odd sized grid where
the size of each cell is inversely proportional to the elasticity of S. Selection is made on
the basis of the attributes associated with the frame D(x) corresponding to each point. For
example, frames corresponding to local maxima and minima of curvature are good candidates
for matching because they are easy to localize [19]. On the other hand, frames associated
with low magnitudes of �M and �M or umbilic points where �M = �M are bad candidates
as the surface has few distinguishing characteristics within their vicinity. Other regions to
avoid are those where the surface normal N is near to being orthogonal to the direction of
view, e.g. in the vicinity of an occluding contour, as these often correspond to regions of S
that are changing rapidly [28].

3On a good day when the robot manages to stay in calibration.
4However this does provide an initial estimate that can be used by the motion estimation algorithm.
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Accurate detection of occluding contours is also important because the latter can serve
to delineate regions undergoing di�erent motions. This is particularly important in the case
of self-occlusion of an articulated object or occlusion between two (or more) di�erent objects
moving at di�erent velocities. The degree to which occluding contours can be detected
accurately is an important factor in the accuracy of surface reconstruction.

Once a suitable token point has been found, the set of frames Di(x) comprising its local
neighbourhood is used for matching against S 0. If a suitable token cannot be found, the
parameters of the corresponding grid cell are interpolated as described in Section 4.3.

5.1 Correspondence with Additive Noise

In the �rst experiment two identical paraboloids (z = 0:01x2 + 0:005y2) are generated and
displaced relative to each other with 
 = (20�x; 10

�

y ; 45
�

z) and T = (25x; 15y;�25z). Each
paraboloid is de�ned on a 100 � 100 grid and has a maximum height (z) of 50 pixels. The
algorithm is applied with 30 iterations of curvature consistency using a 5� 5 window and 5
iterations of motion consistency using a 10� 10 tiling of the coordinate grid. These surfaces
are relatively smooth and not highly curved, thus one would expect motion estimates to
be very sensitive to additive noise. The algorithm is started at the correct solution, i.e.

 = (20�x; 10

�

y; 45
�

z) and T = (25x; 15y;�25z), and allowed to run to termination.

Termination criteria are de�ned by convergence of the curvature and motion consistency
algorithms respectively. In the case of the former, the algorithm operates by minimizing a
functional form that is related to di�erences inD(x) under the assumption of locally constant
curvature. The algorithm is terminated when the derivative of this functional falls below a
user-speci�ed threshold. It has been shown elsewhere that this algorithm converges rapidly,
generally within 5-10 iterations [18, 38]. A similar termination criterion is used for motion

consistency and is de�ned as the point at which d
̂

dt
and dT̂

dt
fall below a preset threshold

[18]. In practice the number of iterations applied for both algorithms is generally a function
of sensor noise5.

Results are shown in Table 1 for 4 di�erent additive noise levels. Random variables are
sampled from a standardized normal distribution, N(0; 1), and scaled by 0%, 1.4%, 2.7%
and 5.4% of the maximum z range (50). The RMS error listed in the table corresponds to

Errorrms =

vuut1

n

X
i;j

(xi;j � x0i;j)2; (30)

where x0 corresponds to the displacement of x incurred by errors in the transformation
parameters
 and T. The summation is applied to the n surface coordinates of the synthetic
paraboloid. As expected, error increases linearly with noise (graceful degradation) up to the
point where the noise level obscures the surface curvature. A qualitative description of this
error is shown in Figure 14 where each result is displayed as an overlay of the two paraboloids.

5For the experiments involving laser range�nder data, typical values are 5 iterations of curvature consis-
tency followed by 100 iterations of motion consistency.
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True Parameters (
),(T) Estimated Parameters (
̂),(T̂) Noise Error

(20�
x
; 10�

y
; 45�

z
), (25x; 15y;�25z) (20:0�

x
; 9:1�

y
; 43:9�

z
), (25:9x; 14:4y;�25:7z) 0% 1:93

(20�
x
; 10�

y
; 45�

z
), (25x; 15y;�25z) (23:4�

x
; 14:0�

y
; 45:2�

z
), (20:2x; 20:0y;�25:7z) 1:4% 4:76

(20�
x
; 10�

y
; 45�

z
), (25x; 15y;�25z) (30:4�

x
; 8:92�

y
; 38:2�

z
), (19:0x; 35:0y;�26:0z) 2:7% 11:19

(20�
x
; 10�

y
; 45�

z
), (25x; 15y;�25z) (�8:6�

x
; 8:3�

y
; 59:6�

z
), (47:6x; �4:1y; 2:0z) 5:4% 18:5

Table 1: Error in determining correspondence as a function of additive noise. Noise is
expressed as a percentage of the maximum range value (50 pixels). The error indicated is
RMS, units = pixels.

(a) (b)

(c) (d)

Figure 14: E�ects of additive noise on the recovery of motion parameters for a synthetic
paraboloid. Results are shown as overlays with one surface rendered as a mesh and the
other as a shaded surface. (a) 0% additive noise (b) 1.4% additive noise (c) 2.7% additive
noise (d) 5.4% additive noise.
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5.2 Correspondence with Non-Rigid Surfaces

In the second experiment the algorithm is applied to two di�erent paraboloids with equations
z1 = 0:01x2 + 0:005y2 and z2 = 0:02x2 + 0:01y2 respectively which correspond to the defor-
mation of a surface by bending and stretching. In addition the two surfaces are displaced
relative to one another by 
 = (20�x; 10

�
y; 45

�
z) and T = (25x; 15y ;�25z). The algorithm is ap-

plied with the same parameters as in the �rst experiment and the results shown in Figure 15
are obtained. Figure 15a shows the result corresponding to a rigid-body solution - there is no
way that the deformation can be characterized in terms of a single set of motion parameters.
The actual solution obtained in this case, 
 = (16:4�x; 10:8

�

y; 54:0
�

z),T = (37:6x; 16:3y;�17:6z),
approximates the relative displacement between the two surfaces. In Figure 15b, motion pa-
rameters corresponding to each local deformation are estimated independently. The motion
consistency algorithm ensures that local estimates blend smoothly and produces the result
shown in the �gure where the overlap between the two surfaces is on average within a single
pixel.

5.3 Piecing Together a Mercedes

In the third experiment two views of a model car, Figures 16a and b, are shown rendered
as shaded images. An initial estimate of the motion parameters, 
̂ and T̂ relating the two
views is obtained from the robot. However due to the inaccuracies of the robot calibration
and mechanical alignment, 
̂ and T̂ have uncertainties on the order of 10� and 10 mm
respectively. Using 
̂ and T̂ as starting points, local motion parameters are estimated
for each 5 � 5 pixel neighbourhood of the view corresponding to Figure 16a. The motion
consistency �lter is then applied to these local estimates, and the resulting motion parameters
are then used to map the view corresponding to Figure 16b into the coordinates of the �rst
view. The resulting surface is shown in Figure 17 with elements from the �rst view rendered
as a shaded surface, and elements from the second view overlaid as a mesh pattern. We have
veri�ed that the accuracy of point placement is generally within a single pixel.

5.4 Reconstructing the Owl From Three Views

Figure 18 shows three views of the owl statue at (a) 0�, (b) 45�, and (c) 90� respectively.
In this experiment all three views are mapped into a single composite surface. The owl is
reconstructed by �rst mapping the 0� view into the 45� view and merging the two surfaces.
Next the 45� view is mapped into the 90� view and these surfaces merged. Finally, the
intermediate surface from the 0� � 45� views is mapped into the one corresponding to the
45� � 90� views and the two merged, resulting in a complete reconstruction that spans
approximately 180�. The neighbourhood size corresponding to Di(x) in this experiment is
7�7 and approximately 30 token points were selected automatically be the algorithm, which
was implemented on a SUN 470. Solutions for
 and T for each token required approximately
10 seconds, excluding the time required for reconstruction. As presently implemented, the
major bottleneck in the process is the curvature consistency algorithm, which requires several
minutes for each 256 � 256 range image.
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(a)

(b)

Figure 15: (a) Two surfaces corresponding to a deformation of a paraboloid with equation
z1 = 0:01x2 + 0:005y2 (opaque) into a second with equation z2 = 0:02x2 + 0:01y2 (mesh). A
rigid-body solution cannot bring these two surfaces into correspondence. (b) Local motion
estimates su�ce to characterize deformation - motion consistency ensures that they blend
smoothly producing the result shown.
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Figure 16: Two views of a model Mercedes obtained with a laser range�nding system and
rendered as shaded surfaces.

Figure 17: Two views of a model Mercedes fused into a single surface. Elements from the
�rst view are rendered as a shaded surface and elements from the second view are overlaid
as a mesh pattern to highlight the alignment of the two surfaces.

Figure 18: Laser range�nder images of an owl statuette at (a) 0�, (b) 45� and (c) 90�.
Resolution is 256 � 256 by 10 bits/rangel.
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Figure 19: Reconstruction of two pairs of laser range�nder images of the owl statuette. In
each example the surface from the �rst view is rendered as a mesh and the surface from the
second view as a shaded surface. Reconstruction of (a) the 0� and 45� views, (b) the 45�

and 90� views.

The results of this experiment are shown in Figures 19, 20, and 21. In Figure 19a, the
0� view, shown as a mesh surface, is mapped into the coordinates of the 45� view which is
rendered as a shaded surface. We have rendered the resulting surface from a di�erent viewing
position from which it can be compared against the three viewpoints shown in Figure 18.
The alignment of the two surfaces is precise almost everywhere except near the edge of
pedestal where the surface is slightly distorted. This is most likely due to the almost planar
shape of the pedestal which makes the localization of surface features di�cult. Nevertheless
the results are quite good, especially in light of the large angle of rotation. Similar results
are obtained for the mapping of the 45� view into the 90� view shown in Figure 19b.

Finally the surface corresponding to the complete reconstruction is shown rendered as
a shaded image in Figure 20b. Next to it in Figure 20a is a laser range�nder scan of the
owl taken from the viewpoint at which the reconstructed surfaces are rendered. As can be
seen, the three surface patches align quite well, especially considering that the surfaces of
the object are quite smooth and the displacement angles large. This is further evident in
Figure 21 which shows two enlarged views corresponding to the reconstructed surfaces in
pro�le.
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Figure 20: (a) A laser range�nder image rendered as a shaded surface showing the owl from
the viewpoint of the reconstructed surfaces shown in (b). (b) Reconstruction of three views
of the owl taken at 0�, 45� and 90� and rendered as a shaded surface.

Figure 21: Two enlarged views corresponding to the pro�le of the reconstructed surfaces
shown in Figure 20b. As in previous displays, overlapping surfaces are rendered using meshes
and shading to highlight registration accuracy.
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6 Conclusions

The ability to integrate information from di�erent sources and vantage points is a recurring
theme in the literature and still poses signi�cant challenges in the realization of functional
systems. In this paper we have described two algorithms that together provide a means of
fusing a sequence of range images into a single 3-D representation of a scene. What makes
this a particularly interesting problem is that surfaces are assumed to be piecewise-smooth,
void of the kind of features such as lines and corners that are often used to determine
correspondence in polyhedral scenes. In addition, the assumption of rigidity applies only
to the local neighbourhood of a point on the surface, requiring that motion parameters be
determined locally.

We showed how the local curvature structure of a surface could be used to determine
motion parameters. In particular, we demonstrated that this could be accomplished by
employing a similarity functional relating the di�erential geometry of two corresponding
local neighbourhoods as a function of these parameters. Furthermore, by exploiting some
well-known forms, i.e. the augmented Darboux frame D(x), we showed that a functional
could be devised that was convex in the vicinity of the true parameters. This lead to an
e�cient local algorithm that recovers motion parameters in gradient descent fashion.

The second contribution of this work was a procedure, the motion consistency algorithm,
for �ltering local motion estimates according their expected variation on real surfaces. We
showed that the algorithm signi�cantly improved the recovery of local motion parameters
and could also be used to interpolate motions over those portions of a surface for which no
local estimates were available. For the case of rigid-body motion, the algorithm provides a
novel means of arriving at consensus, i.e., combining local motion estimates spanning the
surface into one single set of parameters that is both accurate and robust.

Together, the two algorithms provide a successful means of reconstructing a scene from
several views, and we believe that the results presented justify our basic approach. The
result shown in Figure 17 demonstrates that the procedure can take advantage of motion
estimates provided by a positioning system and arrive at a positioning accuracy limited only
by the sensor. A more telling result was shown in Figure 20, which concatenates information
from three views spanning approximately 180� to an accuracy that is within a pixel over
most of the surface.

Current work is aimed at improving the e�ciency of the algorithms to the point were
they operate closer to data acquisition speeds. However our experience to date suggests that
the complexity of the procedure is well warranted against the results obtained.
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