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Abstract

This paper addresses the probabilistic inference of
geometric structures from images. Specifically, of syn-
thesizing range data to enhance the reconstruction of
a 3D model of an indoor environment by using video
images and (very) partial depth information. In our
method, we interpolate the available range data us-
ing statistical inferences learned from the concurrently
available video images and from those (sparse) regions
where both range and intensity information is avail-
able. The spatial relationships between the variations
in intensity and range can be efficiently captured by
the neighborhood system of a Markov Random Field
(MREF). In contrast to classical approaches to depth re-
covery (i.e. stereo, shape from shading), we can af-
ford to make only weak prior assumptions regarding
specific surface geometries or surface reflectance func-
tions since we compute the relationship between exist-
ing range data and the images we start with. Experimen-
tal results show the feasibility of our method.

Introduction

This paper presents an algorithm for estimating depth infor-
mation from a combination of color (or achromatic) inten-
sity data and a limited amount of known depth data. Sur-
face depth recovery is one of the classical standard vision
problems, both because of its scientific and pragmatic value.
The problem of inferring the 3D layout of space is a critical
problem in robotics and computer vision, and is often cited
as a significant cognitive skill. In the vision community, so-
lutions to such “shape from X” problems are often based on
strong prior assumptions regarding the physical properties
of the objects in the scene (such as matte or Lambertian re-
flectance properties). In the robotics community, such depth
inference is often performed using sophisticated but costly
hardware solutions.

While several elegant algorithms for depth recovery have
been developed, the use of laser range data in many applica-
tions has become commonplace due to their simplicity and
reliability (but not their elegance, cost or physical robust-
ness). In robotics, for example, the use of range data com-
bined with visual information, has become a key methodo-
logy, but it is often hampered by the fact that range sensors
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that provide complete (2-1/2D) depth maps with a resolu-
tion akin to that of a camera, are prohibitively costly. Stereo
cameras can produce volumetric scans that are economical,
but they often require calibration or produce range maps that
are either incomplete or of limited resolution.

We seek to reconstruct suitable 3D models from sparse
range data sets while simultaneously facilitating the data ac-
quisition process. We present an efficient algorithm to esti-
mate 3D dense data from a combination of video images and
a limited amount of observed range data. It has been shown
in (Lee, Pedersen, & Mumford 2001) that although there are
clear differences between optical and range images, they do
have similar second-order statistics and scaling properties
(i.e. they both have similar structure when viewed as random
variables). Our motivation is to exploit this fact and also that
both video imaging and limited range sensing are ubiquitous
readily-available technologies while complete volume scan-
ning remains prohibitive on most mobile platforms. Please
note that we are not simply inferring a few missing pixels,
but synthesizing a complete range map from as little as few
laser scans across the environment.

Our method is based on learning a statistical model of the
(local) relationship between the observed range data and the
variations in the intensity image and use this model to com-
pute unknown depth values. This can be regarded as a form
of shape-from-shading (depth inference from variations in
surface shading) based on statistical learning, although tra-
ditional shape-from-shading is quite different from this ap-
proach in its technical details. Here, we approximate the
composite of range and intensity at each point as a Markov
process. Unknown depth values are then inferred by using
the statistics of the observed range data to determine the
behavior of the Markov process. The presence of intensity
where range data is being inferred is crucial since intensity
provides knowledge of surface smoothness and variations
in depth. Our approach learns that knowledge directly from
the observed data, without having to hypothesize constraints
that might be inapplicable to a particular environment.

Previous Work

We base our range estimation process on the assumption that
the pixels constituting both the range and intensity images
acquired in an environment, can be regarded as the results of
pseudo-random processes, but that these random processes



exhibit useful structure. In particular, we exploit the assump-
tion that range and intensity images are correlated, albeit in
potentially complicated ways. Secondly, we assume that the
variations of pixels in the range and intensity images are re-
lated to the values elsewhere in the image(s) and that these
variations can be efficiently captured by the neighborhood
system of a Markov Random Field. Both these assumptions
have been considered before (Geman & Geman 1984; Efros
& Leung 1999; Wei & Levoy 2000; Efros & Freeman 2001;
Hertzmann et al. 2001), but they have never been exploited
in tandem. Digital inpainting (Bertalmio et al. 2000; 2003;
Criminisi, Perez, & Toyama 2003) is quite similar to our
problem, although our domain and approach are quite differ-
ent. In (Baker & Kanade 2002), a learned representation of
pixel variation for perform resolution enhancement of face
images. The processes employed to interpolate new high-
resolution pixel data is quite similar in spirit to what we de-
scribe here, although the application and technical details
differ significantly. The work in (Torralba & Freeman 2003;
Freeman, Pasztor, & Carmichael 2003) on learning the rela-
tionships between intrinsic images is also related.

In prior work (Torres-Méndez & Dudek 2002), we per-
formed reconstruction by inferring depth values using pre-
determined schedule over space, essentially walking a spi-
ral from the boundary of a region towards the center. We
have observed that reconstruction across depth discontinu-
ities is often problematic as there is comparatively little con-
straint for probabilistic inference at these locations. Fur-
ther, such locations are often identified with edges in both
the range and intensity maps. Based on these observations,
we have developed two important algorithmic improvements
that have a dramatic effect on the quality of the results. In the
present work, we modify the reconstruction sequence to first
recover the values of those augmented voxels for which we
can make the most reliable inferences. This leads to two crit-
ical algorithmic refinements: (1) as we recover augmented
pixels we defer the reconstruction of augmented voxels close
to intensity or depth discontinuities as much as possible,
and (2) as we reconstruct we select those voxels for recon-
struction that have the largest degree of boundary constraint
(aside from those deferred by condition (1)).

Most of prior work on synthesis of 3D environment
models uses one of either photometric data or geometric
data (Debevec, Taylor, & Malik 1996; Hilton 1996; Fitzgib-
bon & Zisserman 1998) to reconstruct a 3D model of an
scene. For example, in (Fitzgibbon & Zisserman 1998), a
method is proposed to sequentially retrieves the projective
calibration of a complete image sequence based on tracking
corner and/or line features over two or more images, and re-
constructs each feature independently in 3D. Their method
solves the feature correspondence problem based on the fun-
damental matrix and tri-focal tensor, which encode precisely
the geometric constraints available from two or more images
of the same scene from different viewpoints.

Shape-from-shading is related in spirit to what we are do-
ing, but is based on a rather different set of assumptions
and methodologies. Such methods (Horn & Brooks 1989;
Oliensis 1991) reconstruct a 3D scene by inferring depth
from a 2D image; in general, this task is difficult, requiring

strong assumptions regarding surface smoothness and sur-
face reflectance properties.

Recent work has focus on combining information from
the intensity and range data for 3d model reconstruction.
Several authors (Pulli et al. 1997; El-Hakim 1998; Sequeira
et al. 1999; Levoy et al. 2000; Stamos & Allen 2000) have
obtained promising results. The work in (Pulli et al. 1997)
addresses the problem of surface reconstruction by measur-
ing both color and geometry of real objects and displaying
realistic images of objects from arbitrary viewpoints. They
use a stereo camera system with active lighting to obtain
range and intensity images as visible from one point of view.
The integration of the range data into a surface model is done
by using a robust hierarchical space carving method. The
integration of intensity data with range data has been pro-
posed (Sequeira et al. 1999) to help define the boundaries of
surfaces extracted from the 3D data, and then a set of heuris-
tics are used to decide what surfaces should be joined. For
this application, it becomes necessary to develop algorithms
that can hypothesize the existence of surface continuity and
intersections among surfaces, and the formation of compos-
ite features from the surfaces.

However, one of the main issues in using the above con-
figurations is that the acquisition process is very expensive
because dense and complete intensity and range data are
needed in order to obtain a good 3D model. As far as we
know, there is no method that bases its reconstruction pro-
cess on having a small amount of intensity and/or range data
and synthetically estimating the areas of missing informa-
tion by using the current available data. In particular, such a
method is feasible in man-made environments, which have
inherent geometric constraints, such as planar surfaces.

Methodology

Our objective is to infer a dense range map from an inten-
sity image and a very sparse initial range data. At the out-
set, we assume that the intensity and range data are already
registered. In practice, this registration could be computed
as a first step, but we omit this in the current presentation.
Note that while the process of inferring distances from in-
tensity superficially resembles shape-from-shading, we do
not depend on prior knowledge of reflectance or on surface
smoothness or even on surface integrability (which is a tech-
nical precondition for most shape-from-shading methods,
even where not explicitly stated). We solve the range data
inference problem as an extrapolation problem by approxi-
mating the composite of range and intensity at each point as
a Markov process. Unknown range data is then inferred by
using the statistics of the observed range data to determine
the behavior of the Markov process. Critical to the processes
is the presence of intensity data at each point where range
is being inferred. Intuitively, this intensity data provides at
least two kinds of information: (1) knowledge of when the
surface is smooth, and (2) knowledge of when there is a high
probability of a variation in depth. Our approach learns that
information from the observed data, without having to fab-
ricate or hypothesize constraints that might be inapplicable
to a particular environment.



We observed in previous experiments that the order of
reconstruction highly influences the final result. In those
experiments, we used a spiral-scan ordering, whose main
disadvantage was the strong dependence from the previous
assigned depth value. In the present work, our reconstruction
sequence is to first recover the values of those locations for
which we can make the most reliable inferences, so that as
we reconstruct, we select those voxels for reconstruction that
have the largest degree of boundary constraint. We have also
observed that reconstruction across depth discontinuities is
often problematic as there is comparatively little constraint
for probabilistic inference at these locations. Further, such
locations are often identified with edges in both the range
and intensity maps. In this work we have incorporated edge
information and, as we recover augmented voxels, we defer
the reconstruction of augmented voxels close to intensity or
depth discontinuities as much as possible.

The Algorithm

We focus on our development of a set of augmented
voxels V that contain intensity (either from grayscale or
color images), edge (from the intensity image) and range
information (where the range is initially unknown for some
of them). Let Q be the area of unknown range (i.e. the re-
gion to be filled). In our algorithm, the depth value r of each
augmented voxel V; € Q is synthesized one at a time. We
based our reconstruction sequence on the amount of reli-
able information surrounding the augmented voxel whose
depth value is to be estimated, and also on the edge infor-
mation. Thus, for each augmented voxel V;, we count the
number of neighbor voxels (in their 8-neighborhood system)
with already assigned range and intensity. We start by syn-
thesizing those augmented voxels which have more of their
neighbor voxels already filled, leaving to the end those with
an edge passing through them. After a depth value is esti-
mated, we update each of its neighbors by adding 1 to their
own neighbor counters. We then proceed to the next group
of augmented voxels to synthesize until no more augmented
voxels in € exist.

MRFsfor Range Synthesis

Markov Random Fields (MRFs) are used here as a model
to synthesize range. Formally, an augmented voxel is de-
fined as V = (I,E,R), where I is the matrix of known
pixel intensities, E is a binary matrix (1 if an edge ex-
ists and 0 otherwise) and R denotes the matrix of incom-
plete pixel depths. We are interested only in a set of such
augmented voxels such that one augmented voxel lies on
each ray that intersects each pixel of the input image I,
thus giving us a registered range image R and intensity im-
age L. Let Z,,, = (z,y) : 1 < z,y < m denote the m in-
teger lattice (over which the images are described); then
I1={IL,}, (z,y) € Z,, denotes the gray levels of the in-
putimage,and R = {R, , }, (z,y) € Z,, denotes the depth
values. We model V as an MRF. Thus, we regard I and R
as a random variables. For example, {R = r} stands for
{Rey = T2y, (x,y) € Z,,}.Given a neighborhood sys-
tem N ={N,, € Z,}, where N,,C Z, denotes
the neighbors of (x,y), such that, (1) (z,y)& Ny,

and (2) (z,y) € Ny < (k,l) € N;,. An MRF over
(Zm,N) is a stochastic process indexed by Z,,, for which,
for every (x,y) and every v = (¢, ) (i.e. each augmented
voxel depends only on its immediate neighbors),

P(Voy = vay [ Vieq = vk, (k1) # (2,y))
= P(Vx,y = Uz,y ‘ Vk,l = Uk,1, (k,l) € Nx,y)v (1)

The choice of N together with the conditional probability
distribution of P(I = ¢) and P(R = r), provides a powerful
mechanism for modeling spatial continuity and other scene
features. On one hand, we choose to model a neighborhood
N, , as a square mask of size n x n centered at the aug-
mented voxel location (z,y). This neighborhood is causal,
meaning that only those augmented voxels already contain-
ing information (either intensity, range or both) are consid-
ered for the synthesis process. On the other hand, calculating
the conditional probabilities in an explicit form is an infea-
sible task since we cannot efficiently represent or determine
all the possible combinations between augmented voxels
with its associated neighborhoods. Therefore, we avoid the
usual computational expense of sampling from a probability
distribution (Gibbs sampling, for example), and synthesize a
depth value from the augmented voxel V,, ,, with neighbor-
hood \V,, ,,, by selecting the range value from the augmented
voxel whose neighborhood A, ; most resembles the region
being filled in, i.e.,

Noest = argmin || Ny, — Ny |, 2
(k1) e A

where A = { A, ; C N} isthe setof local neighborhoods, in
which the center voxel has already assigned a depth value,
suchthat1 < /(k — z)2 + (I — y)2) < d. For each succes-
sive augmented voxel this approximates the maximum a
posteriori estimate; R(k,!) is then used to specify R(z,y).
The similarity measure || . || between two generic neigh-
borhoods A, and W, is defined as the weighted sum of
squared differences (WSSD) over the partial data in the two
neighborhoods. The "weighted” part refers to applying a 2-
D Gaussian kernel to each neighborhood, such that those
voxels near the center are given more weight than those at
the edge of the window.

Experimental Results

In this section we show experimental results conducted on
data acquired in a real-world environment. We use ground
truth data from two widely available databases. The first
database * provides real intensity (reflectance) and range im-
ages of indoor scenes acquired by an Odetics laser range
finder mounted on a mobile platform. The second database?
provides color images with complex geometry and pixel-
accurate ground-truth disparity data. We also show prelim-
inary results on data collected by our mobile robot, which
has a video camera and a laser range finder mounted on it.
We start with the complete range data set as ground truth and
then hold back most of the data to simulate the sparse sam-
ple of a real scanner and to provide input to our algorithm.

Yhttp://marathon.csee.usf.edu/range/Database.html
2http://cat.middlebury.edu/stereo/newdata.html



This allows us to compare the quality of our reconstruction
with what is actually in the scene. In the following, we will
consider several strategies for subsampling the range data.
In our experiments, we use the Canny edge detector (Canny
1986) for extracting the edges.

Arbitrary shape of unknown range data

The first type of experiment involves the range synthesis
when the unknown range data is of arbitrary shape. In par-
ticular, we show how the shape that contains the unknown
range influences their estimation. In Figure 1a, two input
range images (the two left images), and the input intensity
with its corresponding edge information (the two right im-
ages), are given. The percentage of the missing area (shown
in white) of both range images is 41.5% (6800 pixels). The
perimeters however are different. Fig. 1b shows the synthe-
sized range images (the two left images) and the ground
truth range image (the right image) for comparison purposes.

‘Compact missing range Distributed missing range  Input color image

Detected edges

(a) Input (white regions are unknown data to be estimated).

Compact tributed Ground truth range

Synthesized range images

(b) Results.

Figure 1: Results on two different shapes of unknown range
with same area: 6800 pixels (41.5% of total image).

It can be seen that when synthesizing big areas of un-
known range data, our algorithm performs better if the area
is not compact, since combinations of already known range
and intensity give more information about the geometry of
the scene. In other words, the sample spans a broader distri-
bution of range-intensity combinations.

Range measurementswith variable width along the
x— and y— axis

This type of experiment involves the range synthesis when
the initial range data is a set of stripes with variable width
along the x- and y-axis of the intensity image. In the follow-
ing experiments, 61% of the total area is unknown range.
We conducted experiments on 32 images of common scenes
found in a general indoor man-made environment using this
case of subsampling. The smoothing parameter for edge de-
tection was set to 0.8 in all examples. Due to space limita-
tions, we are only showing 4 examples in Figure 2. The abso-
lute value of each error is taken and the mean of those values
is computed to arrive at the mean absolute residual (MAR)

Figure 2: Examples on real data. The first two columns are
the input intensity and range data, respectively. The area of
missing range is 61%. The third column shows the edges
detected in the input intensity. The synthesized results are
shown in the fourth column and the ground truth range im-
ages are displayed in the last column for visual comparison.

error. The MAR errors from top to bottom are shown in Ta-
ble 1. The approximated size of each scene is also given. We
normalize the MAR error by dividing it by the scene size.
This normalized MAR measure is a better indication of how
large the error is according to the scene size. Computation
time for these results using non-optimized code, is on the
order of minutes on a generic PC’s.

Ex.1 | Ex.2 | Ex.3 | Ex. 4
MAR Error (cms) 8.58 13.48 11.39 7.12
Approx. scene size (cms) 600 800 500 400
MAR/Depth 0.017 | 0.021 | 0.024 | 0.048

Table 1: MAR errors of the cases shown in Figure 2.

We now show how color information can improve the
synthesized results. Figure 3 displays in the first row, the
grayscale and color images of the same scene, and to their
right the input range data. The percentage of missing range
is 61%. The size of the neighborhood is set to be 5x5 pixels.
The synthesized results is shown in the second row together
with the ground truth data for comparison purposes. It can
be seen that there are some regions where color information
may help in the synthesis process. For example, the chimney
in the center of the image is separated from the background
since they have different colors. This is hardly noticeable in
the grayscale image.

Some preliminary results on data collected in our own
building is presented next. We use a mobile robot with a
video camera and a laser range finder mounted on it, to nav-
igate the environment. For our application, the laser range
finder was set to scan a 180 degrees field of view horizon-
tally and 90 degrees vertically.



-5 !-_ B

Input range data

Using color image
Swnthesized range images

Using achromartic image Ground truth ran ge

Figure 3: Results on achromatic and color images.

Figure 4 shows experimental results for a case where the
input range data is a set of stripes along the x- and y-axis.
The input intensity and the ground truth range data (for com-
parison purposes) are shown on the first row. Two examples
are displayed in the second and third row. The left images
show the input range images and the right images the syn-
thesized range data after running our algorithm. For the first
example, the area of unknown range is 62% of the total im-
age and, for the second example, is 60%.

In general, the synthesized results are good in both cases.
Our algorithm was capable of recovering the whole range of
the image. There are, however, regions where the synthesis
was not good. For example, regions containing surfaces that
slope and whose surrounding neighborhoods lack of sub-
stantial intensity-range combinations to capture the underly-
ing surface. The reconstruction in those regions becomes a
difficult task since it is done from already seen depth values.
A solution to this problem, which we are currently work-
ing on, is to use surface normal information to generate new
depth values according to the type of surface being recon-
structed. However, the results presented here demonstrate
that this is a viable option to facilitate environment mod-
eling.

Summary and Conclusions

In this paper we have presented an approach to depth re-
covery that allows good quality scene reconstruction to be
achieved in real environments. The method requires both an
intensity images and set of partial range measurements in-
put. In fact, the input range measurements are most effective
if they are provided in the form of clusters of measurements
scattered over the image. This form of sampling is best since
it allows local statistics to be computed, but also provides
boundary conditions at various locations in the image. While
clumps per set are not available from most laser range scan-
ners, swaths of data can be readily and efficiently extracted
using laser scanners.

When we use color images in the reconstruction process,
it appears that the fidelity of the reconstruction is somewhat

improved over achromatic images. This appears to be due to
the fact that the color data provides tighter constraint over
where and how the interpolation process should be applied.
At the same time, the higher dimensionality of the Markov
Random Field model for color images may make the recon-
struction problem more difficult in some cases.

We have also evaluated the performance of the recon-
struction scheme using intensity data from a simple CCD
camera and range data from a laser time of flight scanner
(LIDAR) mounted near the camera. While these two sen-
sors are mount close together, there remains an unavoidable
stereo disparity between the two sensors. This is probably
responsible for portion of the reconstruction error we ob-
served. While this is slightly problematic it seems amenable
to various solution techniques; in fact, it may be possible to
exploit this disparity data as an additional form of stereo.

Critical to the performance of this method is the statisti-
cal similarity of the regions being reconstructed and the por-
tions of the image used to define the Markov model. An open
question is how to validate this statistical similarity which
could be useful both to control and to validate the recon-
struction process.
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