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Abstract—We address the problem of computing dense
range maps of indoor locations using only intensity images
and partial depth. We allow a mobile robot to navigate the
environment, take some pictures and few range data. Our
method is based on interpolating the existing range data
using statistical inferences learned from the available intensity
image and from those (sparse) regions where both range
and intensity information is present. The spatial relationships
between the variations in intensity and range can be effciently
captured by the neighborhood system of a Markov Random
Field (MRF). In contrast to classical approaches to depth
recovery (i.e. stereo, shape from shading), we can afford
to make only weak assumptions regarding specifc surface
geometries or surface reaectance functions since we compute
the relationship between existing range data and the images
we start with. Experimental results show the feasibility of our
method.

I. INTRODUCTION

In robotics, the use of range data combined with visual
information information, has become a key methodology
for navigation and mapping. However, it is often hampered
by the fact that range sensors that provide complete (2-
1/2D) depth maps with a resolution akin to that of a
camera, are prohibitively costly. Stereo cameras can pro-
duce volumetric scans that are economical, but they often
require calibration or produce range maps that are either
incomplete or of limited resolution. A particular common
simplifying assumption is to represent 3D structure as a
2D “slice” through the world. However, in practice this is
not suffcient to capture structures of interest.

Surface depth recovery is one of the most standard vision
problems, both because of its scientifc and its pragmatic
value. Many standard “shape-from” methods, however, are
based on strong assumptions regarding scene structure or
reaectance functions. While several elegant algorithms for
depth recovery have been developed, the use of laser range
data in many applications has become commonplace due
to their simplicity and reliability (but not their elegance,
cost or physical robustness).

In this paper, we extend our prior work [1] by presenting
an improved algorithm for depth map estimation from a
combination of color (or achromatic) intensity data and
a limited amount of known depth data. We seek to recon-
struct suitable 3D models from sparse range data sets while
simultaneously facilitating the data acquisition process.
It has been shown in [2] that although there are clear
differences between optical and range images, they do have
similar second-order statistics and scaling properties. Our

motivation is to exploit this fact and also that both video
imaging and limited range sensing are ubiquitous readily-
available technologies while complete volume scanning re-
mains prohibitive on most mobile platforms. It is important
to highlight that we are not simply inferring a few missing
pixels, but synthesizing a complete range map from as little
as few laser scans across the environment.

Our methodology is to learn a statistical model of the
(local) relationship between the observed range data and
the variations in the intensity image and use this to compute
the unknown range data. We approximate the composite of
range and intensity at each point as a Markov process.
Unknown range data is then inferred by using the statistics
of the observed range data to determine the behavior of
the Markov process. The presence of intensity where range
data is being inferred is crucial since intensity data provides
knowledge of surface smoothness and variations in depth.
Our approach learns that knowledge directly from the
observed data, without having to hypothesize constraints
that might be inapplicable to a particular environment.

In the following section we consider relevant prior work.
Section 11 describes our method to infer range data. Section
I11 tests the proposed algorithm on different confgurations
of experimental data. Finally, in Section IV we give some
conclusions and future directions.

A. Previous Work

We base our range estimation process on the assumption
that the pixels constituting both the range and intensity
images acquired in an environment, can be regarded as
the results of pseudo-random processes, but that these
random processes exhibit useful structure. In particular, we
exploit the assumption that range and intensity images are
correlated, albeit potentially complicated ways. Secondly,
we assume that the variations of pixels in the range and
intensity images are related to the values elsewhere in
the image(s) and that these variations can be efEciently
captured by the neighborhood system of a Markov Random
Field. Both these assumptions have been considered be-
fore [3]-[7], but they have never been exploited in tandem.

Digital inpainting [8]-[10] is quite similar to our prob-
lem, although our domain and approach are quite different.
Baker and Kanade [11] used a learned representation of
pixel variation for perform resolution enhancement of face
images. The processes employed to interpolate new high-
resolution pixel data is quite similar in spirit to what we



describe here, although the application and technical details
differ signifcantly. The work by Freeman [12], [13] on
learning the relationships between intrinsic images is also
related.

In prior work [1], [14], we performed reconstruction
by inferring depth values using predetermined schedule
over space, essentially walking a spiral from the bound-
ary of a region towards the center. We have observed
that reconstruction across depth discontinuities is often
problematic as there is comparatively little constraint for
probabilistic inference at these locations. Further, such
locations are often identifed with edges in both the range
and intensity maps. Based on these observations, we have
developed two important algorithmic reEnements that have
a dramatic effect of the quality of the results. In the
present work, we modify the reconstruction sequence to
£rst recover the values of those augmented voxels for
which we can make the most reliable inferences. This leads
to two critical algorithmic reEnements: (1) as we recover
augmented pixels we defer the reconstruction of augmented
voxels close to intensity or depth discontinuities as much as
possible, and (2) as we reconstruct we select those voxels
for reconstruction that have the largest degree of boundary
constraint (aside from those deferred by condition (1)).

The inference of 3D models of a scene is a problem that
subsumes a large part of computer vision research over the
last 30 years. In the context of this paper we will consider
only a few representative solutions.

In general, the process of building a full 3D model of
a real environment can be divided onto two processes:
acquisition of measurements in 3D and synthesis of useful
geometric models from measurements. In some cases,
for example when models are generated manually, these
steps may be combined. In other cases the processes of
collecting sets of 3D points (often referred to as range
scans), combining them onto surfaces and then generating
suitable models for graphics applications entail distinct
computations. In this paper we focus only on the processes
of obtaining 3D data.

Over the last decade laser rangefnders have become
affordable and available but their application to building
full 3D environment models, even from a single viewpoint,
remains costly or diffcult in practice. In particular, while
laser line scanners based on either triangulation and/or
time-of-aight are ubiquitous, full volume scanners tend to
be much more complicated and error-prone. As a result,
the acquisition of dense, complete 3D range maps is still a
pragmatic challenge even if the availability of laser range
scanners is presupposed.

Most of prior work on synthesis of 3D environment
models uses one of either photometric data or geometric
data [15]-[18] to reconstruct a 3D model of an scene.
For example, Fitzgibbon and Zisserman [17] proposed a
method that sequentially retrieves the projective calibra-
tion of a complete image sequence based on tracking
corner and/or line features over two or more images,
and reconstructs each feature independently in 3D. Their
method solves the feature correspondence problem based

on the fundamental matrix and tri-focal tensor, which
encode precisely the geometric constraints available from
two or more images of the same scene from different
viewpoints. Related work includes that of Pollefeys et.
al. [18]; they obtain a 3D model of an scene from image
sequences acquired from a freely moving camera. The
camera motion and its settings are unknown and there
is no prior knowledge about the scene. Their method is
based on a combination of the projective reconstruction,
self calibration and dense depth estimation techniques. In
general, these methods derive the epipolar geometry and
the trifocal tensor from point correspondences. However,
they assume that it is possible to run an interest operator
such as a corner detector to extract from one of the images
a suffciently large number of points that can then be
reliably matched in the other images.

Shape-from-shading is related in spirit to what we are
doing, but is based on a rather different set of assumptions
and methodologies. Such method [19], [20] reconstruct a
3D scene by inferring depth from a 2D image; in general,
this task is difEcult, requiring strong assumptions regarding
surface smoothness and surface reaectance properties.

Recent work has focus on combining information from
the intensity and range data for 3d model reconstruction.
Several authors [21]-[25] have obtained promising results.
Pulli et al. [21] address the problem of surface reconstruc-
tion by measuring both color and geometry of real objects
and displaying realistic images of objects from arbitrary
viewpoints. They use a stereo camera system with active
lighting to obtain range and intensity images as visible
from one point of view. The integration of the range data
into a surface model is done by using a robust hierarchical
space carving method. The integration of intensity data
with range data has been proposed [23] to help de£ne the
boundaries of surfaces extracted from the 3D data, and then
a set of heuristics are used to decide what surfaces should
be joined. For this application, it becomes necessary to
develop algorithms that can hypothesize the existence of
surface continuity and intersections among surfaces, and
the formation of composite features from the surfaces.

However, one of the main issues in using the above
conf£gurations is that the acquisition process is very ex-
pensive because dense and complete intensity and range
data are needed in order to obtain a good 3D model.
As far as we know, there is no method that bases its
reconstruction process on having a small amount of in-
tensity and/or range data and synthetically estimating the
areas of missing information by using the current available
data. In particular, such a method is feasible in man-made
environments, which, in general, have inherent geometric
constraints, such as planar surfaces.

Il. METHODOLOGY

To restate our objective, we wish to infer a dense range
map from an intensity image and a limited amount of
initial range data. At the outset, we assume that resolution
of the intensity and range data is the same and that
they are already registered (in practice this registration



could be computed as a £rst step, but we omit this in
the current presentation.) Note that while the process of
inferring distances from intensity super£cially resembles
shape-from-shading, we do not depend on prior knowledge
of remectance or on surface smoothness or even on surface
integrability (which is a technical precondition for most
shape-from-shading methods, even where not explicity
stated).

We solve the range data inference problem as an ex-
trapolation problem by approximating the composite of
range and intensity at each point as a Markov process.
Unknown range data is then inferred by using the statistics
of the observed range data to determine the behavior of the
Markov process. Critical to the processes is the presence of
intensity data at each point where range is being inferred.
Intuitively, this intensity data provides at least two kinds of
information: (1) knowledge of when the surface is smooth,
and (2) knowledge of when there is a high probability of a
variation in depth. Our approach learns that information
from the observed data, without having to fabricate or
hypothesize constraints that might be inapplicable to a
particular environment.

A. Algorithmic reEnements

In our algorithm we synthesize one depth value R(z,y)
at a time. From previous experiments we know that re-
construction sequence (the order in we choose the next
depth value to synthesize) highly inauences the quality
of the £nal result. One of the problem with the spiral-
scan ordering (also known as onion-peel ordering) was the
strong dependence from the previous assigned voxel. In
this work, our reconstruction sequence is to £rst recover the
values of those augmented voxels for which we can make
the most reliable inferences, so that as we reconstruct we
select those voxels for reconstruction that have the largest
degree of boundary constraint.

We have also observed that reconstruction across depth
discontinuities is often problematic as there is compara-
tively little constraint for probabilistic inference at these
locations. Further, such locations are often identifed with
edges in both the range and intensity maps. In this work
we have incorporated edge information and, as we recover
augmented voxels, we defer the reconstruction of aug-
mented voxels close to intensity or depth discontinuities
as much as possible. We use the Canny edge detector [26]
for extracting the edges from the intensity images.

B. The MRF model for range synthesis

Markov Random Fields (MRF) are used here as a
model to synthesize range. We focus on our development
of a set of augmented voxels V that contain intensity
(either from grayscale or color images), edge (from the
intensity image) and range information (where the range is
initially unknown for some of them). Thus, V = (I, E, R),
where T is the matrix of known pixel intensities, E is
a binary matrix (1 if an edge exists and O otherwise)
and R denotes the matrix of incomplete pixel depths. We
are interested only in a set of such augmented voxels

such that one augmented voxel lies on each ray that
intersects each pixel of the input image I, thus giving us
a registered range image R and intensity image I. Let
Zm = (z,y) : 1 <2,y < m denote the m integer lattice
(over which the images are described); then I = {I, ,},
(z,y) € Z,, denotes the gray levels of the input image,
and R ={R,y}, (z,y) € Z,, denotes the depth values.
We model V as an MRF. Thus, we regard I and R as
a random variables. For example, {R = r} stands for
{Ryy = Twy, (x,y) € Z,}. Given a neighborhood
system N ={N,, C Z,}, ~where N, denotes
the neighbors of (x,y), such that, (1) (z,y)& Ny,
and (2) (z,y) € Ny <= (k,l) € N,,. An MRF over
(Zm,N) is a stochastic process indexed by Z,,, for which,
for every (x,y) and every v = (4, r) (i.e. each augmented
voxel depends only on its immediate neighbors),

P(Vm,y = Ug,y | Vk,l = Uk,l, (kJ) 7& (.T,y))
=P(Vay = vy | Vi = vky, (k1) € Nm,y)a (1)

The choice of A together with the conditional proba-
bility distribution of P(I = 4) and P(R = r), provides
a powerful mechanism for modeling spatial continuity
and other scene features. On one hand, we choose to
model a neighborhood N, as a square mask of size
n x n centered at the augmented voxel location (z,y).
This neighborhood is causal, meaning that only those
augmented voxels already containing information (either
intensity, range or both) are considered for the synthesis
process. On the other hand, calculating the conditional
probabilities in an explicit form is an infeasible task since
we cannot efEciently represent or determine all the possible
combinations between augmented voxels with its associ-
ated neighborhoods. Therefore, we avoid the usual compu-
tational expense of sampling from a probability distribution
(Gibbs sampling, for example), and synthesize a depth
value from the augmented voxel V, , with neighborhood
Ny, by selecting the range value from the augmented
voxel whose neighborhood N}, ; most resembles the region
being £lled in, i.e.,

Nbest = argmln || Nz,y _Nk,l H’ (2)
(k,) e A

where A = {A); C N} is the set of local neighborhoods,
in which the center voxel has already assigned a depth
value, such that 1 < /(k — z)2 + (I — y)2) < d. For each
successive augmented voxel this approximates the maxi-
mum a posteriori estimate; R(k,![) is then used to specify
R(x,y). The similarity measure || . || between two generic
neighborhoods NV, and A, is defned as the weighted sum
of squared differences (WSSD) over the partial data in the
two neighborhoods. The "weighted” part refers to applying
a 2-D Gaussian kernel to each neighborhood, such that
those voxels near the center are given more weight than
those at the edge of the window.

C. Range Yynthesis Ordering

We based our reconstruction sequence on the amount
of reliable information surrounding the augmented voxel




whose depth value is to be estimated, and also on the edge
information. Let V}, be an augmented voxel with unknown
range and N, be a 3 x 3 square window centered at V,,
(i.e. we are considering just the 8-closest neighbors). Then,
for each augmented voxel V,,, we count the number of
neighbor voxels with already assigned range and intensity.
We start by synthesizing those augmented voxels with the
maximum number of £lled neighbors, leaving to the end
those with an edge passing through them. After a depth
value is estimated, we update each of its neighbors by
adding 1 to their own neighbor counters. We then proceed
to the next group of augmented voxels to synthesize until
no more augmented voxels exist.

I1l. EXPERIMENTAL RESULTS

In this section we show experimental results conducted
on data acquired in a real-world environment. We use
ground truth data from two widely available databases.
The £rst database provides real intensity (remectance) and
range images of indoor scenes acquired by an Odetics
laser range £nder mounted on a mobile platform. The
second database [27] provides color images with complex
geometry and pixel-accurate ground-truth disparity data.
We also show preliminary results on data collected by our
mobile robot, which has a video camera and a laser range
£nder mounted on it. We start with the complete range
data set as ground truth and then hold back most of the
data to simulate the sparse sample of a real scanner and to
provide input to our algorithm. This allows us to compare
the quality of our reconstruction with what is actually in the
scene. In the following, we will consider several strategies
for subsampling the range data.

Compact wissing range  Distributed missing range Input image Deiected edges

(a) Input (white regions are unknown data to be estimated).

 Distributed

Symhesized range images

Compact Ground truth range

(b) Results.

Fig. 1. Results on two different shapes of unknown range with same
area 6800 pixels.

A. Arbitrary shape of unknown range data

The £rst type of experiment involves the range synthe-
sis when the unknown range data is of arbitrary shape.
In particular, we show how the shape that contains the
unknown range inauences their estimation. In Fig. 1a,
two input range images (the left and middle images), and

input intensity, with its corresponding edge information,
are given. The number of pixels in each unknown area
(shown in white) of both range images is 6800. The
perimeters however are different. Fig. 1b shows the synthe-
sized range images (left and middle) and the ground truth
range image for comparison purposes. It can be seen that
when synthesizing big areas of unknown range data, our
algorithm performs better if the area is not compact, since
combinations of already known range and intensity give
more information about the geometry of the scene.

B. Range measurements with variable width along the
x— and y— axis

This type of experiment involves the range synthesis
when the initial range data is a set of stripes with variable
width along the z— and y—axis of the intensity image. In
the following cases, we tested our algorithm with the same
intensity image in order to compare the results. Figure 2
shows the input intensity image (left) of size 128 x 128
and for purpose of comparison we show the ground truth
range image (right) from where we hold back the data to
simulate the samples.

Four cases of subsampling are shown in Figure 3. The
initial range data, shown in the left column, goes from
dense to very sparse. The percentage of missing range data
is indicated below each image. For the £rst three cases the
size of the neighborhood is set to be 5 x 5 pixels and for
the last case 3 x 3. The right column shows the synthesized
range data obtained after running our algorithm.

The £rst two cases have the same amount of missing
range, however the synthesized range for the second case
is much better. Intuitively, this is because the sample spans
a broader distribution of range-intensity combinations. The
Odetics LRF uses perspective projection, thus the range
image coordinate system is spherical. The absolute value
of each error is taken and the mean of those values is com-
puted to arrive at the mean absolute residual (MAR) error.
To calculate the absolute residual errors, we £rst convert
the range images to the Cartesian coordinate system (range
units) by using the equations in [28] and then we convert
the range units to centimeters.

Table | shows the MAR errors (calculated only on the
unknown areas) of the examples shown in Figure 3. The
approximated size of the input scene is 550 centimeters.
For each case, we show in Figure 4, the histogram of the
pixels based on the absolute residual errors. Each class in
the histogram covers a range of 3.66 centimeters. We do
this because the MAR error does not accurately represents
the performance of our algorithm in cases where there are
very few pixels (it may be only one) with high absolute
residual error. From the histograms we can see that (except
for the £rst case) there is a high concentration of pixels
with residual errors < 10.98 centimeters.

In general, the results are good in all cases, except for
the £rst. Our algorithm was capable of recovering the
whole range of the image. It is important to note that
we do not assume that the range and intensity images
are correlated (i.e. dark regions tend to be further). In the



Input intensity Ground truth range

Fig. 2. The input intensity image and the associated ground truth range.
Since the unknown data are withheld from genuine ground truth data, we
can estimate our performance.

39% of range is missing

76.5% of range is missing

Fig. 3. Results on real data. The left column shows the initial range data
and to their right is the synthesized result (the white squares represent
unknown data to be estimated).

MAR Error
(in centimeters)

% of area with
missing range
39

39 5.76

61 8.86

76.5 9.99
TABLE |

MAR ERRORS FOR THE CASES SHOWN IN FIGURE 3.

previous example, the correlation coeffcient is 0.64. We
will show examples where this coefEcient is low and still
good results are obtained.

Number of pixels

Residual Error in centimeters

Fig. 4. Histograms of pixels based on the absolute residual errors for
the cases shown in Fig. 3. Note that the concentration of pixels is with
residual errors between < 10.98 cms.

We conducted experiments on 32 images of common
scenes found in a general indoor man-made environment.
The smoothing parameter for edge detection was set to
0.8 in all examples. Due to space limitations, we are only
showing 4 more examples in Figure 5. The MAR errors
from top to bottom are shown in Table Il. The approxi-
mated size of each scene and the correlation coefEcient are
also given. We normalize the MAR error by dividing it by
the scene size. This normalized MAR measure is a better
indication of how large the error is according to the scene
size. Computation time for the results using non-optimized
code, is on the order of minutes on generic PC’s.

PP
R
z:

Fig. 5. Examples on real data. The £rst two columns show the input
intensity and range images, respectively. For all cases, 61% of the range
is unknown (shown in white). The third column shows the edges detected
in the input intensity. The last two columns show the synthesized results
and the ground truth range for visual comparison.

C. Using color images

We now show how color information may improve the
range synthesis. Figure 6 displays in the £rst row, the
grayscale and color images of the same scene, and to their
right the input range data. The synthesized results after
running our algorithm is shown below together with the
ground truth data for comparison purposes.



MAR Error Scene size MAR/Size | Correlation
(in cms) size (in cms) coefEcient
858 600 0.017 0.47
13.48 800 0.021 0.63
11.39 500 0.024 0.32
712 400 0.048 0.62
TABLE 1l

MAR ERRORS OF THE CASES SHOWN IN FIG. 5.

It can be seen that there are some regions where color
information may help in the synthesis process. For exam-
ple, the chimney in the center of the image is separated
from the background since they have different colors. This
is hardly notice in the grayscale image.

Achromatic image

Input range data

Color image

Ground truth range

Using achromatic image  Using color image
Synthesized range images

Fig. 6. Results on achromatic and color images.

D. Range measurements with variable width along the
x—axs.

We now show experimental results where the initial
range data is a set of stripes only along the xz—axis. This
type of experiment is interesting since it resembles what
is obtained by sweeping a one-dimensional LIDAR sensor.
We have selected the same intensity image shown at the
top of Figure 5 in order to compare the results. Figure 7
displays this input intensity image(left) and the ground
truth range image from where we hold back the data to
simulate the samples. The edge information used is shown
at the top of Figure 5.

Figure 8 shows three experiments. The initial range
images are shown in the left column. The percentage of
missing range is indicated below each of them. The right
column shows the synthesized range data obtained after
running our algorithm.

The MAR errors for the experiments are 20.72, 18.98
and 20.23, respectively. The approximated size of the scene
is 600 centimeters. In general, our algorithm was able to
capture the underlying structure of the scene. However, it
can be seen that the reconstruction was not good in regions
containing surfaces sloping away (for example walls and

Input intensity Ground truth range

Fig. 7. The input intensity image and the associated ground truth range.
Since the unknown data are withheld from genuine ground truth data, we
can estimate our performance.

62.5% of range is missing

&

75% of range is missing

78% of range is missing

Fig. 8. Results on real data. The left column shows the initial range data
and to their right is the synthesized result (the white squares represent
unknown data to be estimated).

aoor). This is due to the fact that the very limited amount
of input range does not cover much of the changes in depth,
and our algorithm fails by assigning already identical depth
values instead of different depths at each point.

Therefore, the initial range data given as an input is
crucial to the quality of the synthesis, that is, if no
interesting changes exist in the range and intensity, then
the task becomes difEcult. One solution to this problem is
to use the surface normals to generate new depth values
instead of using range values directly. We are currently
working on this problem. However, the results presented
here demonstrate that this is a viable option to facilitate
environment modeling.

We now show some preliminary results on data collected
in our own building. We use a mobile robot with a video
camera and a laser range £nder mounted on it, to navigate
the environment. For our application, the laser range £nder
was set to scan a 180 degrees £eld of view horizontally
and 90 degrees vertically. Figure 9 shows a picture of



our mobile robot. As it was mentioned previously, the
input intensity and available range data needs to be already
registered. Range and intensity are different type of data,
their sampling resolution are not the same. We achieved
the registration of the intensity and range data in a semi-
automatic way, by using crosscorrelation on the video
frames and then manually selecting those corresponding
regions from the range image. Details about this registra-
tion step is not in the scope of this paper. We are currently
seeking to have a fully automatic way of registering both
type of data.

Fig. 9. Our mobile robot used to acquired the data.

Figure 10 shows one experimental result for a case
where the input range data is a set of stripes along the
x- and y-axis. The input intensity and the ground truth
range data (for comparison purposes) are shown on the £rst
row. The second row displays the input range image (left)
with 62% of unknown range and the synthesized range data
(right) after running our algorithm. It can be seen that our
algorithm was capable of recovering the whole depth map
of the scene.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented an approach to depth
recovery that allows good quality scene reconstruction to
be achieved in real environments. The method requires both
an intensity images and set of partial range measurements
input. In fact, the input range measurements are most
effective if they are provided in the form of clusters of
measurements scattered over the image. This form of sam-
pling is best since it allows local statistics to be computed,
but also provides boundary conditions at various locations
in the image. While clumps per set are not available from
most laser range scanners, swaths of data can, in fact, be
readily and effciently extracted using laser scanners.

When we use color images in the reconstruction process,
it appears that the £delity of the reconstruction is somewhat
improved over achromatic images. This appears to be due
to the fact that the color data provides tighter constraint
over where and how the interpolation process should be
applied. At the same time, the higher dimensionality of
the Markov Random Field model for color images may
make the reconstruction problem more difEcult in some
cases. Although we have not observed it in our test cases,
we expect reconstructions to fail in some cases with color

data whereas they might succeed with achromatic input
images.
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