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Abstract

This paper addresses the problem of estimating dense
range maps of indoor locations using only intensity images
and sparse partial depth information. Unlike shape-from-
shading, we infer the relationship between intensity and
range data and use it to produce a complete depth map.
We extend prior work by incorporating geometric informa-
tion from the available range data, specifically, we add sur-
face normal information to reconstruct surfaces whose vari-
ations are not captured in the initial range measurements.
In addition, the order on which we synthesize range values
is based on a best-first approach that uses edge informa-
tion from the intensity images, and isophotes lines from the
available range. Our method uses Markov Random Fields
to learn the statistical relationships from the available in-
tensity and from those sparse regions where both range and
intensity information is present. In contrast to classicalap-
proaches to depth recovery (i.e. stereo, shape from shad-
ing), we make only weak assumptions regarding specific
surface geometries or surface reflectance functions since we
compute the relationship between existing range data and
the images we start with. Preliminary results on real data
demonstrate that our method works reasonably well when
incorporating geometric information.

1 Introduction

Surface depth recovery is one of the most classic vision
problems, both because of its scientific importance and its
pragmatic value. Many standard “shape-from” methods,
however, are based on strong assumptions regarding scene
structure or reflectance functions. While several elegant al-
gorithms for depth recovery have been developed, the use
of laser range data in many applications such as robotics
has become commonplace due to their simplicity and reli-
ability (but not their elegance, cost or physical robustness).
In robotics, the fusion of range data with visual information
for navigation and mapping is particularly appealing, as it

can be used for several important applications. However, it
is often hampered by the fact that range sensors that provide
complete (2-1/2D) depth maps with a resolution akin to that
of a camera, are prohibitively costly or otherwise impracti-
cal. Stereo cameras can produce volumetric scans that are
economical, but they often require calibration or produce
range maps that are either incomplete or of limited reso-
lution. A particular common simplifying assumption is to
represent 3D structure as a 2D “slice” through the world.
However, in practice this is not sufficient to capture struc-
tures of interest.

We seek to reconstruct suitable 3D models from sparse
range data sets while simultaneously facilitating the data
acquisition process. It has been shown by Leeat al. [13]
that although there are clear differences between optical
and range images, they nevertheless have similar second-
order statistics and scaling properties. Of course, the in-
timate connection between irradiance and surface normals
is the basis of classical shape-from-shading. Our motiva-
tion is to exploit this fact and also that both video imaging
and limited range sensing are ubiquitous readily-available
technologies while complete volume scanning remains pro-
hibitive on most mobile platforms. It is important to high-
light that we are not simply inferring a few missing pixels,
but synthesizing a complete range map from as little as few
laser scans across the environment.

Our methodology is to learn a statistical model of the (lo-
cal) relationship between the observed range data and the
variations in the intensity image and use this to compute
the unknown range data. We approximate thecomposite
of range and intensity at each point as a Markov process.
Unknown range data is then inferred by using the statis-
tics of the observed range data to determine the behavior of
the Markov process. The presence of intensity where range
data is being inferred is crucial since intensity data provides
knowledge of surface smoothness and variations in depth.
Our approach learns that knowledge directly from the ob-
served data, without having to hypothesize constraints that
might be inapplicable to a particular environment.

In this paper, we extend our prior work [22, 23] by in-

1



corporating geometric information to our framework from
the available range data. More specifically, we add sur-
face normal information to be able to reconstruct surfaces
whose variations are not captured in the initial range mea-
surements. We also have improved the order in which we
recover depth values. This order plays a very important role
in the quality of the results.

In the following section we consider relevant prior work.
Section 3 describes our method to infer range data and the
improvements to our algorithm. Section 4 tests the pro-
posed algorithm on different configurations of experimen-
tal data. Section 5 gives details about the incorporation of
surface normal information to our framework. Finally, in
Section 6 we give some conclusions and future directions.

2 Previous Work

We base our range estimation process on the assump-
tion that the pixels constituting both the range and intensity
images acquired in an environment, can be regarded as the
results of pseudo-random processes, but that these random
processes exhibit useful structure. In particular, we exploit
the assumption that range and intensity images are corre-
lated, albeit potentially complicated ways. Secondly, we as-
sume that the variations of pixels in the range and intensity
images are related to the values elsewhere in the image(s)
and that these variations can be efficiently captured by the
neighborhood system of a Markov Random Field. Both
these assumptions have been considered before [5,6,10,24],
but they have never been exploited in tandem.

Digital inpainting [2, 3] is similar to our problem, al-
though our domain and approach are quite different. Baker
and Kanade [1] used a learned representation of pixel vari-
ation for perform resolution enhancement of face images.
The processes employed to interpolate new high-resolution
pixel data is similar in spirit to what we describe here, al-
though the application and technical details differ signifi-
cantly. The work by Freeman [9, 21] on learning the rela-
tionships between intrinsic images is also related.

In prior work [22, 23], we performed reconstruction by
first recovering the values of those voxels for which we can
make the most reliable inferences, based on the number of
filled neighbors and, on the existence of probably depth dis-
continuities (indicated by edges on both intensity and range
images). However, the extraction of edges is not always
easy, and it depends on the scene (textures, changes in il-
lumination, etc.). While the connections between intensity
edges and depth discontinuities is not assured, in our ap-
proach we use it only to bias the reconstruction sequence
so that spurious edges (due to albedo, for example) do not
cause difficulties. In this work, we have incorporated infor-
mation regarding curvilinear iso-intensity structures inten-
sity (known as isophotes) from the available range. These

isophotes, as edge information, indicate regions with depth
discontinuity. Thus, as we reconstruct, we select first those
voxels for reconstruction that have the largest degree of
boundary constraint and that do not contain any isophotes
nor any edge in its surrounding voxels.

The inference of 3D models of a scene is a problem that
subsumes a large part of computer vision research over the
last 30 years. In the context of this paper we will consider
only a few representative solutions.

In general, the process of building a full 3D model of a
real environment can be divided onto two processes: ac-
quisition of measurements in 3D and synthesis of useful
geometric models from measurements. In some cases, for
example when models are generated manually, these steps
may be combined. In other cases the processes of collecting
sets of 3D points (often referred to as range scans), combin-
ing them onto surfaces and then generating suitable models
for graphics applications entail distinct computations. In
this paper we focus only on the processes of obtaining 3D
data.

Over the last decade laser rangefinders have become af-
fordable and available but their application to building full
3D environment models, even from a single viewpoint, re-
mains costly or difficult in practice. In particular, while
laser line scanners based on either triangulation and/or time-
of-flight are ubiquitous, full volume scanners tend to be
much more complicated and error-prone. As a result, the
acquisition ofdense, complete3D range maps is still a prag-
matic challenge even if the availability of laser range scan-
ners is presupposed.

Most of prior work on synthesis of 3D environment
models uses one of either photometric data or geometric
data [4,8,11,16] to reconstruct a 3D model of an scene. For
example, Fitzgibbon and Zisserman [8] proposed a method
that sequentially retrieves the projective calibration ofa
complete image sequence based on tracking corner and/or
line features over two or more images, and reconstructs
each feature independently in 3D. Their method solves the
feature correspondence problem based on the fundamental
matrix and tri-focal tensor, which encode precisely the ge-
ometric constraints available from two or more images of
the same scene from different viewpoints. Related work
includes that of Pollefeys et. al. [16]; they obtain a 3D
model of an scene from image sequences acquired from
a freely moving camera. The camera motion and its set-
tings are unknown and there is no prior knowledge about
the scene. Their method is based on a combination of the
projective reconstruction, self calibration and dense depth
estimation techniques. In general, these methods derive the
epipolar geometry and the trifocal tensor from point corre-
spondences. However, they assume that it is possible to run
an interest operator such as a corner detector to extract from
one of the images a sufficiently large number of points that



can then be reliably matched in the other images.
Shape-from-shading is related in spirit to what we are

doing, but is based on a rather different set of assumptions
and methodologies. Such method [12, 15] reconstruct a 3D
scene by inferring depth from a 2D image; in general, this
task is difficult, requiring strong assumptions regarding sur-
face smoothness and surface reflectance properties.

Recent work has focus on combining information from
the intensity and range data for 3d model reconstruction.
Several authors [7, 14, 17, 19, 20] have obtained promising
results. Pulli et al. [17] address the problem of surface re-
construction by measuring both color and geometry of real
objects and displaying realistic images of objects from arbi-
trary viewpoints. They use a stereo camera system with ac-
tive lighting to obtain range and intensity images as visible
from one point of view. The integration of the range data
into a surface model is done by using a robust hierarchi-
cal space carving method. The integration of intensity data
with range data has been proposed [19] to help define the
boundaries of surfaces extracted from the 3D data, and then
a set of heuristics are used to decide what surfaces should
be joined. For this application, it becomes necessary to de-
velop algorithms that can hypothesize the existence of sur-
face continuity and intersections among surfaces, and the
formation of composite features from the surfaces.

However, one of the main issues in using the above con-
figurations is that the acquisition process is very expensive
because dense and complete intensity and range data are
needed in order to obtain a good 3D model. As far as we
know, there is no method that bases its reconstruction pro-
cess on having a small amount of intensity and/or range data
and synthetically estimating the areas of missing informa-
tion by using the current available data. In particular, such
a method is feasible in man-made environments, which, in
general, have inherent geometric constraints, such as planar
surfaces.

3 Methodology

Our objective is to infer a dense range map from an inten-
sity image and a limited amount of initial range data. At the
outset, we assume that resolution of the intensity and range
data is the same and that they are already registered (in prac-
tice this registration could be computed as a first step, but
we omit this in the current presentation.) Note that while the
process of inferring distances from intensity superficially
resembles shape-from-shading, we do not depend on prior
knowledge of reflectance or on surface smoothness or even
on surface integrability (which is a technical precondition
for most shape-from-shading methods, even where not ex-
plicitly stated).

We solve the range data inference problem as an extrap-
olation problem by approximating thecompositeof range

and intensity at each point as a Markov process. Unknown
range data is then inferred by using the statistics of the ob-
served range data to determine the behavior of the Markov
process. Critical to the processes is the presence of intensity
data at each point where range is being inferred. Intuitively,
this intensity data provides at least two kinds of informa-
tion: (1) knowledge of when the surface is smooth, and (2)
knowledge of when there is a high probability of a varia-
tion in depth. Our approach learns that information from
the observed data, without having to fabricate or hypoth-
esize constraints that might be inapplicable to a particular
environment.

From previous experiments we know that reconstruction
across depth discontinuities is often problematic as there
is comparatively little constraint for probabilistic inference
at these locations. Such locations are often identified with
edges in both the range and intensity maps. In our previous
experiments we used only edge information from the in-
tensity images to lead the reconstruction process. We have
noticed that our results can be improved if we also add in-
formation about linear structures from the available range
data. These linear structures are called isophotes (all nor-
mals forming same angle with direction to eye). Thus, as
we recover augmented voxels, we defer the reconstruction
of augmented voxels close to intensity discontinuities (in-
dicated by edges) and/or depth discontinuities (indicatedby
the isophotes) as much as possible.

In standard Markov Random Field methods, the assump-
tion is that the field is updated in either stochastically or in
parallel according to an iterative schedule. In practice, sev-
eral authors have considered more limited update schedules.
In our work, we restrict ourselves to a single update at each
unknown measurement only. In our algorithm we synthe-
size depth valueR(x, y) sequentially (although this does
not preclude parallel implementations). From previous ex-
periments we know that the reconstruction sequence (the
order in we choose the next depth value to synthesize) has
a significant influence on the quality of the final result. For
example, with the onion-peel ordering, the problem was the
strong dependence from the previous assigned voxel. Our
reconstruction sequence is then, to first recover the values
of those augmented voxels for which we can make the most
reliable inferences, based on essentially two factors: 1) the
number of neighboring voxels with already assigned range
and intensity and 2) the existence of intensity and/or depth
discontinuities (i.e. if an edge or a linear structure exists).
Priority values are computed based on these two factors and
are assigned to each voxel for reconstruction, such that as
we reconstruct, we select the voxel with the maximum pri-
ority value. If more than one voxel shares the same priority
value, then the selection is done randomly.



3.1 The MRF model for range synthesis

Markov Random Fields (MRF) are used here as a model
to synthesize range. We focus on our development of a
set of augmented voxels V that contain intensity (either
from grayscale or color images), edge (from the intensity
image) and range information (where the range is initially
unknown for some of them). Thus,V = (I,E,R), whereI
is the matrix of known pixel intensities,E is a binary ma-
trix (1 if an edge exists and0 otherwise) andR denotes the
matrix of incomplete pixel depths. We are interested only
in a set of such augmented voxels such that one augmented
voxel lies on each ray that intersects each pixel of the in-
put imageI, thus giving us a registered range imageR and
intensity imageI. Let Zm = (x, y) : 1 ≤ x, y ≤ m denote
them integer lattice (over which the images are described);
then I = {Ix,y}, (x, y) ∈ Zm, denotes the gray levels of
the input image, andR = {Rx,y}, (x, y) ∈ Zm denotes the
depth values. We modelV as an MRF. Thus, we regardI
andR as a random variables. For example,{R = r} stands
for {Rx,y = rx,y, (x, y) ∈ Zm}. Given a neighborhood
system N = {Nx,y ∈ Zm}, where Nx,y ⊂ Zm de-
notes the neighbors of(x, y), such that,(1) (x, y) 6∈ Nx,y,
and (2) (x, y) ∈ Nk,l ⇐⇒ (k, l) ∈ Nx,y. An MRF over
(Zm,N ) is a stochastic process indexed byZm for which,
for every(x, y) and everyv = (i , r) (i.e. each augmented
voxel depends only on its immediate neighbors),

P (Vx,y = vx,y |Vk,l = vk,l, (k, l) 6= (x, y))

= P (Vx,y = vx,y |Vk,l = vk,l, (k, l) ∈ Nx,y), (1)

The choice ofN together with the conditional probabil-
ity distribution ofP (I = i) andP (R = r), provides a pow-
erful mechanism for modeling spatial continuity and other
scene features. On one hand, we choose to model a neigh-
borhood Nx,y as a square mask of sizen × n centered at
the augmented voxel location(x, y). This neighborhood is
causal, meaning that only those augmented voxels already
containing information (either intensity, range or both) are
considered for the synthesis process. On the other hand,
calculating the conditional probabilities in an explicit form
is an infeasible task since we cannot efficiently represent
or determine all the possible combinations between aug-
mented voxels with its associated neighborhoods. There-
fore, we avoid the usual computational expense of sampling
from a probability distribution (Gibbs sampling, for exam-
ple), and synthesize a depth value from the augmented voxel
Vx,y with neighborhoodNx,y, by selecting the range value
from the augmented voxel whose neighborhoodNk,l most
resembles the region being filled in, i.e.,

Nbest = argmin ‖ Nx,y −Nk,l ‖,

(k, l) ∈ A

(2)

whereA = {Ak,l ⊂ N} is the set of local neighborhoods,
in which the center voxel has already assigned a depth
value, such that1 ≤

√

(k − x)2 + (l − y)2) ≤ d. For each
successive augmented voxel this approximates the maxi-
mum a posteriori estimate;R(k, l) is then used to specify
R(x, y). The similarity measure‖ . ‖ between two generic
neighborhoodsNa andNb is defined as the weighted sum of
squared differences (WSSD) over the partial data in the two
neighborhoods. The ”weighted” part refers to applying a
2-D Gaussian kernel to each neighborhood, such that those
voxels near the center are given more weight than those at
the edge of the window.

3.2 Range Synthesis Ordering

Our reconstruction sequence depends entirely on the pri-
ority values that are assigned to each augmented voxel on
the boundary of the region to be synthesized. The pri-
ority computation is biased toward those voxels that are
surrounded by high-confidence voxels, that are not on a
isophote line, and whose neighborhood does not represent
an intensity discontinuity, in other words, whose neighbor-
hood does not have any edges on it. Furthermore, edge in-
formation is used to defer the synthesis of those voxels that
are on an edge to the very end.

Figure 1: The notation diagram.

Figure 1 shows the basic notation used to explain how
our algorithm reconstructs the unknown depth values (nota-
tion similar to that used in the inpainting literature [3]).The
region to be synthesized, i.e., thetarget region is indicated
by Ω, and its contour is denotedδΩ. Only on those re-
gions where depth discontinuities are not detected, the con-
tour evolves inward as the algorithm progresses. The input
intensity (Φi) and the input range (Φr) both together form
the sourceregion, and is indicated byΦ. This regionΦ is
used to calculate the local statistics for reconstruction.Let
Vx,y be an augmented voxel with unknown range located
at the boundaryδΩ andNx,y be its neighborhood, which
is a n × n square window centered atVx,y. Then, for all
augmented voxelsVx,yεδΩ, we compute their priority value
(which is going to determine the order in which they are



filled) as follows:

P (Vx,y) = C(Vx,y)D(Vx,y) + 1/(1 + E). (3)

whereE is the number of edges found inNx,y; C(Vx,y) is
the confidenceterm, D(Vx,y) the data term. These terms
are defined as follows:

C(Vx,y) =

∑

p,qεNx,y∩Ω C(Vp,q)

|Nx,y|
,

where |Nx,y| is the total number of augmented voxels in
Nx,y. At the beginning, the confidence of each augmented
voxel is assigned1 if its intensity and range values are filled
and0 if the range value is unknown. This confidence term
C(Vx,y) may be thought of as a measurement of the amount
of reliable information surrounding the voxelVx,y. Thus,
as we reconstruct, we synthesize first those voxels whose
neighborhood has more of their voxels already filled, with
additional preference given to voxels that were synthesized
early on. The data termD(Vx,y) is computed using the

Figure 2: The diagram shows how priority values are com-
puted for each voxelVx,y on δΩ. Given the neighboorhood
of Vx,y, nx,y is the normal to the contourδΩ of the target
regionΩ and∇⊥

Ix,y
is the isophote (direction and range) at

voxel locationx, y.

available range data in the neighborhoodNx,y, as follows
(see Fig. 2):

D(Vx,y) =
α

|∇⊥
Ix,y

· nx,y|
.where

α is a normalization factor (e.g.α = 255, in a typical
gray-level image),nx,y is a unit vector orthogonal to the
boundaryδΩ at voxelVx,y. This term reduces the priority
of a voxel in whose neighborhood an isophote ”flows” into,
thus altering the sequencing of the extrapolation process.
This term plays an important role in our algorithm because
it prevents the synthesis of voxels lying near a depth dis-
continuity. Note, however, that it does not explicitly alter
the probability distribution associated the voxel (exceptby
deferring its evaluation), and thus has only limited risk for
the theoretical correctness of the algorithm.

Once all priority values of each augmented voxel onδΩ
have been computed, we find the voxel with the highest pri-
ority. We then use our MRF model to synthesize its depth

value. After a voxel has been augmented (i.e. it has in-
tensity and range data), the confidence of theC(Vx,y) =
C(Vk,l), i.e. it is assigned the confidence of the voxel which
most resemble the neighborhood ofVx,y (see Eq. 2).

4 Experimental Results

In this section we show experimental results conducted
on data acquired in a real-world environment. We use
ground truth data from a widely available database1 [18]
which provides color images with complex geometry and
pixel-accurate ground-truth disparity data. We also show
preliminary results on data collected by our mobile robot,
which has a video camera and a laser range finder mounted
on it. We start with the complete range data set as ground
truth and then hold back most of the data to simulate the
sparse sample of a real scanner and to provide input to our
algorithm. This allows us to compare the quality of our re-
construction with what is actually in the scene.

Figure 3: The input intensity image and the associated ground
truth range. Since the unknown data are withheld from genuine
ground truth data, we can estimate our performance.

Our first set of experiments is interesting because it re-
sembles what is obtained by sweeping a one-dimensional
LIDAR sensor. We show different subsamplings on the
same range image in order to compare the results. Figure 3
displays the input color intensity image and the ground truth
range image from where we hold back the data to simulate
the samples. In Figure 4, two experiments are shown. The
first column displays the initial range data. The percentage
of unknown range from top to bottom are 65% and 62%,
respectively. The last column show the synthesized range
images when incorporating isophote constraints to our algo-
rithm. For comparison purposes, the middle column shows
the synthesized range images without using information
about the isophotes. The regions enclosed by the red rect-
angles show where our algorithm performed poorly without
using isophote constraints. The mean absolute residual er-
rors (MAR) in the grey-level range (i.e. 0 for no error and
255 for maximum error) are, from top to bottom,10.5 and

1http://www.middlebury.edu/stereo



12.2, when no using isophote constraints compared to6.5
and7.3, when using isophote constraints.

Figure 4: Results on real data. Two cases are shown. The ini-
tial range images are in the first column with their percentage of
unknown range indicated below each. To compare results, the
middle column shows the synthesized range images without us-
ing isophote information and the last column show the improved
synthesized results with the incorporation of isophote constraints.

It can be seen that our algorithm was able to capture
the underlying structure of the scene by being able to re-
construct object boundaries efficiently, even with the small
amount of range data given as an input.

We now show another set of experiments in Figure 5.
The first row show the input color intensity image and its
associated ground truth range (for comparison purposes).
Three cases of subsampling are shown in the subsequent
rows. The percentage of unknown range are 79%, 70% and
62%, respectively. The MAR errors are5.94, 5.44 and7.54,
respectively.

Once again, our algorithm was capable of reconstruct-
ing the whole range map. However, it can be seen that the
reconstruction was not good in regions containing surfaces
sloping away (for example walls). This is due to the fact
that the very limited amount of input range does not cover
much of the changes in depth, and our algorithm fails by
assigning already identical depth values instead of differ-
ent depths at each point. Therefore, the initial range data
given as an input is crucial to the quality of the synthesis,
that is, if no interesting changes exist in the range and in-
tensity, then the task becomes difficult. As it is now, our
method requires that the input range measurements in the
form of clusters of measurements scattered over the image.
This form of sampling is best since it allows local statistics
to be computed, but also provides boundary conditions at
various locations in the image. However, clumps per se at
not available from most laser range scanners. To solve this
problem, we have incorporated surface normal information
from voxels with known range values to generate new depth

Figure 5:Results on real data. In the first row are the input color
image and ground truth range. The subsequent rows show three
cases, the initial range images are in the left column and the syn-
thesized results after running our algorithm, in the right column.

values accordingly. In the next section we give details about
the computation of surface normals from the available range
and how we incorporate this information to our method.

5 Computing surface normals

Surface normal inference is accomplished using a stan-
dard plane fitting approach based on an assumption of local
bilinearity. The first step is to fit a plane to the pointsri

which lie on them × m neighborhood of every range point
Rk,lεΦr. The normal vector to the computed plane is the
eigenvector associated with the smallest eigenvalue of the
m × m matrix A =

∑N

i ((ri − c)T · (ri − c)), wherec is
the center of gravityor centroidof the set of range points
ri. The smallest eigenvalueevs of the matrix A is a mea-
sure of the quality of the fit, expressing the deviation of the
range pointsri from the fitted plane. We assign normals
only to those range pointsRk,l whose deviation is below a
given threshold. In our experiments we use a neighborhood



of size5 × 5 and a threshold for the plane fitness of0.1.
A confidence value related to the normal computation is as-
signed to each augmented voxelVk,l. This confidence value
is calculated based on the smallest eigenvalue:1/evs. The
incorporation of surface normal information to our algo-
rithm is simple. We just modify the similarity measure be-
tween neighborhoods, so that it is based now on the normals
instead on the range values. This similarity is computed
only when comparing neighborhoods of augmented voxels
having already normal information assigned, otherwise it is
done as before. Anewdepth valueRx,y of the augmented
voxelVx,y is computed using the following equation:

Rx,y =
n · P − nxx − nyy

nz

,

where P are the(x, y, z) coordinates of the augmented
voxel Vk,l whose neighborhood most resemble the neigh-
borhood ofVx,y andn is the associated normal vector at
voxelVk,l.

We run some experiments incorporating the surface nor-
mal information. In order to compare the results, Figure 6
shows the synthesized range image for Case 3 of Figure 5.

Figure 6: Results when using surface normal information. The
initial range data is the Case 3 of Figure 5.

Another experiment is shown in Figure 7. The left image
is the initial range data and the input intensity image is that
of Figure 3. In order to compare the results, the middle im-
age shows the synthesized range image using the algorithm
of the previous section and the right image displays the syn-
thesized range image when incorporating surface normal in-
formation to our algorithm.

Figure 7: Comparison results when using surface normal infor-
mation from the initial range data.

These preliminary results show that our method can ac-
complish the propagation of geometric structure when nor-

mal information, from the neighborhoods to be compared
with, are available. However, there are some regions where
this propagation was not achieved. A key factor in the com-
putation of the normals is the size of the neighborhood con-
taining the range points to fit the plane, which in turn de-
pends on the amount of initial range and on the types of
surfaces captured by this initial range.

We now show some preliminary results on data collected
in our own building. We use a mobile robot with a video
camera and a laser range finder mounted on it, to navi-
gate the environment. For our application, the laser range
finder was set to scan a 180 degrees field of view horizon-
tally and 90 degrees vertically. As it was mentioned pre-
viously, the input intensity and available range data needs
to be already registered. Range and intensity are different
type of data, their sampling resolution are not the same. We
achieved the registration of the intensity and range data ina
semi-automatic way, by using crosscorrelation on the video
frames and then manually selecting those corresponding re-
gions from the range image. Details about this registration
step is not in the scope of this paper. We are currently seek-
ing to have a fully automatic way of registering both type of
data.

Figure 8 shows the input intensity and the ground truth
range data (for comparison purposes) on the first row. The
second row displays the input range image with 66% of un-
known range and the synthesized range data after running
our algorithm. It can be seen that the whole depth map of
the scene was recovered. Surface normal information was
of great use to smoothly generate the new depth values on
the walls, floor and ceiling.

6 Summary and Conclusions

In this paper we have presented an approach to depth
recovery that allows good quality scene reconstruction to be
achieved in real environments using only monocular image
data and a limited amount of range data. This methodology
is related to extrapolation and interpolation methods and is
based on the use of learned Markov models.

We have improved our previous results by adding infor-
mation about linear structures (isophotes) from the available
range in order to drive the reconstruction on the boundary
of objects. In addition, we have incorporated surface nor-
mal information in the reconstruction process. The prelim-
inary results demonstrate that the fidelity of the reconstruc-
tion is improved. Perhaps more important, the robustness
of the reconstruction algorithm regarding incomplete input
data should be substantially improved. On the other hand,
the computation of the surface normals is not an easy task
by itself since it depends on the amount of initial range data.
There are also some parameters that need to be carefully se-
lected, such as the size of the neighborhood to fit a plane.



Figure 8: Results on real data collected from our mobile robot.

However, the results shown here demonstrate that is a viable
option to obtain a good model of the environment.
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