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Abstract| In this paper we discuss new results

on the Shape From Darkness problem: using the

motion of cast shadows to recover scene structure.

Our approach is based on collecting a set of im-

ages from a �xed viewpoint as a known light source

moves \across the sky". Previously published so-

lutions to this problem have performed the recon-

struction only for cross sections of the scene.

In this paper, we present a reconstruction algo-

rithm and discuss the reconstruction of an entire

3-D scene under various light source trajectories.

We also consider the constraints on reconstruc-

tion. We conclude with experimental results that

illustrate the convergence properties of the solution

process and its robustness properties.

I. Introduction

In this paper, we consider surface reconstruction
from shadow information. That is, to use the shape
and geometric properties of observed shadows to infer
the shape of the surfaces casting the shadows as well
as those that the shadows are cast upon. This problem
is sometimes known as shape-from-darkness [11], [2].

The Shape From Darkness method allows one to
construct a model of a scene using information on
shadows cast within the scene under illumination from
a moving light source. Consider, for example, the
shadows cast by a mesas in the desert as the sun moves
across the sky, or the shadows cast by a are �red
by search-and-rescue personnel working at night. By
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observing the shapes of shadows as the move across
the scene, we can infer the shapes of the surfaces
that cast the shadows. This method for shape re-
construction presents several advantages over other
scene constructing algorithms in that it requires inex-
pensive instrumentation and allows for e�cient com-
putation due to the compact nature of shadow data.
It also requires only weak assumptions about sur-
face reectance properties, as opposed to shape-from-
shading's strong Lambertian assumptions. Further-
more, it has been shown that Shape From Darkness
can be used to infer the shapes of surfaces in the scene
which are not directly visible to the camera, provid-
ing information which other methods cannot. Prag-
matically, the technique may be useful in contexts
where traditional range sensors may not be suitable
(eg. Martian Exploration).

Previously published formulations of Shape From
Darkness have been limited in that they only allow
the reconstruction of individual two dimensional cross
sections of the scene. In past work, the depth map for
each 2-dimensional section is constructed only relative
to an arbitrary additive constant, obviating the inclu-
sion of external data in order to combine the slices
into the complete three dimensional scene. Implicit
in this cross-sectional model also is the fact that the
light source moves only through the plane containing
both the cross section and the camera. This assump-
tion limits the applicability of the method, even in
seemingly natural applications such as terrain recon-
struction from satellite imagery.

In practice, the recovery of 3-D structure from shad-
ows entails the detection of shadows in the �rst place.
Several interesting solutions to this sub-problem have
been posed [15], [6], [1], [3], including some that are
speci�cally suited to the shape-from-darkness con-
text [12]. Due to lack of space, this paper will not
discuss shadow detection explicitly and we assume it
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can be achieved by one of these existing methods (in
practice, we use a combination of techniques).

The shape-from-shadows (shape-from-darkness)
problem is also related in spirit to shape-from-shading
methods as described by Horn and Ikeuchi [10], [9], or
dealt with more recently by Dupuis and Oliensis [4],
[5], among many others [14], [7], [13]. Shape from
shading algorithms, however, are dominated by local
constraints, while shape from darkness deals primar-
ily with large scale global constraints. That is, it is
the orientation of the surface normal, a di�erential
(local) property, that determines the observed inten-
sity under shading. In contrast, shape from darkness
depends on the relationships of pixels that cast shad-
ows on one another, potentially from widely separated
locations.

Much of the prior ground breaking work on shape-
from-darkness deals with two-dimensional instances of
the problem, where the light source and the surface
to be recovered lie in the same plane [11], [2]. Typi-
cal existing approaches to shape-from-darkness make
three key assumptions regarding the problem [11], [8],
[3], [12].

� The world, including the camera and light source
is two-dimensional (i.e the light source and the
surface to be recovered all lie in the same plane)

� The light source and camera geometry can both
be modeled using orthographic projection (i.e.
they are extremely distant)

� The surface to be reconstructed is a terrain de-
scribed by a function z(x) (i.e. a graph surface)

Our approach to the problem allows us to relax all
three of the assumptions, although in this paper we
will focus only on the �rst (a 3-D instead of a 2-D
world).

In this paper, we present an approach to the recon-
struction of 3-D scenes with limited constraints on the
light source trajectory. In Section 2 we review the 2-
D and 3-D shape from darkness problem, and de�ne
constraints that relate light source motion and scene
geometry. In Section 2 we also consider basic equiv-
alence classes of surfaces under shape from darkness.
In Section 3 we describe our shape from darkness al-
gorithm. In Section 4 we present experimental results
and discuss the robustness of the solution with re-
spect to errors in the estimated light source position,
and in the shadow segmentation. Section 5 presents
conclusions.

Scene

Source

Fig. 1. Two Dimensional Model

II. Problem Definition

A. 2-D Problem

Previous work on Shape From Darkness has focused
on the solution of the two dimensional version of the
surface reconstruction problem. In this version of the
problem a surface is de�ned as a function z = f(x)
where z and x are Euclidean spatial dimensions. If a
surface f(x) assigns a single value to each x in a given
range, then this surface is terrain-like. If the surface
is more complex, then it is non-terrain-like.

For non-terrains, it is convenient to de�ne the con-
cept of a generated terrain [12]. The generated ter-
rain is de�ned as the terrain-like upper envelope of
a scene. For scenes which are terrain-like, the gener-
ated terrain is identical its generator. The generated
terrains of non-terrain-like scenes contain only those
surfaces which face toward the camera, however. Thus
the features of a non-terrain that are absent from the
generated terrain are associated with hidden surfaces.

To reconstruct a surface, a light source must be
moved through a trajectory of angles above the sur-
face, as depicted in Figure 1(in practice, these can
be arbitrary discrete sample locations.) A stationary
camera records a series of images of the surface as the
light source moves overhead. Both the light source
and the camera are considered to be an \in�nite" dis-
tance away from the scene. This has the e�ect of
creating a camera with orthographic projection and a
light source which casts rays which are parallel to one
another. Thus, in the 2D formulation a single angu-
lar parameter � su�ces to describe the position of the
light source. An important e�ect of this positioning
is that every pixel in the image is guaranteed to be
lit when the light source is directly overhead (in the
\noon" position).

Shadow information can be described using an in-
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Fig. 2. Two Dimensional Shadowgram

termediate representation known as a Shadowgram.

As shown in Figure 2, the shadowgram is a binary
function s(x; �) on the angle � and a spatial dimension
x. A white entry in the shadowgram indicates that im-
age pixel x was lit when the light source was at angle
�, while a black entry indicates that it was shadowed.
It was shown in [11] that the shadowgram generated

by a terrain-like surface can be completely described
by two curves: �+ and ��, representing the �rst light
in the \morning" and the last in the \evening" re-
spectively. If the light source travels from horizon to
horizon, it is possible that one of these curves might
disappear (i.e. the point is always lit from sunrise
until noon). Both curves will not disappear simul-
taneously, however, unless the point in question is a
global maximum of the scene (i.e. mountain tops are
always lit). Because one has this guarantee, it is pos-
sible to reconstruct the surface by integrating �+ and
�� [11].

When the surface is non terrain-like, the shadow-
gram possesses not only two curves, but also some
white holes where one would expect darkness if the
surface were a terrain. Here �+ and �� are not de-
�ned as �rst and last lighting curves but rather as the
envelope of the shadowgram which lies closest to the
noon position. It is shown in [12] that using these
two curves to reconstruct the surface will in fact pro-
duce the surface's generated terrain. Furthermore, the
holes in the shadowgram may then be used to carve
pieces out of the generated terrain, allowing one to
reconstruct some or all of the hidden surfaces in the

scene.

B. Three Dimensional Problem

The three dimensional problem is a natural exten-
sion to its two dimensional analogue. Here the scene
as presented to the camera consists of a two dimen-
sional image rather than a single scan line. Thus the
surface for reconstruction in the 3D problem is a func-
tion z = f(x; y). As before, we say that the scene is
terrain-like if this function is single valued over the
ranges of x and y which are presented in the image.

Because the scene is not constrained to lie within a
single vertical cross section, it is no longer necessary
to force the light source to do the same. Instead, the
light source direction is allowed to point freely, and
must be described by two angles, � and �.

From this perspective one may view the original two
dimensional problem as a special case of the larger
3D formulation. One in which the light source trav-
els through a trajectory through a series of � angles
while keeping its � �xed at noon. In fact, given this
type of trajectory one can in fact reconstruct each
scan-line of the image individually using the 2D al-
gorithm. Because the process underlying the recon-
struction is integration, however, these internally con-
sistent scan-lines can not be combined into a whole as
they are each reconstructed to within an unknown ad-
ditive constant.

C. The Shadowgram in the Three Dimensional Model

Adding a dimension to both the image and the
light source parameterization has a profound e�ect
on the shadowgram. Unlike the original shadowgram,
which is de�ned in the space R�S possessing two di-
mensions, the complete shadowgram lies in the space
R2 � S2 (i.e. f : R2 � S2 ! f0; 1g). We de�ne the
sandwich and tunnel cross sections as speci�c three
dimensional projections of the shadowgram.

The sandwich cross section refers to the projection
of the shadowgram which includes both spatial dimen-
sions and only one of the two angles (R2 � S). It is
the cross section of the shadowgram obtained by �xing
one of the angles at the noon position. As shown in
Figure 3, the sandwich cross section is an extension of
the 2-D shadowgram. The original �+ and �� curves
are present, but are now entire surfaces. Likewise, the
holes associated with a non-terrain surface now show
up as three dimensional cavities.

The tunnel cross section is projected onto the space
R� S2. It is equivalently de�ned as the cross section
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obtained by �xing one spatial coordinate of the shad-
owgram. As seen in Figure 4, the tunnel cross section
resembles a snakelike open cavity.

The individual slices of the tunnel cross section are
interesting in their own right. These slices present a
complete picture of the shadowing of a single image
pixel for all light source angles. Each slice possesses
an inner bounding curve around the origin (the noon
position). In addition, there may be holes around
this curve if the shadowing surface is not a terrain.
For the same reason that one of �+ or �� will always
be present in the 2-D shadowgram, the inner curve is
guaranteed to be a star-shaped polygon. In fact, this
curve is a proper function from angle � to radius �(� =
f(�)). Furthermore, if we bound on the gradient of
the original surface:

jrf(x; y)j < n

then we can guarantee that the circle with radius
tan�1 (n) will be a kernel of the polygon. In other

words, the polygon will never pass inside of this cir-
cle. This is the strongest guarantee we can make.

D. Constraining Shadower and Exact Reconstruction

What do shadows tell us about 3D surface struc-
ture? Consider a shadowed point in an image repre-
senting a single light source position. If a ray is cast
from this point in the direction of the light source
(the point's light seeking ray), any surface point lying
above this ray is a potential shadower of this point. Of
these possible shadowing points, the point which lies
highest above this ray (and furthest from the casting
point, if this height is not unique) has special signi�-
cance, and is called the point's constraining shadower.

If a point is a constraining shadower of another
point, we have the guarantee that this point lies along
a shadow boundary in the image in question. Further-
more, we know that this is a contact shadow boundary
on the surface. As a result, we can identify the con-
straining shadower as the �rst shadow boundary point
encountered in image space along the image projection
of a point's light seeking ray. Note that this means
that the identi�cation of the constraining shadower
can be performed prior to surface reconstruction.

This method of identi�cation points to two inter-
esting properties:

� All shadowed points in a connected neighborhood
lying along the image projection of a light seeking
ray share the same constraining shadower.

� The furthest of these points from the constraining
shadower lies along a shadow boundary, and is in
fact the unique cast shadow boundary generated
by the constraining shadower.

From this we see that for a connected 2D region of
shadowed points in a given image, each point on a
\lightward" boundary of the region is a constrain-
ing shadower, and every other boundary point is a
cast shadow boundary corresponding to a unique con-
straining shadower.

Given a two points representing a constraining
shadower - cast shadow boundary pair for a certain
light source direction, it is known that the relative
height of the points is equal to the height travelled
by a light seeking ray between the two points. If the
distance were greater than this, then the cast shadow
boundary would be moved away from the light. On
the other hand if the distance were less than this the
receiving pixel would not be shadowed. Thus the rel-
ative heights of all such boundary pairs are known
exactly (Figure 5).
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Pairs

When more than one light source direction is con-
sidered, it is possible for this exact relationship to
apply to a large set of points, as constraining shad-
ower's may have as many cast shadow boundaries as
light source directions, and cast shadow boundaries
may themselves become constraining shadowers. Con-
sider a graph G containing a node corresponding to
each image-space pixel, having an edge between two
nodes only if the corresponding pixels are somewhere
a constraining shadower - cast shadow boundary pair.
Each fully connected subgraph of G represents a sub-
set of surface pixels which is internally exactly recon-
structed. If the entire graph is connected, then exact
reconstruction is possible. However, if multiple sets
exist, then the relative heights may not be exactly
known, but can be bounded less strongly through ap-
plication of weaker shadow constraints.

E. Shadow Equivalence Classes

It is clear that the action of shadowing is concerned
only with the relative heights of points on the sur-
face and not by the absolute height of the surface as a
whole. This points to an important equivalence class
of surfaces. Two surfaces f(x; y) and g(x; y) are said
to be lift equivalent if they di�er by an additive con-
stant:

f(x; y) = g(x; y) +C (1)

Surfaces which are lift equivalent are guaranteed to
posses identical shadowgrams as a result of the use
of parallel light rays. For this reason, we de�ne the
anchoring operator to remove lift equivalence in the
following way:

f(x; y) = f(x; y)� inf (f(x; y)) (2)

As the name suggests, the anchoring operator has the
e�ect of �xing the surface to the x-y plane. Hereafter,
we will assume that all surfaces have been anchored.
In addition, there exists a less trivial equivalence

class of shadow equivalent surfaces. Two surfaces are
shadow equivalent if they generate the same shadow-
gram. If we consider the complete shadowgram, then
all members of such a class will also be lift equiva-
lent. However, if we restrict the set of light source
directions to a single trajectory

t = (�(t); �(t)) t = [0::1]

then it is possible that the shadowgram subsets gen-
erated will be identical for qualitatively di�erent sur-
faces. Such surfaces are said to be shadow equivalent

under trajectory t.

III. Approach to Reconstruction

The reconstruction problem lends itself naturally
to a solution through the iterative relaxation of con-
straints. Constraints based on the shadow informa-
tion at each pixel are repeatedly applied to a working
surface until each constraint is individually satis�ed.
Due to the binary nature of shadow information, it

is natural that two types of constraints exist. An ex-

pect light constraint exists for a given pixel and source
direction if that pixel was lit by the source from the
given pose. Likewise an expect darkness constraint
exists if the given pixel was in shadow.
Consider the constraints in terms of the behaviour

of a light seeking ray cast from a point on the surface.
In the case of expect light, such a ray is expected
to pass freely out of the scope of the image without
intersecting the working surface. On the other hand,
a ray expecting darkness must certainly intersect the
surface in at least one place in order to shadow the
pixel. It is assumed that all shadowers lie within the
image.
During the reconstruction, we model the scene as

a pair of bounding surfaces. In order for these sur-
faces to be initialized, it is necessary to make a
base assumption about the maximum possible height
spanned by structure present in the scene. This is
not unreasonable, as it is possible to choose such a
height based on the fact that given taller scene struc-
ture, very little of the shadow information would be
present in the scene. Based on this assumption, the
lower bound is initialized to a plane at z = 0 and the
upper bound to a plane at z =maxheight.
The two types of constraints (expect light and dark-

ness) and the two surfaces (upper and lower bounds)
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yield four rules for extraction of shadow information:

� Expect Light

{ TheUpper Bound of any pixel lying in the im-
age projection of a light seeking ray cast from
the lit point's upper bound is lowered to the
level of the ray (if it was previously above).
These points cannot be higher than this as they
would then shadow the point, which is known
to be lit, even if the upper bound was it's true
location.

{ The lit point's Lower Bound is raised until a
light seeking ray cast from said lower bound
will be pass above (or just touch) all lower
bounds along the ray. This bound cannot be
lower as the point would then be shadowed
even if the lightward points were all at their
lower bounds.

� Expect Darkness

{ The Upper Bound of the shadowed pixel is
lowered until the light seeking ray which it
casts intersects the upper bound at some other
point. If the bound were higher, then the point
could not be shadowed even if the lightward
points were located at the upper bound.

{ The Lower Bound of the shadowed point's
constraining shadower is raised to the level of
the light seeking ray cast from the lower bound
of the shadowed point. The shadower must be
at least this high in order to shadow the point
at its lower bound.

From these rules one can see that the upper and
lower bound surfaces are not directly coupled to one
another. Points on the upper bound will only e�ect
other upper bound points, while lower bounds only
e�ect other lower bounds. Thus, the two surfaces are
related only through the shadow information and may
be computed separately.

It also follows that points on the upper bound are
only lowered, while points on the lower bound are
raised. This shows that at worst, the application of
new shadow data will leave the bounds unchanged,
and will never degrade the estimate. This also guar-
antees that the process will terminate. The distance
between corresponding upper and lower bound points
cannot decrease, making non-terminating cyclic oscil-
lations impossible.

After the computation of the upper and lower
bounds, it is necessary to merge the two in order to
obtain a complete picture. Due to lift equivalence,
it is possible to accomplish this by simply squeezing

the surfaces together, adjusting the absolute heights
so that contact is made only at the closest point (or
set of points if non-unique).

Note that the absolute bounding of the scene is in
fact an assumption of convenience. Because the up-
per and lower bound are reconstructed separately, it
is possible to allow the reconstruction of scenes of ar-
bitrary height. In this case unconstrained points on
the lower bound would be represented as bottomless,
and those on the upper bound as having no roof.

IV. Implementation and Results

The algorithm used to reconstruct the bounding
surfaces corresponding to a particular set of shadow
images involves the iterative application of the con-
straints outlined in the previous section. The work
surfaces are initially set to be a at plane. For each
pixel in the work surfaces a constraint is enforced for
each light source direction in the trajectory. The com-
plexity of a single iteration is thus O(n�m� t � r)
for an image of width n and height m, a trajectory
of t source directions, and an average ray length of r.
If we assume a square image and an equal number of
source directions then this reduces to O(n4).

Each iteration involves two waves of reconstruction.
In the �rst wave all of the expect darkness constraints
are applied, followed by expect light in the second.
During each wave, the constraints belonging to all pix-
els in a given image row are applied in parallel, with
changes being written back between successive rows.
The order in which rows are reconstructed (front to
back or vice-versa) is chosen based on the type of con-
straints which are being applied, in order to minimize
repetitive work. In order to avoid sensitivity to errors
introduced by discretization, all constraints which lay
in a neighborhood containing both shadow and light
were discarded.

A. Experimental Data

A.1 Generated

Our implementation of shape from darkness accom-
plishes surface recovery on 64x64 pixel images with
64 shadow images in roughly 5 minutes on a sparc-20
workstation.

Figure (6) presents the input surfaces and the as-
sociated reconstructed upper bound for a surface of
moderate complexity. The shadow information for
this scene was extracted from a series of arti�cial im-
ages rendered from a CAD model of the scene. The
upper bound was chosen for display as it typically
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Fig. 6. Surface Reconstruction from Shadow Data for a

Complex Terrain. Original surface is shown on the

right

resembles more closely the actual scene. Both the
reconstruction and the CAD model were re-rendered
for display. This method of display has a tendency
to accentuate small errors in reconstruction as small
changes in slope created large changes in Lambertian
shading, making relatively at areas appear mottled.
The average error in this reconstruction was approxi-
mately 2.5% of the total scene height.

For portions of the surface that are not shadowed,
or that are always in shadow, the absence of su�-
cient constraints on the surface geometry can some-
times lead to signi�cant artifacts in the upper bound
surface. These artifacts reect the dearth of infor-
mation about these points present in the shadow set.
As expected, these e�ects are most often seen in the
extreme fronts and backs of both images and the in-
dividual objects within them.

Observe that the surface is accurately reconstructed
both on the front surface (facing the light source) as
well as along the back surface (away from the light
source). This is possible since information on surface
geometry is obtained both based on shadows cast by
a surface as well as by the behaviour of shadows that
are cast upon a surface.

A.2 Real

As a demonstration of the applicability of this algo-
rithm, reconstruction was performed on a simple scene
containing a four-sided pyramid with a at top. The
camera and scene were both mounted on a platform,

Fig. 7. Shadow Information Used in Pyramid Reconstruc-

tion

Fig. 8. Image Preparation for Reconstruction

which was then rotated under constant lighting by a
single source. The light-source \trajectory" generated
was that of a cone of directions whose axis lay in the
image plane. The base angle of the cone was approx-
imately 70o. Photographs of the scene were taken in
64 light source positions (�gure 7). The resulting im-
ages were then cropped and thresholded, as depicted
in �gure (8).

The resulting reconstruction was performed in 33
iterations, taking 347 seconds on a sparc 20 worksta-
tion. A chart of the average di�erence between pixels
in adjacent frames is presented in �gure (9).

Figure (10) presents the reconstructed upper bound
for the pyramid sequence. The main artifacts present
are a shelf in the back generated by a lack of shadow-
ing towards the rear of the image, and a rise in the
front reecting the di�culty in segmenting shadows
on the base plane when light rays are highly oblique
to its normal.

A.3 Robustness

Errors in Light Source Position

Two experiments were performed in order to de-
termine the robustness of the algorithm. The �rst of
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quence

these involved the reconstruction's sensitivity to er-
rors in knowledge of the light source position. A jit-
ter factor was applied to the assumed source positions
during the reconstruction of a scene which had pre-
viously produced good results. The original, correct
shadow data was used, but the algorithm was lied to
about the corresponding source directions by a ran-
dom amount bounded by a set number of degrees. It
was found that the absolute di�erence between esti-
mated angle and ground truth was the critical fac-
tor. Though minor artifacts appeared, convergence
was obtained up to a maximum angular di�erence of
approximately 6o. Note that at this extreme value,
position reordering occurred of shadow data up to 3
frames away along the trajectory.

Errors in Shadow Segmentation

To determine the algorithm's sensitivity to errors

4 Degree Jitter in Light Source10% Noise In ShadowsOriginal Image

Fig. 11. E�ects of Di�erent Types of Noise on Reconstruc-

tion

in the segmentation, increasing levels of noise were
added to the shadowgram of the previous scene. An
increasing percentage of shadowgram constraints were
randomly selected to be toggled from light to shadow
or vice versa. It was found that all reconstructions
converged up to a toggle percentage of 16%, and con-
vergences were obtained for angles up to 28%. Among
those which converged with hight amounts of shadow
error (above 16%), the quality of the reconstructed
surfaces varied greatly, indicating a sensitive depen-
dence on the location of the inappropriate constraints.

Examples of these e�ects are described in �gure
(11).

V. Summary and Conclusion

In the paper we describe an algorithm for 3-D shape
from darkness with limited constraints of the light
source trajectory. Under a suitable trajectory, a good
reconstruction of the original scene is possible, includ-
ing \back faces" not directly observable to the camera.
Our results indicate that the solution remains accept-
able even in the face of various types of error in the
input data.

Open problems for future work relate to the precise
tradeo�s between light source trajectory and recon-
struction quality. We are also investigating a coarse-
to-�ne resolution pyramid to accelerate the computa-
tion (with currently takes several minutes on a SGI
R5000). How to exploit surface smoothness to pro-
duce more robust results, in the face of global con-
straints, is also under consideration.
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