Randomized Algorithms for Minimum
Distance Localization

Malvika Rao, Gregory Dudek, and Sue Whitesides

McGill University, Montréal, Canada H3A 2A7 {rao,dudek,sue}@cs.mcgill.ca

Summary. We address the problem of minimum distance localization in environ-
ments that may contain self-similarities. A mobile robot is placed at an unknown
location inside a 2D self-similar polygonal environment P. The robot has a map of
P and can compute visibility data through sensing. However, the self-similarities in
the environment mean that the same visibility data may correspond to several dif-
ferent locations. The goal, therefore, is to determine the robot’s true initial location
while minimizing the distance traveled by the robot. We present two randomized ap-
prozimation algorithms that solve minimum distance localization. The performance
of our algorithms is evaluated empirically *.

1 Introduction

This paper addresses the problem of minimum distance localization. That is,
the problem of estimating a robot’s position in an environment without a
prior position estimate and of selecting a minimum length path along which
to acquire sensor data to accomplish this localization as quickly as possible.
Global localization refers to estimating the robot’s position where the space of
possibilities is the entire environment [2]. In general, global localization must
contend with the fact that the observations used to estimate position can
be ambiguous (even with a perfect map and a perfect sensor, this ambiguity
can be serious [6]). Thus, global localization intrinsically entails combining
measurements from multiple vantage points along some path. The problem
of selecting an optimal (minimum length) trajectory for estimating position
is NP-hard [3]. Simple heuristic strategies have been used in practice but
these can be shown to have strikingly poor performance. This paper presents
algorithms for determining a localizing path that are efficient to compute and
yet also efficient in their performance.

Existing deterministic solutions for calculating even nearly optimal lo-
calizing paths are computationally costly in complex environments. Further,

'Research supported in part by NSERC and FCAR.

2 Rao et al.

o

@]

[|
Fig. 1. Visible vertices from location A. The visibility data at locations A and B
are the same.

previous work in minimum distance localization [3] may require the robot to
make observations that are arbitrarily difficult to achieve in practice. That
is, the robot is directed to visit a series of visibility cells - places where spe-
cific combinations of landmarks in the environment can be seen - even though
these cells may be arbitrarily small. For any real robot with any odometry
error whatsoever, maneuvering into such cells may not be feasible.

The algorithms we propose are based on visiting a series of randomly se-
lected sample points in the environment from which distinguishing landmarks
may be observed. In the context of our environment model, and with full gen-
erality, we consider landmarks to be combinations of vertices and edges that
define the perimeter of the environment. Out of a set of randomly selected
points in the environment, the robot visits the location that promises the
most information gain, where it collects sensor data in order to disambiguate
its initial position. We argue that by virtue of random sampling, our strategy
would direct the robot to visit a particular visibility cell with a probability
directly proportional to the area of that cell. Hence vanishingly small visibility
cells have vanishingly small probabilities of being visited.

The performance of our randomized localization algorithms is validated
and explored via experiments on a range of simulated environments. Our
results show that path length improves rapidly as the number of random
sample points is increased, and eventually settles at the near-optimum value.
Moreover, for a given environment, computing time appears to be linear with
respect to the number of sample points.

Although our work deals with the idealized case of a perfect polygonal map
and an ideal range sensor, our algorithms are flexible and can generalize easily
to more realistic and challenging environments. These results are significant
for many problems in which pose estimation must take place in the context
of ambiguity, including certain cases of SLAM (simultaneous localization and
mapping) where pose errors may become large.

The rest of this paper is organized as follows: The next section discusses
related work. Section 3 provides a formal description of the problem and
states the assumptions underlying our approach. Our randomized localization
algorithms are presented in Section 4. Experimental results are described in
Section 5. Finally, we close with a discussion of our work and directions for
future research.

Randomized Algorithms for Minimum Distance Localization 3

2 Related Work

Dudek, Romanik, and Whitesides [3] present an approximation algorithm in
which the localization problem is treated in two phases: hypothesis generation
and hypothesis elimination. For the hypothesis generation phase, the solution
proposed by Guibas, Motwani, and Raghavan [6] is used. Guibas et al. show
how to preprocess a map polygon P, by computing its visibility cell decom-
position, so that given the robot’s visibility polygon V, the set of points in
P whose visibility polygon is congruent to V and oriented similarly can be
returned. This technique preprocesses P in O(n® logn) time and O(n®) space,
where n is the number of vertices of P. For hypothesis elimination, an overlay
arrangement is computed yielding O(n®) cells. The robot then greedily travels
to the nearest distinguishing visibility cell from its initial location in order to
rule out hypotheses. By measuring distance with respect to the robot’s initial
location, rather than its current location, the paper is able to show that the
robot travels a path of at most (k— 1)d, where & is the number of initial hypo-
thetical locations generated and d is the length of an optimal verification tour.
The authors prove that this competitive ratio is the best possible. However,
with space and time complexity of O(n®), their algorithm is impractical to
use. The authors also demonstrate that simple heuristic localization strategies
can sometimes exhibit strikingly poor performance.

Schuierer [8] proposes a technique that uses geometric overlay trees to
speed up the implementation of the greedy localization strategy put forth
by [3]. While his approach reduces the time complexity to O(kn?) and space
complexity to O(kn), no implementation results are given and it is unclear
how to extend the technique to address more practical issues. Kleinberg [7]
approaches robot localization by modeling the environment as a bounded ge-
ometric tree. Brown and Donald [1] describe algorithms for robot localization
which allow for uncertainty in the data returned by the range sensor. Fox,
Burgard, and Thrun [4] use Markov localization to determine the position of
a mobile robot from sensor data. In that work, global localization is achieved,
but the length of the localizing trajectory relative to the optimum is not
considered.

Gonzalez-Banos and Latombe [5] present randomized algorithms that use a
2D map to estimate the locations where sensing will be most effective through
random sampling of the workspace. Their work does not address the problem
of robot localization.

3 Problem Specification

In this section we formally define the localization problem and state our as-
sumptions about the robot and its environment. We are given a random envi-
ronment modeled by an n-vertex simple polygon P without holes positioned
somewhere in the 2D plane. A mobile robot is placed at an unknown initial

4 Rao et al.

location within P, of which it has a map. First, the robot must determine
if its initial location is unique by sensing its surroundings and matching the
resulting visibility data W to the map of the environment. Given P and W,
the robot must generate the set H of all hypothetical locations p; € P such
that the visibility at p; is congruent under translation to . Next, the robot
must determine its true initial location by sensing and traveling in order to
eliminate all hypothetical locations but one from H, while minimizing the
distance traveled.

The robot’s sensor behaves as a “perfect” sensor in that it can detect
distances to those points on the boundary of the environment for which the
robot has an unobstructed line of sight. The visibility data W sensed by the
robot is composed of the counter-clockwise ordering of vertices and edges seen
by the robot (see Figure 1). Geometric relationships amongst the data such
as vertex angles, distances, adjacencies, and the robot’s relative position with
respect to the data sensed are available. W can also be regarded as a visibility
polygon.

The robot is assumed to be a point robot moving in this static 2D, obstacle-
free environment. The robot is able to make error-free motions between arbi-
trary locations in the environment. The movement of the robot is restricted
to the inside and along the boundary of the environment. As well, it is able
to determine its orientation. Otherwise it would be impossible for the robot
to uniquely determine its exact location in an environment with non-trivial
symmetry such as a square 2.

4 Approach

Our localization algorithms (like that of [3]) comprise two phases: hypothesis
generation and hypothesis elimination. The hypothesis generation phase com-
putes the set of hypothetical locations that match the observations sensed by
the robot at its initial location. The hypothesis elimination phase rules out in-
correct hypotheses thereby determining the true initial location of the robot.
However, unlike the hypothesis generation phase of [3], ours does not involve
any preprocessing of the map polygon P, nor is the visibility cell decomposi-
tion of P computed. Instead we generate hypotheses using an online method.
Our hypothesis elimination phase also differs from that of [3]. In contrast
to the deterministic evaluation visibility cells as a potential probe locations,
carried out in [3], we choose potential probe locations by randomly sampling
points in certain regions of P. We then check if the sampled location provides
any new information. This avoids the computational complexity of calculat-
ing the visibility cell decomposition together with the overlay arrangement as
performed in [3]. Moreover, rather than pursue a greedy choice as in [3], our
decision strategy directs the robot to make a weighted choice with respect
to its initial location. The utility or information gain of each potential probe

2Note: the robot could still solve the problem up to rotational symmetry.

Randomized Algorithms for Minimum Distance Localization 5

Fig. 2. Overlay arrangement for the situation shown in Figure 1.

destination is weighted by its distance from the robot’s initial location. Be-
fore we continue with a description of the localization algorithms, we describe
some key definitions and procedures.

4.1 Hypothesis Generation

Given an environment P and visibility data W, we want to determine the
set H of all hypothetical locations py,p2,,pr C P such that the visibility
data computed at p;, Vis(p;), matches W for i = 1, ...,k (see Figure 1). This
is done by tracing the pattern of vertices and edges listed in W in the set
of vertices and edges of P. We search for as many sets of vertices and edges
in P that match W as possible. Note that k refers to the number of initial
hypothetical locations generated.

4.2 Overlay Intersection

The hypothesis generation phase generates a set H = py,pa,....,px C P of
hypothetical locations in P at which the robot might be located initially.
Without loss of generality, we select an arbitrary hypothetical location p;
from H to serve as a reference point or origin. Next, for each hypothetical
location p;,1 < j <k, a translation vector ¢; = p; — p; is defined that trans-
lates location p; to p;. As a result, we compute a set of copies P, P,, P
of the environment polygon P, corresponding to the set of hypothetical lo-
cations H, such that P; is congruent to P translated by the vector ¢;. Copy
P; is translated by the zero vector. The point in each translated polygon P;
corresponding to the hypothetical location p; is now located at the origin p;.
We can now define the overlay arrangement as follows:

Definition 1 (Overlay Arrangement [3]).

The overlay arrangement for the environment polygon P corresponding to
the set of hypothetical locations H is the structure obtained by taking the union
of the edges of each translated polygon P;,1 < j <k.

Figure 2 illustrates an overlay arrangement for the situation shown in Fig-
ure 1. We consider only the connected component of the intersection region of
the overlay arrangement that contains the origin since it is the area known to

6 Rao et al.

Fig. 3. Shaded area represents the overlay intersection region OI. Random points
are chosen within this region.

exist in all hypotheses (see Figure 3). We will refer to this connected overlay
intersection component containing the origin as OI. In this respect, we dif-
fer from [3] in recognizing that clearly, we do not need to examine visibility
cells lying outside this overlay intersection region, common to all hypothetical
locations, for new information. We compute OI by performing a counter-
clockwise traversal of the edges of the polygons containing the origin. The
algorithm begins with an arbitrary edge e which is either partly or fully vis-
ible to the origin. Every time an intersection point is encountered, the edge
that makes the sharpest counter-clockwise turn with respect to the origin is
selected. The algorithm terminates when it returns to the starting point on e.

4.3 Hypothesis Elimination

A set R of points is picked randomly from the connected intersecting region
of the overlay arrangement surrounding the origin (see Figure 3). R is then
evaluated to see if any of the points contained in R yield new information that
could help to disambiguate the robot’s initial location. Our decision strategy
weights the utility of a potential destination point with its distance from the
robot’s initial location. Before we proceed we will define some terms:

Definition 2 (Random Point).

A random point refers to a location in the connected component OI of
the overlay intersection region containing the origin for a given P, H, and
origin, chosen by randomly sampling the interior of OI according to a uniform
distribution.

Definition 3 (Useful Point).

A random point q is termed useful if sensing at this location is guaranteed
to yield new information that distinguishes amongst the different hypothetical
locations. In other words, the Vis(q) with respect to the different hypotheses
are not all congruent under translation.

For each random point picked, r € R, a value function Value(r) =
info/distanceor is computed, where info is the expected number of hy-
potheses that could be eliminated at r, assuming all the hypothesized initial
locations are equally likely, and distanceor is the shortest path trajectory,

Randomized Algorithms for Minimum Distance Localization 7

constrained to lie within OI, from the robot’s initial location at the origin of
the overlay to r. We calculate in fo for a point r as follows:

We assume that all hypotheses are equally likely. We say two hypotheses h;
and h; are equivalent at r if Vis(h;,r) is congruent to Vis(h;,r) and has the
same orientation. Vis(h;,r) refers to the visibility data computed at a point
z such that the relative position of z with respect to the hypothetical location
p; is equivalent to the relative position of r with respect to the overlay origin.
If there exist b equivalence classes of hypotheses at r of sizes sy, Sa,, Sp
respectively, where the total number of hypotheses k& = s1 + s9 + + sp,
then

info(r) = (s1/k)(k — s1) + (s2/k)(k — s2) + + (sp/k)(k — sp).

The robot is moved to the random point 7’ in OI with the highest non-zero
value of Value(r'). Those hypotheses h; where Vis(h;,r') does not match the
visibility data sensed by the robot at its new location are ruled out.

4.4 Common Overlay Localization Algorithm

We can now present the common overlay localization (COL) algorithm. Given
an input polygonal environment P and a robot placed at an unknown initial
location in P, the COL algorithm proceeds as follows:

1. Sense visibility data W from the robot’s current unknown initial location.

2. Generate the set of all hypothetical locations H in the environment P
that match the visibility data sensed W.

3. Choose an arbitrary hypothetical location in H as the origin.

Construct an overlay arrangement centered on the origin.

5. Compute the connected overlay intersection component containing the

origin, OI.

Randomly choose a predetermined number of points within OI.

7. For each random point picked, r, compute the value function Value(r) =
info/distanceor.

8. Observe that at each overlay intersection, there is latent information to
be gained that is guaranteed to eliminate some hypotheses. Therefore,
if none of the random points yield non-zero info, then the number of
random points required is increased and chosen all over again within the
current overlay intersection area OI. Steps 6, 7 and 8 are repeated for a
predetermined number of trials 3.

9. The robot moves to the random point 7’ in the overlay with the highest
non-zero value of Value(r').

10. Now, eliminate hypotheses by comparing visibility data sensed by the
robot at v’ with the visibility data computed at all the equivalent random
points corresponding to all the active hypotheses.

=

o

3In our implementation, we terminate the algorithm if no useful points are ob-
tained after this predetermined number of trials. Hence we proceed to the next step
only if useful points exist.

8 Rao et al.

el le2

Fig. 4. el and e2 are internal edges.

11. Let us call the set of eliminated hypotheses E. We repeat the overlay
arrangement with the reduced set of hypotheses H — E. Steps 3-10 are
repeated until only 1 hypothesis, corresponding to the true initial location
of the robot, is left in H — E.

4.5 Useful Region Localization Algorithm

The useful region localization (URL) algorithm differs from the COL algo-
rithm with respect to the region where random points are chosen. Recall that
the COL algorithm randomly chooses points within the overlay intersection
area OI. The COL algorithm then selects only those random points that are
expected to yield new information. It turns out that we can do even better. In
fact, we can determine precisely the portions of OI where any random point
chosen is guaranteed to provide new information.

Let us first observe that in large sections of OI, the visibility cells pro-
vide zero information gain for unambiguous localization. We must look to the
boundaries of OI which is where the area common to all hypotheses ends and
the“geography” changes. But the robot can spot this change from a distance
as it approaches the boundaries. We refer to these boundaries as internal
edges, which we define as follows:

Definition 4 (Internal Edge).

An internal edge of an overlay intersection area OI is defined as an edge
(one of many) that separates the inside of OI from other parts of the overlay
arrangement, as opposed to those edges of OI that pertain to the outer silhou-

ette of the overlay arrangement which separates the inside of OI from the rest
of the 2D plane (see Figure 4).

Before we proceed to the description of the URL algorithm, we will exam-
ine the notion of weak visibility from an edge. A set of points @) is said to be
weakly visible from an edge e if for each point g €) there exists a point z € e
such that ¢ and z are visible (z may depend on q) [9].

Definition 5 (Weak Visibility Polygon).

Given a polygon P the weak visibility polygon W (e) of an edge e € P is
defined as the set of all points y € P that are visible from some point on e
(see Figure 5).

Randomized Algorithms for Minimum Distance Localization 9

e

Fig. 5. Shaded region represents the weak visibility polygon of edge e.

Once we have determined the set of internal edges of O, the useful portions

U of OI can be computed using the following procedure:

Let us call the set of internal edges of OI, B. For each edge in B, compute
its weak visibility polygon within OI The union of all such weak visibility
polygons should give us a region or set of disjoint regions U where U is
a subset of OI. We claim that any random point chosen in U provides
non-zero information whereas any random point chosen in OI-U provides
zero information.

Figure 6 depicts the useful region of polygon P. Steps 1-5 of the URL

algorithm remain the same as in the COL algorithm. Following these steps,
the URL algorithm proceeds as described below:

6.
7.
8.

10.

11.

Compute the useful region U of OI.

Randomly choose a predetermined number of points within U (Figure 6).
For each random point picked, r, compute the value function Value(r) =
info/distanceor.

. The robot moves to the random point 7’ in the overlay with the high-

est non-zero value of Value(r'). Note that we are guaranteed that all
the random points chosen provide non-zero information for hypothesis
elimination. As a result, we do not need to choose more random points
repeatedly as is done in the COL algorithm.

Now, eliminate hypotheses by comparing visibility data sensed by the
robot at r’ with the visibility data computed at all the equivalent random
points corresponding to all the active hypotheses.

Let us call the set of eliminated hypotheses E. We repeat the overlay
arrangement with the reduced set of hypotheses H — E. Steps 3-10 are
repeated until only 1 hypothesis, corresponding to the true initial location
of the robot, is left in H — F.

It must be noted that once we have computed the useful region U, we

need choose only one random point lying within U at each stage in order to
guarantee that we eventually localize successfully (we could even just move the
robot to the closest vertex or edge of U). A larger number of random points
only serves to improve the performance of the algorithm by eliminating several
hypotheses in one shot or by reducing the distance traveled by the robot.

10 Rao et al.

Fig. 6. Shaded area represents the useful region. Random points are chosen within
this region.

Unlike the COL algorithm, the URL algorithm has computable and finite
time bound. Consider a situation where the useful region comprises a small
fraction of the entire overlay intersection area OI (this need not mean that the
useful region is in itself a small area where a robot can not navigate - simply
that it is relatively small compared to the entire overlay intersection area).
In such cases, choosing points randomly from the entire overlay intersection
region may yield a useful point only with a large number of random points
and after several trials. The advantage of the URL algorithm is that we can
instantly access the useful portions of OI and hence the useful points *.

4.6 Complexity Analysis

In this section, we provide an estimate of the overall time complexity for the
two localization algorithms. The number of initial hypothetical locations k is
bounded above by the number of reflex vertices in the polygonal environment
5. Let f be the number of active hypotheses remaining (f < k). Let n denote
the number of vertices in the map polygon P.

Hypothesis generation takes time O(mn) where m is the number of vertices
in the visibility data W. Calculating the overlay intersection area takes time
O(fnlogn). Observe that as hypotheses are ruled out the value of f will
decrease. If we rule out only one hypothesis per intersection then the overlay
intersection is computed a maximum of k times. It takes O(fn) time per
random point in order to calculate the information gain at any random point.
Computing the shortest path distance of a random point from the initial
location amounts to O(nlogn) time.

Common Overlay Localization Algorithm

At each intersection let us say that we select X random points on average. Let
only Y be the number of useful points where ¥ < X. Assuming that we only
eliminate one hypothesis at each overlay intersection, we will have to calculate
the overlay intersection area, compute and compare visibility data of all the

4A proof of correctness for the URL algorithm is presented in [10].
SFor a proof see [6].

Randomized Algorithms for Minimum Distance Localization 11

Fig. 7. A simulated office environment.

random points, and calculate the shortest path distance of the useful random
points, a total of k times. Therefore we estimate the overall time complexity
of the COL algorithm to be O(mn)+k(O(fnlogn)+O(X fn)+O0(Ynlogn)).
Since k = O(n) and f = O(k), a looser but simpler bound for the overall time
complexity of the COL algorithm is obtained: O(n®logn + Xn?) .

Useful Region Localization Algorithm

The maximum number of internal edges possible at any overlay intersection
is O(fn). Let Y be the number of useful random points. Computing the
weak visibility of an edge takes O(nlogn) time [9]. As a result, the total
cost of computing the useful region is O(fn?logn). Therefore we estimate the
overall time complexity of the URL algorithm to be O(mn) + k(O(fnlogn) +
O(fn2%logn) + O(Y fn) + O(Ynlogn)) which reduces to O(n*logn + Yn?).

5 Experimental Results

Experiments were carried out on random environments in order to obtain
an empirical measure of the average path length for different numbers of
random points and with respect to the expected optimum path length. We
also compare the performance of our strategy with competing strategies. In
order to test the localization algorithms, we used random simulated “office”
environments that were generated algorithmically (see Figure 7).

We generated 73 simulated office environments with an average of 400
vertices each. For each environment an initial robot location was randomly
selected. We then ran the COL algorithm with these environments and their
respective initial locations for a series of different quantities of random points.
The objective was to measure the average distance traveled by the robot as
the number of random points was increased and to compare these average
path lengths to the estimated optimum result. The number of random points
was varied from 20 to 1000 and the average path length obtained for 1000
points was used as the estimated optimum result. Figure 8 shows the error
margin of the average path length with respect to the estimated optimum path
length plotted against the number of random points. Our results indicate that
the average path length gets significantly shorter initially as the number of

12 Rao et al.

N

I
®
T
I

Iy
)
T
I

B
N
T
I

N
T

Ave. Path Length / Near Opt. Path Length
b
'y

o
©

o

200 800 1000

400 600
Number of Random Points

Fig. 8. Ratio of path length obtained with COL algorithm with respect to the ex-
pected optimum path length based on 73 trials. Near-optimal path length is achieved
with a relatively small number of points.

random points is increased. Eventually, the incremental reduction in path
length decreases and the path length settles at the near-optimum value 6.

We ran experiments to compare the performance of the weighted decision
strategy used in the COL algorithm (which we will refer to as the weighted
strategy) versus its greedy version, where the robot is directed to move to the
nearest location to its initial location that provides any non-zero information.
This greedy alternative approzimates the greedy technique of [3] but is not
equivalent to it since we require an appropriate minimum number of points
in order to adequately cover all the visibility cells in the overlay intersection
region. We generated 20 simulated office environments with an average of
400 vertices each. For each of the 20 environments, 3 initial locations were
randomly selected. We then ran both weighted and greedy strategies with each
of the 3 initial locations for each environment for a series of different quantities
of random points, repeating each quantity twice to balance out any abnormal
distributions. The total number of experimental trials was, therefore, 20 x 3 x
2 = 120 trials 7. Figure 9 shows the average path length for weighted and
greedy strategies plotted against the number of random points. Even with
very large numbers of random points (see 1000 points case), where we may
reasonably assume an adequate sampling of most of the visibility cells in the
overlay intersection region, on average the weighted strategy still outperforms
its greedy counterpart.

Theoretically, the greedy localization strategy has been shown to have the
best possible worst case bound on the distance traveled by the robot [3]. In
our weighted strategy as well as its greedy variant, it is possible that a tiny
visibility cell which might hold the key to an optimally short path was never
sampled. This is a theoretical disadvantage but a practical advantage as the

SRecall that computing the optimum path is NP-hard.
"This set of trials will be used repeatedly for the experiments described in the
remainder of this paper.

Randomized Algorithms for Minimum Distance Localization 13

L Weighted——
o001 Greedy='=' ==~

Average Path Length
a
3

o 200 800 1000

400 600
Number of Random Points

Fig. 9. Performance of weighted decision strategy of COL algorithm vs. greedy
strategy based on 120 trials. Weighted strategy gives shorter path lengths on average.

probability that the robot is directed to visit an arbitrarily tiny, and hence
inaccessible, visibility cell is small.

A set of experiments, involving 120 trials, was performed where the
weighted decision strategy of the COL algorithm was compared with a tra-
ditional heuristic used in many localization papers. The heuristic directs the
robot to simply visit the closest point from its currentlocation which provides
any non-zero information. Figure 10 shows the average path length for our
weighted strategy and the traditional heuristic plotted against the number of
random points. The weighted strategy produces shorter path lengths than the
heuristic.

Experiments were carried out to evaluate the performance of the URL
algorithm with respect to different numbers of useful random points. We per-
formed the experiments over 120 trials as described above. Figure 11 depicts
the average path length obtained for number of useful random points ranging
from 1 to 500. Since we are choosing points directly from the useful region, the
algorithm is able to effectively localize the robot with just 1 random point, al-
though the path length is understandably high in that case. We observe that
path length values for the URL algorithm are somewhat higher than those
obtained for the same number of points when running the COL algorithm.
This is because the COL algorithm chooses a more dense sampling of ran-
dom points each time none of the existing points prove useful. In particular,
the overlay intersection areas get larger as hypotheses are eliminated thereby
requiring a more dense sampling. On the other hand, the URL algorithm ad-
heres to exactly the same number of points initially specified, regardless of
the size of the subsequent overlay intersection regions.

Figures 12 and 13 depict the localization path taken by the robot for a
staircase-like environment and a simulated office environment respectively,
using the COL algorithm. The shaded area in these figures represents the
overlay intersection region OI. The square black points labeled HO, H1, ..., Hk
indicate the different hypothetical locations. The small round dots scattered
across the shaded region represent the random points.

16001 s Weighted
i’ * Heuristic == ===

8001 s

o 100 200 300 400 500
Number of Random Points

Fig. 10. Performance of weighted decision strategy of COL algorithm vs. tradi-
tional heuristic based on 120 trials. Weighted strategy gives shorter path lengths on
average.

6 Discussion and Conclusions

In this paper we have presented a new algorithmic formulation of minimum
distance localization based on randomized sampling and determined its com-
plexity. We demonstrate that although minimum distance localization is a
hard problem, a good approximation can be achieved in most cases with lim-
ited computation.

The experimental results show that for the ensemble of environments we
have evaluated, our algorithms are effective. The performance of our algo-
rithms improves rapidly with the number of random sample points used.
However, the incremental improvement decreases as the number of samples
increases, so that a fairly limited number of samples typically is sufficient to
obtain a near-optimal length localization trajectory.

In the case of the URL algorithm, we require as little as 1 random point in
order to unambiguously localize the robot. In situations where the useful re-
gion comprises a small fraction of the entire overlay intersection area, the URL
algorithm seems to be the better choice (than the COL algorithm). Choosing
points randomly from the entire overlay intersection region may yield a useful
point only with a relatively large number of points. The advantage of the URL
algorithm is that we can instantly access the useful portions of the overlay
intersection and hence the useful points.

In addition, experimental results indicate that on average, our weighted
decision strategy is clearly superior to alternative greedy strategies which sim-
ply visit the nearest points to the robot’s current, or even starting, location,
that offer any information at all. The strategy of picking points stochastically
leads to a visibility cell having a probability of being visited that is propor-
tional to its area. This implies that large cells, that are accessible to the robot,
will be chosen for visits more frequently than small ones. This in itself makes
our algorithm more feasible for real implementation than its predecessors.

Randomized Algorithms for Minimum Distance Localization 15

1200

Average Path Length
3
o

100 200 300 400 500
Number of Useful Random Points

Fig. 11. Performance of URL algorithm based on 120 trials. More dense sampling
of useful random points produces rapid reduction in path length.

While the validity of these results is formally limited to the class of envi-

ronments presented here, there is no reason why these conclusions should not
generalize to broader classes of environments. Our algorithms appear to be
appropriate to use in contexts where the sensor is more limited, given suit-
able modifications to the definition of a landmark. This suggests a natural
extension to an even more realistic context.

References

1.

10.

R.G. Brown and B.R. Donald, Mobile robot self-localization without ezplicit
landmarks, Algorithmica 26 (2000), no. 3/4, 515-559.

G. Dudek and M. Jenkin, Computational principles of mobile robotics, Cam-
bridge University Press, 2000.

G. Dudek, K. Romanik, and S. Whitesides, Localizing a robot with minimum
travel, SIAM J. Computing 27 (1998), no. 2, 583—-604.

D. Fox, W. Burgard, and S. Thrun, Active markov localization for mobile robots,
Robotics and Autonomous Systems 25 (1998), 195-207.

H.H. Gonzalez-Banos and J.C. Latombe, Planning robot motions for range-
image acquisition and automatic 3d model construction, In Proc. AAAI Fall
Symposium Series, 1998.

L. Guibas, R. Motwani, and P. Raghavan, The robot localization problem, SIAM
J. Computing 26 (1997), no. 4, 1120-1138.

J. Kleinberg, The localization problem for mobile robots, In Proc. 35th IEEE
Conference on Foundations of Computer Science (Santa Fe, NM), IEEE Com-
puter Society Press, 1994, pp. 521-533.

S. Schuierer, Sensing, modelling and planning, Intelligent Robots, ch. Efficient
robot self-Localization in simple polygons, pp. 129-146, World Scientific Publ.,
1996.

G.T. Toussaint, A linear-time algorithm for solving the strong hidden-line prob-
lem in a simple polygon, Pattern Recognition Letters 4 (1986), 449-451.

M. Rao, A Randomized Approach to Minimum Distance Localization, MSc.
thesis, Dept. of Computer Science, McGill University, Montreal, Canada, 2004.

16 Rao et al.

Fig. 12. Localization trajectory in staircase environment.

N

-442

Fig. 13. Localization trajectory in simulated office environment.

