On the Elaboration of Hand-Drawn Sketches

Saul Simhon and Gregory Dudek
Centre for Intelligent Machines
MecGill University
3480 University St, Montreal, Canada H3A 2A7

June 15, 2001

Abstract

This work considers an approach for artificially enhancing the richness and level
of detail of graphical scenes. In particular, we examine a method for automati-
cally generating high-resolution novel curves from manually sketched drawings
of those curves. The essential idea is to augment the hand-drawn curves using
prior knowledge to produce a more elaborated picture. Our method uses multi-
scale analysis of a class of training data to capture statistical properties of the
set. These properties are then conditioned at a coarse scale by the hand-drawn
curve to steers the synthesis according to the overall shape of the curve. Given
an approximation sketch, the algorithm generates the most likely scene by prop-
agating probabilities over a Markov Chain. Users without artistic capabilities
can then describe scenes in a more natural way to build impressive graphics.



1 Introduction

In this paper we consider the manually guided synthesis of detailed curves from
very rudimentary steering information. Our goal is to provide a quick and easy
way for users to draw elaborate drawings. We present a method to automatically
synthesize the elements of a drawing that are too difficult or time consuming
to manually draw while maintaining the overall shape of the drawing. In most
cases, users do not have difficulty outlining the overall shape of drawings at a
course scale. There may be some deviation in the proportion and placements of
elements but the main difficulties arises at low scales and high variation areas.
Developing a method to help reconstruct those intricate details is an integral
step towards more sophisticated systems for elaborating complex images from
much simpler high-level specifications.

The approach we take consists of learning statistical properties of a class
of a priori data over multiple scales. We calculate probabilities using a Non-
Stationary Markov Model over the curves’ arc-lengths. By learning the sta-
tistical relationships between consecutive elements and between a curve and a
smoother hand-drawn facsimile, we can later exploit these relationships to syn-
thesis the high-resolution details. Further, since a non-deterministic approach
is taken, various instances of the same illustration can be generated simply by
random sampling over the regions of maximum likelihood.

Preliminary application to this framework uses a class of parametric curves
for coastline synthesis but the frame work can be applied to any data class where
high-resolution detail is a function of overall shape. Providing the techniques
we describe below can assist in many applications such as: 3-D modeling where
curves are used to specify object boundaries and deformations; key-frame an-
imation where curves specify trajectories of objects; pen-and-ink illustrations
where curves are the main elements of the design. This work can also be extend
to applications for surfaces and textures.

2 Background

One of the most widely used methods to draw curves and surfaces consists
of specifying a set of vertices and using an interpolating function that defines
the geometry between the vertices. Commonly, tensor product NURBS [5] are
used since they provide local control of the curve segments with up to second
degree parametric continuity. However, in order to represent surfaces of arbi-
trary topology, the model must be partitioned into a collection of patches and
explicitly stitched together [3]. A large number of parameters are introduced
to stitch adjacent patches using geometric continuity conditions. Subdivision
curves and surfaces offer a better alternative by repeatedly refining an initial
control mesh [1]. DeRose et al. present a general subdivision model for recon-
structing piecewise smooth surface models from scattered control points [10].
Their work describes subdivision rules that model sharp features while main-
taining the smooth areas by relaxing continuity conditions across labeled edges



and modifying subdivision masks based on label type. Although subdivision
surfaces are used often in state of the art computer graphics applications, they
still require highly-skilled users, especially in scenes that are over-refined where
editing becomes very cumbersome and details are very intricate.

Another difficulty in traditional curve and surface fitting techniques is that
there is no attempt to preserve higher resolution detail when editing at a broader
region. Work by Forsey and Bartels [6] addressed this problem by developing
hierarchical B-splines. Large- or small-scale changes to the surface can be made
by manipulating control points at the corresponding levels in the hierarchy.
Some of the drawbacks in their work imposed users to manually design the
hierarchical network. Further, the surface points and derivatives were no longer
linear functions of the control points, introducing computational complexities
and non-unique solutions. Later work [7] automated the process by recursively
fitting surfaces at a coarse scale and refining areas with large residuals. In other
work, Salesin et al. [12, 4] describe a multi-scale curve representation based
on wavelets that produced unique solutions for given shapes. Curves may be
modified at multiple levels of detail, such as changing the overall form of the
curve while preserving its detail or vise versa.

Although these and other similar methods provide multi-scale editing, they
lack in representing the connection between overall shape and high-resolution
detail. The goal is to disassociate the scales, providing independent control for
each level of detail. While this is desirable for certain applications, it does not
allow users to fully describe a curve directly from coarse data. Our method,
analogous to wavelet transform, captures statistical relationships over varying
scales, recognizing that a change in the overall shape should affect the high-
resolution features. The main premise is that a good way to interpret an in-
complete specification is based on previously seen data.

The approach we take in synthesizing curves is similar to and inspired by
stochastic methods of texture synthesis [14, 11, 2]. Work by Efros and Leung
[2] describe a method of learning statistical properties of a texture sample and
extrapolating these properties to generate the pattern. A texture is modeled
as a Markov Random Field where the probability distribution for the value of
a pixel is dependent on only its neighboring pixels. A new pixel is synthesized
by choosing the value that is most probable based on a neighborhood match
with the sample texture. Wei and Levoy [13] combined this method with a
pyramid-based filter [9] to maintain large-scale structure. They also apply their
method in the temporal domain, producing movies such as ocean waves and
fire. A strong assumption in these approaches is that of a local and stationary
random process. Such assumptions are not necessarily valid when dealing with
the syntheses of arbitrary scenes. Further, there is no way of controlling and
steering the growth of textures. In our work, presented in the next section, we
use a non-stationary transition probabilities and adopt a controlling component
to steer the synthesis process.



3 Curve Synthesis: Markov Steering

We treat the user as a stochastic process, generating a sequence of random
measurements over some time interval (a random experiment). Let us suppose
that at each point in time we observe a measurement x. This measurement
corresponds to a sample point described by the entire function X (¢). Let X(t)
represent a stochastic process for a class of sample curves s over a time interval
T. A single sequence of observations for a particular sample set s is called the
realization of the stochastic process, corresponding to an instance of the user’s
curve description. We assume the sequence has an nt® order Markov property,
i.e. a Markov Process:

plzs(t+1)|zs(t),zs(t—1) .. z5(t—n+1)} = p{as(t+1)|zs(t),zs(t—1) .. 25,(0)}

Let « represent a closed curve (the method will still work for curves that
are not closed but the Markov chain is not homogeneous). The curve has a
parametric representation (z(t),y(t)) where t is the arc-length of the curve from
0 <=t <=T. We denote the absolute angle of the tangent of a at point ¢ by
0(t). We denote ¢(t) as the steering component of the curve (t) corresponding
to a level of abstraction:

o(t) = ¥(6(1)) (1)

where 1 is some function that maps the high-resolution curve to one that the
operator is more apt to sketch. That is, ¢(t) is considered as the input curve
used to maneuver the Markov Process. In principle, this controlling component
can consist of any function of the high-resolution curve; there is no geometric
requirement as it can even be a mapping to a language symbol space. However,
to maintain the Markov property and real time execution, we transform the
state space using a time-invariant causal linear filter [8]. We consider a linear
transformation such that Equation 1 can be represented in matrix form:

$ =00 (2)

where O is a state vector consisting of n sample points (discrete version of 6(t)),
¥ is an x m low-pass filter matrix and ® is a state vector with m sample
points (discrete version of ¢(t)). By removing the high-frequency components,
we provide the user with a control curve that is easier to hand-draw and requires
less sampling points to model. Such a transformation loses information and is
not invertible.

Multi-scale analysis is performed by repeatedly filtering the training curves
using a low-pass filter. This results a multi-scale curves where the controlling
component lies near one of the coarse levels. We then define a state space as
an OzStA dimensional space I', where O is the order (history) and S is the
scale and A is the dimension of the curve attributes that are used (in our case,
A =1, the tangent angle 9).

We define the stochastic model as a first order homogeneous Markov Process
for the multi-dimensional states () over the state space I'. Note that although
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Figure 1: Extracting the next state given the previous ones. Each state is a
multi-scale/multi-order representation of the curve.
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we use a first order Markov Model, higher order history of a curve is encoded
within a single state (Figure 1). Statistical properties of a priori data are learned
by calculating the transition probabilities p(y(t + 1)|v(t)) .
A Markov Chain with non-stationary transition probabilities is used to re-
construct the curve:
Py(t+1) = M, (t)P,(t) 3)

Where P, (t) is the probability state vector at sample ¢t and M, (¢) is the tran-
sition matrix at sample ¢. Similar to texture synthesis techniques, given a seed
(¢(0), 6(0)), we can extrapolate a curve by statistically sampling over P, (t).
This generates a new curve that is based on the statistical properties of the
training data. We don’t explicitly construct the transition matrix since the
data is very sparse and the state-space it too large. Instead we store the prob-
abilities in a linked list, which requires searching at each iteration (space-time
tradeoffs).

Transition probabilities for a multi-scale/multi-order state «(t) are calcu-
lated by first comparing v(t) with all states v(¢)' in the training data using a
similarity measure. We then associate the transition probability to the next
state y(t + 1) by summing up values and normalizing. The similarity measure
is calculated as follows:

— ET Zs ’LU(S, T)G(’Y(ta S, T) - 7(t7 S, T)I)
E‘r ES ’U}(S, T)

where GG is a Gaussian function and W is a weight matrix that associates the
importance of matches over scale and history. We integrate over the region
defined by the state space T, (i.e. 7:0— > O0,5:0— > 9).

We configure the weight matrix to maintain consistency over both high res-
olution details early in the history and overall shape. Further, for training sets
that exhibit some stationarity, the search space does not have to be restricted by

D(y(t),~(®)")

(4)



t but can consist of any location in the training data that has similar statistical
response. In fact, one might want to search over a range At about ¢ to provide
additional tolerance for the hand-drawn curve.

The probability of the next state is calculated by first propagating the prob-
abilities of the previous states using the transition probabilities calculated above
and then conditioning the result by the user input ¢;,. The conditioned prob-
ability for the i’th state is given by:

ngonditioned — pfrediCtedG((ﬁin _ 05,1‘) (5)

where 6 ; is the current angle extracted from the i** state at a pre-determined
scale s. The variance of the Gaussian G sets the influence the input has over the
prediction. Large variances depict low user confidence while small variances such
as a delta function only pick close/exact matches. A sample point is instantiated
using the value of maximum probability, providing an interactive environment
where users can see the resulting deblurred curve. For efficiency, a threshold is
set to maintaining only the top few candidates.
A summary of the algorithm is outlined as follows:

e Initialize the probability vector by assigning equal probabilities to each
~(0) in the training example

Condition the probability vector using the hand-drawn sketch point ¢(0).

Threshold the probability vector
e For each sample point from the hand-drawn sketch:

— Compute the transition probabilities from time ¢ to ¢ + 1.

— Given the probability vector at time ¢, predict the next one using the
computed transition probabilities.

— Condition and threshold the probability vector

3.1 Experimental Results

We have implemented the algorithm and provided a graphical user interface
where users can draw curves and see the results. The interface also allows to
set parameters, such as scales, orders, weights and variances, and to load and
save curves and training data. This is advantageous when users with to add
newly synthesized curve to the training set. For our experiments, we used 40
curves of world country borders for training, a 5 scale 20’th order state space
and a uniform average filter. Figure 2 shows some samples of the training set.
Experiments were done on a 1 GHz P3 processor with real time response.
Figure 3 and 4 show some sample runs with both the hand-drawn curves and
the resulting synthesized curves. Most of the curves generated are nowvel ones,
never seen in the training set. They maintain the statistical properties of the
training set and the overall shape of the hand-drawn curve. The resulting curves



look like coastlines. There are some issues with curve closures and intersections
which are primarily due to accumulated errors and the stochastic nature of the
algorithm. A possible extension to this work can consist of imposing additional
constraints to maintain properties such as closure.

Figure 2: Some examples of curves used in training.

The algorithm produces good results for data classes that sustain structure
over local regions. This forms a good framework for applications such as texture
mixing but limits the application to data types where global structure prevails.
Further, data types with large scale structure usually have features that are
well localized in time. As much as the filters blur this time localization, a single
offset in the hand-drawn curve might steer the synthesis in a drastically different
path. Such mis-synchronization can be seen in figure 6. Figure 5 show some
samples of a training set we used that exhibits large-scale properties. The set
consisted of 14 leaf outlines. Figure 6 shows the results using this set. One
example produced an exact reconstruction for the training set, another example
shows a mixture of the training data that is locally consistent but not globally
and a third example shows a case where there is no close match found in the
training data due to mis-synchronization of global features.

4 Future Work

This paper describes a new approach in generating graphics. The idea can
be extended for various applications. Primarily, we will investigate methods
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Figure 3: Hand drawn sketches (left) and the synthesized coastline (right).

to extend this work to data that requires consistency over large scales. This
may include imposing global function over the curve such as an energy based
regularization method. Such methods can also refine the curve by locking on
to the right segment or minimizing mixtures. Future direction also includes
dealing with multiple curves, automatic classification and segmentation for a
better synthesis. We also plan on extending the application to textures and
motion signals.

5 Conclusion

This work presents a step towards a method for elaborating hand-drawn curves
in real time. The method consists of using a-priori data to automatically
generate the details for a coarse hand-drawn curve. We model the curves as
multi-scale stochastic signals over time. We then propagate uncertainties over
a Markov Chain and condition the resulting probability vector by the hand-
drawn curve. It was show that the method generates curves well for coastlines
which posses only local properties while for data with large scale structure the
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Figure 4: Hand drawn sketches (left) and the synthesized coastline (right).
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Figure 5: Samples taken from the training set.

method did not maintain those properties. The method allows users to con-
struct libraries and generate new curves that are similar to the class of libraries
used.
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