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ABSTRACT. In this paper we consider the problem of robotic search: that is, having a mo-
bile robot find a target object in an unknown environment with obstacles. As a side-effect,
the robot explores the environment.
Based on previous results, we present a formal description of our problem and an algorithm
to solve it. Our work is a derivative of spiral search techniques developed in more abstract
contexts. We show that this algorithm has good worst-case performance, in terms of its
competitive ratio. We also show experimental data validating the feasibility of our approach
and typical results.

1. INTRODUCTION

Search is one of the fundamental tasks of life. Especially for artificial life. Numerous potential
artificial intelligence problems have been cast as search problems and many of the most natural ap-
plications for mobile robots are search problems. Reasonable behaviour, even in natural settings, is
the result of identifying and choosing an appropriate course of action from a very large set of pos-
sibilities. Humans and animals have uncanny abilities to make these decisions in an unpredictable
world. In order for artificial agents to succeed, it is absolutely necessary to efficiently search through
and quantify the decisions it is presented with.

In this paper, we consider the problem of automatically searching an unknown environment using
a mobile robot. In contrast to classic AI search problems, this variant of search entails a penalty for
moving between previously visited locations (what are traditionally described as nodes of a search
tree). Prior work [1] has demonstrated theoretically optimal strategies and associated bounds on
search in very simple environments. In addition, several authors have considered apatial search us-
ing heuristic rules or sensory ones, [4, 8, 7, 5, 6, 2].

Here, we elaborate on this theme and consider robotic search in complex worlds. In particular
we provide an algorithm, analytical results in the form of a competitive ratio and simulation data
illustrating how to perform robotic search in a planar environment with obstacles.

2. PRIOR RESULTS

2.1. Exploration Strategies. In this paper, we are interested primarily in searching a planar envi-
ronment (or in practice a topological equivalent). The simplest deterministic methods may be those
of breadth-first search [BFS] and depth-first search [DFS]. Somewhat more sophisticated methods
depend on interative modifications: depth-first search [IDDF] and cost sensitive IDDF (known as
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A∗ search). These methods, although popular and very general, each have restrictions that impair
a mobile robot. Refer to Algorithms by [3] for a more detailed explanation than will be presented
here.

Breadth-first search is often inappropriate to robotic search tasks as it incurs high overhead in
terms of the amount of storage space required and too high an overhead in moving between previ-
ously visited locales. Physical motion being much more costly than computation for a mobile robot
implies that a more judicious method will be favoured highly over one such as BFS that requires
intensive motion. Consider for example searching a long (endless) hallway for a water fountain (as-
suming there is one in the hallway somewhere). A BFS searcher would spend all its time moving
back and forth between opposite ends of the hallway.

Depth-first search avoids the shortcomings of BFS. It is very efficient in terms of the storage re-
quirements of the algorithm. More importantly, in light of the difficulty of physical motion, nodes
in the search tree are expanded according to their physical proximity during DFS, rather than their
logical proximity as in BFS. This implication assures us of short physical motions for discovery of
new territory. In bounded environments on n vertices DFS requires at most 2n vertices for a com-
plete traversal of the search tree. However in a potentially unbounded environment DFS fails badly
in term of any definition of “reasonable behaviour”.

Iterated depth-first search conquers this shortcoming of DFS. IDDF maintains the advantages of
DFS, while holding intact the principle of locality to some extent. There is a parameter which needs
fixing here, when and how to we qualify the points of iteration. This is what typical A∗ search at-
tempts to ascertain by assigning a cost-based iterating point. What can we use to generate such a
cost in the complex world of a mobile robot? This is the insight that we offer. We suggest on the
strength of planar search optimality in [1] that an efficient method of iteration may be dictated by
logarithmic spiral search.

2.1.1. Searching for a Point in a Line. Back to our problem of finding the water fountain in an end-
less hallway. What is the best that we can hope for to guarantee that we find a drink regardless of
which direction we choose to start down first?

We can describe the solution as a function f(i) : Z → Z where f(i) reports the number of steps
to take to the right or left of the origin before the i-th turn. This function, provided with the progress
condition of,

f(i) ≥ f(i− 2) + 1(1)

is enough to specify a solution to the problem. The progress condition simply ensures that our so-
lution will indeed explore new territory each time there is a change in direction. This is assured by
taking at least one more step into unexplored territory than has been taken so that the search will
terminate. Since this is an alternating search, f(i) and f(i+ 2) are consecutive distances from the
origin on the same end of the line.

0f(1) f(2)f(3)

Baeza-Yates et al. [1] show that the following function,

f(i) = 2i, ∀i ≥ 1(2)

results in an assymptotically optimal solution. With this function the total distance that is walked
is 2
∑blognc+1

i=1 2i + n, since we walk out and back on every iteration of 2i steps except for the last
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Info Given Search Distance

Normal n

Distance, Slope 3n

Distance, Horiz or Vert 3
√

2n ≈ 4.24n

Distance (1 +
√

3 + 7π/6)n ≈ 6.39n
Slope 9n
Horiz or Vert 13.02n
Nothing 13.81n

TABLE 1. Hierarchy of Search Distances bearing successive assumptions from [1]

probe, during which we walk n. This is easily seen to be bounded by 9n steps,

2

blog nc+1∑
i=1

2i + n < 2
(

2blognc+2
)

+ n

≤ 2
(

22 · 2blog nc
)

+ n

= 23n+ n

= 9n

with a little bit of slack in the first inequality. In fact there exist algorithms which perform at 9n−
Θ(logn)i, ∀i.

This particular problem, in a 2 dimensional setting is equivalent to looking for a line in a plane
knowing only the slope of the line (we are along the normal for the intersection point).

2.1.2. Searching the Plane. It is worthwhile now to consider search techniques in the plane. The
objective is to find some better method for searching in the plane. Bearing in mind that the envi-
ronment is unknown (perhaps unbounded) in addition to the real problem of unreliable localization.
Given the hierarchy collected by Beaza-Yates, Culberson and Rawlins in 2.1.2 we can get a flavour
of how we may do better than DFS in a real environment.

Under the assumption that we have to pay a significant cost to “probe” in our environment pro-
portional to the distance of the probe from our current location there may be better ways to search.
Table 2.1.2 shows a collection of known best results for such search problems under the restrictions
given.

2.1.3. Logarithmic Spirals. It is suggested by the results of 2.1.2 and by the rest of the findings in [1]
that an appropriate way to proceed is through the continued application of these logarithmic spirals.
We have chosen to use this approach to choose our iterating values for our IDDF.

There are a few things to mention about our representing a map by a tree structure. We make the
representation of a polygonal environment by the search path that we would follow as seen from
a perspective envisioning the environment as a whole. We presume that (in a hallway) the details
of the search across the hallway, from side to side, are uninteresting as opposed to the progress of
the search down the hallway. This perspective on the search progress allows a representation of the



4 CIM TECH REPORT - SB GD

polygonal environment as the set of search paths that are contained therein. Figure 1 shows how a
star-shaped1 polygon is represented as a set of concurrent (co-terminal) rays.

In an unbounded region our method still applies. The lack of a strict polygonal bound is not the
issue here. In reality, with a limited range sensor, searching a local environment that is larger than the
sensor range requires that we comb through the environment according to some tesselating pattern.
The impact of the details of this part of the search will only turn up in the low order terms of the
overall performance.

FIGURE 1. The representation of a star shaped polygon by a set of rays all co-
terminal. This can be thought of as a potential search path.

Thence the definition of m-concurrent would be such a collection of m rays. If we allow smooth
deformations of this base search shape without allowing rays to cross over (creating cycles) then we
can slacken this definition of concurrent rays to include homeomorphisms of concurrent rays.

Alas, all worlds are not this simple. It is possible that a path, and hence the associated ray, bi-
furcate. A discussion on which. The lifts the requirement that the rays be co-terminal. Even if the
rays are allowed to bifurcate at points not at the origin, then the interpretation of spirally expanding
search can still be applied.

A system capable of detecting cycles in the search tree would necessitates accurate odometry,
which is beyond the scope of this simulation.

2.1.4. M Concurrent Rays. The case for searching m-concurrent rays is similar to that of searching
for a point in a line, but offers further insight into that same problem. The assumptions are that the
robot is begins at the intersection of m rays and endeavours to find a target located on one of the
rays. If the distance to the target is known, but not which ray the target lies within (comparable to
knowing distance but not direction) then the obvious (2m − 1)n algorithm is optimal. If the dis-
tance is unknown, then this becomes the counterpart of the point-in-a-line problem and yields some
interesting results.

It is in star-shaped environments [hulls] that this analysis can be directly adapted to provide both
an algorithm and performance bounds. Given that there are m rays, the order is not important since
the names of any of the rays are simple labels and can be permuted, so cyclical indexing is fine from
{m ∈ Z|m = 1, 2, . . . }. Later in the case of non-concurrent, or bifurcating, paths this issue come up

1A star-shaped polygon is one that contains a subregion known as a kernel, such that every point in the polygon is
visible from any point in the kernel.
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FIGURE 2. The path traced by f(i) =
(

3
2

)i
intersecting with m = 3 concurrent rays.

again, since the order of visitation will make a difference in the overall performance. Again we see
that in order to study the problem, we have the progress requirement that the function, f(i), which
relates how far to walk from the origin before the i− th turn is,

f(i) = f(i−m) + 1 ∀ i ≥ 1,

where f(−j) = 0∀ 0 ≤ j ≤m− 1
(3)

This has been termed by Baeza-Yates et al. as generalized linear spiral search, since the points we
are interested in are the intersection points of the two sets in figure 2 and the actual spiral set which is
the set of dotted points forming the logarithmic spiral depicted. The generalised linear spiral search
algorithm is defined in a similar manner the linear spiral search from equation 2 as the number of
steps to walk before the ith turn starting from the origin. Using the exploration function assures,

f(i) =

(
m

m− 1

)i
∀ i ≥ 1.(4)

optimal performance as shown in [1]. Thus we are instructed about what base to choose for the
denominator in the underlying function. In the point-in-a-line case (m = 2) we have f(i) = 2i,
for the case of m = 5, for instance, we see that the function we should use is f(i) = (5/4)i. This
comes naturally from the proof (see [1]), with a worst performance ratio of,

1 + 2
mm

(m− 1)m−1 (for large m).(5)

This is a competitive ratio. This is generated by determining the worst that this algorithm can
possibly do in an environment chosen by an unfriendly arbitrator versus the best possible solution
in that same environment.

3. OPTIMAL SEARCHING

3.1. Searching M-Non-Concurrent Rays. Demanding that we have concurrent rays is too much
of a constraint to place on any system that we expect to use in the real world. Indeed we would like
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to be able to use the techniques that the theory provides for us, but it must be adapted to actual use
in many ways.

Concurrency of the search rays facilitates the analysis of the algorithm but is infeasible in practice.
Typically we wish to use our robot to perform well in more complex environments. In particular
the pathways that the robot is traversing may bifurcate. Figure 3 gives some indication how non-
concurrent rays may model this type of world.

FIGURE 3. Examples of environments depicting concurrent and bifurcating paths.

The way that we propose to deal with this issue is to keep track of the base of each ray. That is,
keep track of the distance travelled from the origin of each bifurcation in the ray structure. Since
we have an exponential search algorithm, f(i) = mi, the distance to the base of the ray is fixed and
linear, and hence will be a low order term in the asymptotic performance of the algorithm.

4. THE EXPERIMENTAL APPROACH

4.1. The Exploration. In this section we present an experimental verification of the performance
of our algorithm. This not only validates the worst case analysis, but indicates the types of results
that can be expected in practice.

In the simulation presented here, we posit the existence of an idealised range sensor with limited
range. The simulator returns accurate readings radially for a distance roughly equivalent to eight
times the radius of the virtual agent. Our results are only weakly dependent on the faithfulness of
the sensor in order to have an aspect of scalability to an actual robot.

The environment will grow in expanding concentric circles centered at the original location of
the robot. The radial distances will reflect the current “search depth” that the robot is operating at.
The concept that will be embedded here is the “Searching M-Concurrent Rays” idea, but with much
more functional flexibility. Thus the robot wakes and begins looking about along these level curves
of search depth. Initially the number of rays is 0. Figure 4 indicates the scenario thus far.

As the exploration begins the robot will work outwards along level curves. When an obstacle
is encountered the path bifurcates to accommodate this and the number of concurrent rays is then
incremented dynamically. Exploration continues as normal, only under the new circumstance of
an increased number of rays. This impacts the distance down the current ray that we will search

according to the theoretical optimal search ratio of f(i) =
(

m
m−1

)i
.
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FIGURE 4. A possible scenario. The robot upon waking, however, knows nothing
at all of the environment in which it finds itself.

As we progress through the environment, we see where the increments take place in figure 5.
These are labelled in the diagram for clarity albeit incorrectly. They are incorrect in reality since
decrements also occur when rays of the search have been exhausted2 .

FIGURE 5. The concentric regions indicate the explored area at the time when the
number of concurrent rays in increased. This occurs when an obstacle is encoun-
tered at a point in the middle of the exploration frontier within an area that was pre-
sumed to be a single ray, ie at a ray bifurcation.

2For instance the lower left region would certainly have been completely explored before theM = 5 vertex would be
discovered and hence would have resulted in removal from the list of open rays to explore along with a decrement in the
number of rays. So that by the time the M = 5 vertex is discovered there will actually be at most 3 active search rays,
however this is a pedantic issue.
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Thus we have an algorithm for extending the frontier of our search and we know that it is optimal
under the ideal circumstance of concurrent rays. We have a method to adapt it to the non-concurrent
situation that we are sure to run into in the real world, as our search paths bifurcate and unify, in
order to guide us in expanding our knowledge of the environment in a locality-centric manner.

5. SIMULATION

FIGURE 6. The original map which was used in the simulation.

Pictured are a series of iterations of a single run of our algorithm on a hand drawn, preconstructed
map representing perhaps a set of hallways in a building. The scope of the entire map is roughly
200× that of a real robot, for perspective sake. The original map is shown in figure 6.

The rest of the screen shots indicate the progress of the simulated robot at the end of each succes-
sive iteration. The extent of the map is not so large that a second cycle results in complete traversal
of the environment. This brief exhibit should suffice to indicate the nature of the progression of the
algorithm in simulation.
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6. CONCLUSION

In this paper we have considered efficiently searching with a moving robot in a planar environ-
ment containing obstacles. This is an extension of existing work that proves the asymptotic opti-
mality of spiral search in more abstract environments. Our work shows how to search a open or
polygonal environment in a manner that is efficient in comparison to the optimal distance that would
be travelling if the location of the goal were known in advance. This is accomplished by transform-
ing environments that are homeomorphic to star-shaped polygon into sets of concurrent paths, while
transforming other environments into sets of non-concurrent paths. These paths are then explored
with a search radius that increases as a logarithmic spiral. In the experimental work we present, the
feasibility and typical performance is illustrated.

There are several open questions posed by this work, some of which we are currently investi-
gating. When this approach is used in practice, the accrual of positional error (for example via
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odometry) is a real problem. This suggests that the optimal search strategy may involve returning
to previously-explored regions slightly more frequently that might be suggested by the analysis pre-
sented here.

A related issue is that most real range sensors have an accuracy that diminishes with distance, and
hence can be described in probabilistic terms. In some cases it may be preferable to search more
deeply in regions were visibility is obstructed in order to assure a uniform coverage of free space
along different paths. This suggests that probabilistic search may have a slightly different form from
that described here.

Finally, we are currently examining parallel implementations of search for use by multiple robots:
this leads to issues to how to subdivide the problem and how and when to merge partial results.
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