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Abstract— We present an approach to vision-based mo-
bile robot localization, even without an a-priori pose esti-
mate. This is accomplished by learning a set of visual fea-
tures called image-domain landmarks. The landmark learn-
ing mechanism is designed to be applicable to a wide range
of environments. Each landmark is detected as a local ex-
tremum of a measure of uniqueness and represented by an
appearance-based encoding. Localization is performed us-
ing a method that matches observed landmarks to learned
prototypes and generates independent position estimates for
each match. The independent estimates are then combined
to obtain a final position estimate, with an associated uncer-
tainty. Quantitative experimental evidence is presented that
demonstrates that accurate pose estimates can be obtained,
despite changes to the environment.

I. Introduction

In order for a mobile robot to perform its assigned tasks,
it often requires a representation of its environment, knowl-
edge of how to navigate in its environment, and a method
for determining its position in the environment. These
problems have been characterized by the three fundamen-
tal questions of mobile robotics, that is “Where am I?”,
“Where am I going?” and “How can I get there?”. This
paper addresses the first question, that of position esti-
mation for a robot located in a previously explored region
of the environment. The robot is equipped with a single
achromatic camera, and does not require an a priori es-
timate of its position. An accurate position estimate is
desired without any motion on the part of the robot. One
might imagine that the robot must consistently re-localize
itself after periodic shutdowns for maintenance. We build
on previous work by Sim and Dudek which demonstrated
that position estimation could be accurately performed in a
more constrained environment using a similar technique[1].
In this paper we extend that work to show more accurate
results, an approach to orientation recovery, and robustness
to modifications to the environment.

Our approach to the problem at hand uses visual fea-
tures, referred to as landmarks, to perform position estima-
tion, extracting these landmarks from a preliminary traver-
sal of the environment. In this work, landmarks are image-
domain features, as opposed to interpreted characteristics
of the scene. Candidate landmark selection is based on a
local distinctiveness criterion; this is later validated by ver-
ifying the appearance of the candidate landmarks against
a set of landmark prototypes. In contrast to methods such
as Markov localization[2], this method avoids an a priori
discretization of the state space and the associated tradeoff
between accuracy and high computational costs. Rather,
our method delivers highly accurate pose estimates with

low computational cost in both space and time. We also
obtain partial illumination invariance.

A. Outline of the Paper

Section II presents a general discussion of existing solu-
tions and other related work. Section III introduces our
method for position estimation with a general overview.
The model of visual attention that is employed for feature
extraction is presented in Section IV. Section V presents
our method for learning landmarks for the purposes of lo-
calization and Section VI presents the online method for
employing the learned landmarks in order to obtain a po-
sition estimate. Finally, the experimental results are pre-
sented in Chapter VII. Section VIII concludes with a dis-
cussion of the experimental results and possible directions
for future work.

II. Previous Work

Early solutions to the localization problem employed ge-
ometric triangulation methods first developed by cartog-
raphers and navigators. Sugihara, Krotkov, and Avis and
Imai each consider the problem of achieving landmark cor-
respondence given a map of known landmarks and a set
of bearings to observed landmarks [3], [4], [5]. Sutherland
and Thompson and Betke and Gurvits approach triangula-
tion methods from the perspective that the landmark cor-
respondence problem has been solved, but the bearings to
the observed landmarks cannot be precisely known [6], [7].
In all of these works, the problem of reliably extracting
landmarks from sensor data is ignored.

Given that it is often difficult to reliably extract land-
marks from sensor data, a number of methods have been
proposed which employ Kalman filters for achieving lo-
cally optimal correspondence between a map and ubiqui-
tous, but often noisy, sensor readings. Of such methods,
those employed by Smith and Cheeseman, and Leonard
and Durrant-Whyte are perhaps the best known [8], [9].
One difficulty with Kalman filtering techniques is that they
tend to rely on a good a priori estimate and therefore can
fail to converge to the correct solution. Other methods for
achieving optimal correspondence between sensor measure-
ments and a map include Lu and Milios, Beveridge, Weiss
and Riseman, and Boley, Steinmetz and Sutherland [10],
[11], [12]. Of particular note is work by Thrun, Fox and
Burghard which derives a Markov-based solution which
subsumes the Kalman filter [2]. These works all compute
a globally optimal pose estimate which presents issues of
computational efficiency and tractability.



2

A number of researchers have developed methods which
avoid the use of explicit features or maps. These meth-
ods express the sensor data as a function of the pose of
the robot, and attempt to invert this function. One such
technique, employed in work by Nayar, Murase and Nene,
Belhumeur, Hespana and Kriegman, and Jepson and Black
is Principal Components Analysis (PCA) [13], [14], [15].
These methods are similar to the Kalman Filter in that
they rely on a linear approximation to the underlying be-
haviour of the data, yet they differ in that they do not
rely on explicitly interpreted features but linearize the sta-
tistical variation of the data in order to choose maximally
discriminating features, which are unlikely to hold any ex-
plicit semantic value.

Other work which employs sensor inversion include
Dudek and Zhang, and Oore, Hinton and Dudek [16], [17],
which employ neural networks to invert edge statistics and
sonar charaterizations as a function of position. While neu-
ral networks have been shown to give good results for highly
nonlinear or complex input, they can be difficult to tune,
and tend to fail in the presence of outliers. Another sig-
nificant difficulty associated with the problem of sensor in-
version in general is that the function to be inverted may
not be not one-to-one, a situation which may not be easily
detected a priori.

III. Overview

Rather than relying on unstable interpretations of sensor
data or confronting issues of non-invertibility and outlier
sensor readings, our method seeks to characterise indepen-
dent observations of significant portions of what the robot
senses, and later recover those portions for pose estimation.
We achieve this by employing a model of visual attention
aimed at extracting the parts of a scene which are distinc-
tive, and characterizing those parts as a function of the
robot’s pose. In so doing, we can exploit an assumption
of local linear variation in the sensor data– an assumption
which is far less constraining than one of global linear vari-
ation. Furthermore, such a characterization should be ro-
bust to local changes in the environment, or partial sensor
occlusion.

Our method consists of two phases. In an initial, off-
line learning or exploration phase, a set of landmarks is
extracted from image data and grouped for future recogni-
tion. The learned groups, referred to as tracked landmarks,
are encoded using a principal components representation
of appearance, which is later exploited for charaterising
the landmark as a function of position. The on-line phase,
which is employed whenever the robot requires a pose esti-
mate, consists of detecting and classifying landmarks from
the robot’s current observations, and thereby computing a
pose estimate from the characterization of the landmark.
An outline of the method is depicted in Figure 1, and de-
scribed below.

• Off-line “Map” construction (Figure 1(a)):
1. Training images are collected sampling a range of

poses in the environment.

Candidate
Landmarks

. . .

Tracked Landmarks

Images sampling pose space from different positions

(a) Off-line training

Candidate
Landmarks

. . . Tracked Landmarks

Input image

Match

. . .
Merge

Final Pose Estimate

Independent Pose
Estimates

(b) Online pose estimation

Fig. 1. An overview of the method.

2. Landmark candidates are extracted from each image
using a model of visual attention.

3. Tracked Landmarks are extracted as sets of can-
didate landmarks over the configuration space.
Tracked landmarks are each represented by a char-
acteristic prototype, obtained by encoding an ini-
tial set of candidate landmarks by their principal
components decomposition. For each image, a local
search is performed in the neighbourhood of the can-
didate landmarks in order to locate optimal matches
to the templates.

4. The set of tracked landmarks is stored for future
retrieval.

• On-line localization (Figure 1(b)):
1. When a position estimate is required, a single image

is acquired from the camera.
2. Candidate landmarks are extracted from the input
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image using the same model of visual attention used
in the off-line phase.

3. The candidate landmarks are matched to the learned
templates using the same method used for tracking
in the off-line phase.

4. A position estimate is obtained for each matched
candidate landmark. This is achieved by comput-
ing a reconstruction of the candidate based on the
decomposition of the tracked candidates and their
known poses in the tracked landmark. The result is
a position estimate obtained as a linear combination
of the views of the tracked candidates in the tracked
landmarks.

5. A final position estimate is computed as the robust
average of the individual estimates of the observed
candidates.

In practice we use a statistical measure of local image
content for candidate landmark extraction. Good candi-
dates for a statistical measure include saliency measures
such as edge density, or local symmetry, or the output of
a matched filter. For the purposes of this work we employ
a measure of edge density. Such a measure has strong lo-
cal structure in the sense that the output tends to vary
smoothly under local changes in camera pose. The ob-
jective of this definition is to produce observed landmarks
which are reasonably stable and repeatable image features,
distinctive in appearance and containing a rich body of in-
formation concerning the structure of the image as a whole.
Furthermore, such characteristics can be rapidly and easily
extracted from an image, with the added benefit that they
tend to be robust to variations in illumination conditions.

IV. Visual Landmarks

Edge data is often employed in computational vision to
extract geometric information from a scene while providing
robustness to illumination effects. It is well known, how-
ever, that the interpretation of the putative edge elements
in an image is complex and subject to instability [18], [19],
[20]. The distribution of edge elements in a scene, how-
ever, is closely related to basic scene structure, and yet can
offer greater stability for tracking. Furthermore, the edge
element distribution shares similar advantages with the un-
derlying edge map, such as robustness to variations in il-
lumination. One can also expect that a local description
of the edge distribution will vary smoothly with changes in
camera pose.

To this end, we formulate our landmark detector as a fil-
ter that extracts local maxima from the edge density D of
the image. The purpose of the landmark detector is to lo-
cate candidate landmarks in an image. D(x, y) is measured
as the sum of the edge magnitudes over a small subwindow
(on the order of 20 by 20 pixels) centred at position (x, y)
in the image. Figure 2 shows the results obtained from run-
ning the landmark detector on an image obtained in our
lab, with the image depicted on the left and the density
function D depicted on the right. The landmark candi-
dates are superimposed as squares. This idea is presented

in greater detail in Bourque, Dudek and Ciaravola, and
Sim and Dudek [21], [1].

Fig. 2. Detected Landmarks in an Image. The left image is the
original and the density functionD is depicted on the right, where
darker intensity represents large values of D. In each image,
candidate landmarks are drawn as squares.

V. Tracking

We have developed the notion of an image-domain land-
mark as a local maximum of edge density. A landmark rep-
resents the basic feature which we employ for localisation,
a task which will be accomplished using a characterisation
of the landmark’s appearance as a function of the cam-
era’s position in configuration space. In order to achieve
this characterisation, however, the landmark must first be
tracked.

Our technique for landmark tracking operates as follows.
Given an initial set of prototypes, that is, observations of
a set of unique candidate landmarks, a tracked landmark,
is constructed for each prototype by identifying matches
to the prototype amongst the set of all observed land-
mark candidates. In practice, since landmark candidates
can demonstrate local variation in position as the camera
moves, a local search in the image neighbourhood of a can-
didate may be required. We refer to the task of matching
a single candidate landmark to a prototype as landmark
recognition, and the task of building tracked landmarks
as landmark tracking. Figure 3 provides an overview of
the training process presented thus far; candidate land-
marks are detected as local maxima of edge density and
then tracked into sets of tracked landmarks.

We represent the appearance of landmarks (both candi-
dates and prototypes) using a principal components rep-
resentation of the intensity image in the neighbourhood of
the candidate [22], [13], [23]. For the purposes of match-
ing and tracking, recognition is achieved by selecting the
prototype with least Euclidean distance in the subspace
from the candidate under consideration. Figure 4 shows
a set of landmark prototypes (top), and the correspond-
ing eigenvectors, or eigenlandmarks constructed from the
prototypes (bottom).

In order to describe the environment, images must be
obtained from representative viewpoints. For the purposes
of this discussion, let us assume that we select viewpoints
that cover the configuration space in a uniform grid. This
is by no means a requirement or constraint, but rather a
simplifying assumption. In order to achieve computational
efficiency, viewpoints are selected such that the camera is
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Fig. 3. The training process: Candidate landmarks are detected as local maxima of edge density and then tracked into sets of tracked
landmarks.

Fig. 4. Landmark Prototypes (top) and Eigenlandmarks (bottom).

facing in a consistent orientation1. Once the sample im-
ages have been acquired, they are used to automatically
learn a suitable set of tracked landmarks for subsequent
positioning.

The set of tracked landmarks is initially defined by the
set of single candidate landmarks observed in a selected
bootstrap image from the database. These candidate land-
marks, which become prototypes for matching, are selected
in this manner in order to guarantee uniqueness. Typically,
we select the initial bootstrap image to be the one that is
taken from a camera position closest to the centroid of all
visited camera positions. Given this initial set of proto-
types, the candidate landmarks in each of the remaining
images are considered for inclusion in one of the tracked
landmarks. Consideration for inclusion in a set is based on
the following methodology:

Algorithm 1 (Tracking algorithm for a single image.) 1.
For each landmark li in the image, and

(a) for each prototype tj in the database,

i. perform a local search in the neighbourhood of li
in the image for a better match to tj . If a better
match l′ is found, it replaces li as a candidate
match to tj .

(b) Select the prototype tj for which the best match to
li was found in step 1a.

2. If li is the best match to tj over all other landmarks

1While this constraint can be readily relaxed, we will later demon-
strate a method for estimating orientation under the conditions that
the database orientation is fixed.

in the image and li matches tj within a reasonable
threshold, add it to the tracked landmark represented
by tj , otherwise, create a new tracked landmark with
li as the prototype.

The goal of this method is to grow landmark sets as much
as possible in configuration space so that a candidate land-
mark can be matched to the correct target over a large
portion of the space. The local search in the neighbour-
hood of li is performed in order to counter the effects of
any instabilities in the underlying landmark detector. Fig-
ure 5 shows a typical landmark set. Each thumbnail image
corresponds to the landmark as detected in the image taken
at the corresponding grid position in configuration space.
Grid positions with no corresponding thumbnail image in-
dicate positions in the configuration space where no land-
mark candidate was found that matched the prototype.

Fig. 5. A typical landmark set. Each thumbnail corresponds to the
landmark as detected in the image taken at the corresponding
grid position in camera space.

A tracked landmark is the essential modelling
primitive that defines the “map” and which is used
for subsequent correspondence and position estima-
tion. It should be noted that the tracking method makes
no assumptions regarding position within the image, which
somewhat relaxes some constraints that could be imposed
on the pose of the camera.
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VI. Pose Estimation

On-line localisation is performed by matching candidate
landmarks from the robot’s current view to the tracked
landmarks, and interpolating a parameterization of the set
of tracked candidates. This section discusses the position
estimation procedure given that the association between
a candidate landmark and a tracked landmark is known.
We then consider a method for combining the individual
position estimates from several matches to obtain a robust
estimate.

When a position estimate is required, an image is ob-
tained and landmarks are extracted by selecting the local
maxima of edge density, and the extracted candidates are
then matched to the tracked landmarks in the database, us-
ing the procedure outlined above. Once landmark match-
ing is accomplished, we exploit an assumption of local lin-
ear variation in the landmark characteristics with respect
to camera pose in order to obtain a position estimate. If
this assumption is true, then the encoding of the land-
mark observed from an unknown camera position is a lin-
ear combination of the encodings of the tracked models,
allowing us to interpolate between the sample positions in
the database. We will later present a method for quantita-
tively evaluating the reliability of the linearity assumption,
which will allow us to obtain a measure of confidence in
the results.

Let us define the encoding kl of a landmark candidate l
as the projection of the intensity distribution in the image
neighbourhood represented by l into the subspace defined
by the principal components decomposition of the set of all
tracked landmark prototypes.

kl = UT l (1)

where l is the local intensity distribution of l normalised to
unit magnitude and U is the set of principal directions of
the space defined by the tracked landmark prototypes.

Let us now define a feature-vector f associated with a
landmark candidate l as the principal components encod-
ing k, concatenated with two vector quantities: the image
position p of the landmark, and the camera position c from
which the landmark was observed:

f = k p c (2)

where, in this particular instance alone, the notation |a b|
represents the concatenation of the vectors a and b.

Given the associated feature vector fi for each landmark
li in the tracked landmark T = {l1, l2, . . . , lm}, we con-
struct a matrix F as the composite matrix of all fi, ar-
ranged in column-wise fashion, and then take the singular
values decomposition of F,

F =
[

f1 · · · fn
]

= UFWVT (3)

to obtain UF , representing the set of eigenvectors of the
tracked landmark T arranged in column-wise fashion. Note
that since ci is a component of each fi, UF encodes camera

position along with appearance. Now consider the feature
vector fl associated with l, the observed landmark for which
we have no pose information - that is, the c component of fl
is undetermined. If we project fl into the subspace defined
by UF to obtain

g = UT
F fl (4)

and then reconstruct fl from g to obtain the feature vector

f ′l = UFg (5)

then the resulting reconstruction f ′l is augmented by a cam-
era pose estimate that interpolates between the nearest
eigenvectors in UF . In practice, the initial value of the
undetermined camera pose, c in fl will play a role in the
resulting estimate and so we substitute the new value of c
back into fl and repeat the operation, reconstructing f ′l un-
til the estimate converges to a steady state. This repeated
operation, which constitutes the recovery of the unknown
c is summarised in Figure 6.

Figure 7 illustrates a set of estimates obtained for the
landmarks detected in a single image. While most of the es-
timates are reasonably accurate, one observation is clearly
an outlier, most likely produced by nonlinearities in the
tracked landmark, poor tracking, or a match that is alto-
gether incorrect. We now consider a method for combining
the individual estimates obtained from each observed can-
didate landmark, taking into consideration the presence of
outliers and the reliability of the tracked landmarks.
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Fig. 7. Position estimate for a single test image. Each ’x’ marks an
estimate as obtained from a single landmark in the image. The ’o’
at position (12.7, 18, 2) represents the true position. The training
images were obtained at the locations of the grid intersections.

We employ the approach used by Smith and Cheeseman
for combining estimates with associated error models [8].
An error model for a particular tracked landmark T is con-
structed using cross-validation[24]. That is, we measure
how well each observed candidate landmark in T is pre-
dicted by the rest of the candidate landmarks in T . This
is a quantity which is fixed for a given tracked landmark,
and hence can be computed a priori. The error model E
for T is then described as an approximate transform (AT)
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Fig. 6. The recovery operation. The unknown camera position c associated with a landmark l is recovered by repeatedly reconstructing the
landmark feature vector in the subspace defined by the matching tracked landmark.

with two components, X̂ being the the average displace-
ment from the true position ct(i) for all li of T , and C
being the total covariance of the set of displacements.

E =
{

X̂,C
}

(6)

Outlier detection is performed by finding the median po-
sition estimate X̂m, and computing a median covariance,
Cm from the set of predictions and their associated co-
variances (recall that the set of predictions is defined by
the predictions computed for each candidate landmark ob-
served in the image). Cm defines an ellipsoidal region of
configuration space, the scale of which is controlled by the
user, centred at X̂m, within which predictions can be con-
sidered to be acceptable. Figure 8 depicts a set of position
estimates (the set of all diamonds), the median estimate
(the ellipse) and those estimates which are considered ac-
ceptable for merging, (the solid diamonds). The ‘+’s rep-
resent locations at which training images were obtained.

Fig. 8. A set of filtered predictions. The ellipse corresponds to the
covariance of the median AT. Solid diamonds represent retained
predictions whereas hollow diamonds represent rejected predic-
tions. The ‘+’s represent a portion of the locations at which
training images were obtained.

Once outliers have been filtered, the final step in obtain-
ing a position estimate is to merge the individual estimates
using the merging operation defined for ATs, which derives
the Kalman gain of the associated covariances in order to
compute a weighted average of the input estimates. For
greater detail, refer to Smith and Cheeseman [8].

A. Recovering Orientation

Throughout our presentation, we have constrained the
pose of the observer such that it faces in a consistent ori-
entation. While one could conceivably train the robot in a
higher dimensional configuration space, the computational
and storage costs would be too high. We propose instead
that orientation can be recovered given a database that is
trained for only one orientation. This is accomplished by
measuring the degree to which the set of independent pose
estimates are consistent with one another. to this end, we
employ a consistency measure,

M =
C

GPR
(7)

where

C =
√
σ2
x + σ2

y (8)

is the square-root of the sum of the variances (one for each
axis of the trained configuration space) of the set of inde-
pendent pose estimates obtained for each matched land-
mark candidate in the image, G is the percentage of inde-
pendent pose estimates which are not rejected as outliers, P
is the percentage of ‘matched’ candidate landmarks - that
is, the ratio of the number of successful candidate-tracked
landmark matches out of all detected landmark candidates,
and finally, R is the raw number of retained independent
pose estimates. Clearly, lower values of M indicate that
there is good consistency between the measurements ob-
tained from the image and the training database.

Given our consistency measure, M , we can recover the
robot’s orientation by rotating the robot through 360o, tak-
ing an image at each orientation (or a set of sample orien-
tations) and finding M . The orientation at which M is
minimised is considered to be the correct orientation.

Figure 9 plots M for a series of orientations taken at 10o

increments from the scene considered in the experimental
results. The correct orientation is correctly predicted to be
0o.

The results in Figure 9 indicate that the measure is use-
ful for recovering the orientation of the robot when it is
unknown. This result greatly increases the utility of the
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Fig. 9. The consistency measure plotted as a function of orientation.
The correct orientation is 0o.

method, since the robot pose need not be constrained while
online (provided that it is constrained during the training
phase, which is supervised), and dead-reckoning errors in
orientation can be corrected.

VII. Experimental Results

Fig. 10. An Indoor Environment

Our technique has been tested using a variety of different
robots, both static and mobile. We present here results
obtained using a mobile robot platform.

An indoor scene is depicted in Figure 10. In this scene,
a camera was mounted on an RWI B-12 mobile robot (Fig-
ure 11). In addition, a split-beam laser was mounted on
the back of the robot, and pointed at the floor, in order
to obtain ground truth by accurately positioning the robot
by hand to within 0.5cm of the desired pose, and oriented
to within 1.0o. Training images were taken at 20.0cm in-
tervals over a 2.0m by 2.0m grid. Despite the good dead
reckoning, the unevenness of the floor led to some variation
in image alignment.

Once training images were collected, a series of 30 test
images were taken from random positions in order to test
the method. Figure 12 presents the set of estimates ob-
tained from the method, plotted against their ground-

Fig. 11. The robot with mounted camera.

truth. The mean error in position is 6.3cm or 31% of the
sample spacing.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

X coordinates in cm

Y
 c

oo
rd

in
at

es
 in

 c
m

Pose estimates and corresponding ground truth

Fig. 12. The set of pose estimates obtained using the method. The
mean estimation error is 6.3cm.

In order to test the claim that the method is robust under
minor changes to the environment, five more test images
were taken of the scene, with one of the foreground chairs
moved back against the wall (Figure 13).

Figure 14 depicts the set of results obtained for the five
test images. The mean error is 9.4cm. Clearly, the method
works very well in the face of a change which would pose
serious difficulties for many existing localisation solutions.

VIII. Conclusions

This paper has presented a method for estimating the
position of a mobile robot, without an a priori estimate.
This is accomplished by learning a set of visual features,
known as landmarks, candidates for which are detected as
local maxima of a measure of distinctiveness. Landmark
candidates are then grouped into tracked landmarks : sets
of candidates which correspond to the same visual region
of the environment, as observed from different viewpoints.
Grouping is achieved by matching subspace encodings of
the candidates, perhaps with adjustments in position in the
image in order to improve matching. Online position esti-
mation is performed by detecting candidates and matching
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Fig. 13. Altered Scene
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Fig. 14. Results from the altered scene. The mean estimation error
is 9.4cm.

them to the tracked landmarks. Each match is used to
generate a pose estimate by employing a principal com-
ponents reconstruction of a feature vector which encodes
both appearance and image geometry. The experimental
results indicate that the method is robust for a typical in-
door environment. In previous work, we demonstrated the
robustness of a similar method for a more constrained en-
vironment [1].

To conclude, we have presented a method for image-
based mobile robot localization which exhibits many ad-
vantages over both traditional triangulation and optimiza-
tion methods and recent feature-based and principal com-
ponents methods. This was achieved by exploiting the
strengths of both solution domains. Experimental results
indicate that the method is suitable for practical, real-
world implementation.
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