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Abstract

We consider the robot exploration of a planar graph-
like world. The robot’s goal is to build a complete map
of its environment. The environment is modeled as an
arbitrary undirected planar graph which is initially un-
known to the robot. The robot cannot distinguish ver-
tices and edges that it has explored from the unexplored
ones. The robot is assumed to be able to autonomously
traverse graph edges, recognize when it has reached a
vertex, and enumerate edges incident upon the current
vertex. The robot cannot measure distances nor does it
have a compass, but it is equipped with a single marker
that it can leave at a vertex and sense if the marker
is present at a newly visited vertex. The total number
of edges traversed while constructing a map of a graph
is used as a measure of performance. We present an
efficient algorithm for learning an unknown, undirected
planar graph by a robot equipped with one marker. One
of the main results of this paper is to show that our
strategy leads to performance that is typical linear in
the size of the graph. Experimental results obtained by
running a large collection of example worlds are also
presented.

1 Introduction

In this paper we present a new algorithm for the ex-
ploration of graph-like environments by a mobile robot.
This builds on previous methods for the exploration
and mapping of environments in the absence of metric
information. Our approach makes the assumption that
the environment can be represented by a planar graph.
This assumption permits mapping and exploration to
take place much more efficiently than with previously
published methods.

In this paper we assume that a robot is able to define
a topological representation of its environment; that is,
a graph. We assume that the robot can move between
the nodes of this graph and do not concern ourselves

in this paper with the particulars of how this might be
achieved. A purely topological representation is devoid
of metric information, including edge lengths or Carte-
sian coordinates. Techniques that are able to build an
environmental map with only such information can be
viewed as assuring worst-case performance bounds for
environments with noisy metric observations.

In this paper we assume that the robot can move
between the nodes of a graph. Any any time, the robot
can sense some signature associated with its current
node, but we cannot be certain that this signature is
unique. In practice, such a signature might be the color
of the room it is in, or the bounding contour of its
current location. Since we assume that the robot can
move between nodes, the simplest signature one might
postulate is simply the number of edges (e.g doors) in-
cident on the current node. In this paper, since we are
concerned primarily with worst-case bounds, we will
consider only the degree of the current node as a signa-
ture. We also assume that the robot can enumerate the
edges incident on its current location in some consistent
manner (e.g it can count the doors to the current room
in a clockwise fashion). This allows it to take the n’th
door out of its current room using the door by which
it entered as a reference.

Note that the we do not assume that the robot can
associate a unique label with either a node or an edge
using sensory information. With only such information,
a robot cannot uniquely build a map of an unknown
environment. For example, a 3 node cycle is indistin-
guishable from a 4 node cycle, since in either case the
robot simply observes a non-terminating sequence of
rooms with two exits. By allowing the robot to sense a
movable marker, however, any graph-like environment
can be mapped in a number of moves bounded by a
polynomial in the number of nodes.

In the next section, we will briefly discuss relevant
background research. Section 3 provides necessary def-
initions and a formal description of the problem. In
Section 4 we present our proposed strategy for map-



ping an unknown planar graph-like world. Section 4.3
presents a counter-example for non planar graphs. Fi-
nally, in Section 5 experimental results are presented
together with a comparison to previous work.

2 Background

The importance of topological representations of the
environment has been observed by several researchers
in both mobile robotics and human cognitive science.
In previous work, Chatila et al. [CL85] considered the
creation of topological map representations from met-
ric data while Kuipers and Byun [KL88] considered
the synthesis of metric maps from topological repre-
sentations created by servo-like procedures. Several
authors have also considered hybrid maps that com-
bine aspects of both metric and topological represen-
tations [Ark90, EM92]. Kortenkamp and Weymouth
considered the use of multiple sensing modalities to in-
stantiate the nodes of a graph-like (topological) repre-
sentation [KW94]. Other work has also considered the
theoretical issues involved in fully covering an unknown
graph using topological exploration [DP90].

In previous work it has been observed that while
topological mapping with ambiguous signatures with
absolute certainty is infeasible, the use of a single mov-
able marker allows efficient mapping. With one marker,
a mapping algorithm is possible that uses a number
of robot steps which is a low-order polynomial in the
number of nodes in the graph that represents the envi-
ronment [Dud88, DJMW91]. Specifically, for an arbi-
trary graph, the number of robot moves, referred to as
the mechanical complexity has a worst-case asymptotic
complexity of 6nm or O(nm) where n is the number of
nodes in the graph and m is the number of edges in the
graph. The key notion is that by moving a marker to
incrementally determine the relationship of additional
nodes to an expanding known subgraph, a complete map
of an initially-unknown graph-like environment can be
efficiently constructed. For arbitrary (and hence poten-
tially non-planar) graphs, the incremental exploration
is substantially complicated by the need to determine
how to connect newly discovered nodes to the existing
graph.

Relative efficiency of this type of marker-based strat-
egy was examined in comparison to other “footprint”
methods in recent definitive work by Deng and Mirza-
ian [DM96]. In essence, it is difficult to improve on
this worst-case complexity bound for marker-based ex-
ploration for arbitrary graphs.

Other work has considered the representation of pos-
sible alternative models of the environment using topo-

logical exploration without any markers [DFH92]. This
becomes more efficient if even a limited amount of met-
ric data is available, for example constraining local re-
lationships [DMW97]. Given a topological map of an
environment, it is also possible to consider the feasi-
bility of verification of the map or the robot’s posi-
tion [DFH93, DJMW97]. Even in purely metric en-
vironments, several authors have considered represen-
tations that explicitly define locations associated with
distinctive sensor signatures [GMR92] or with a geo-
metric tree [Kle94] that facilitate vertex-based position-
ing or exploration.

3 Problem Specification

In this section we formally specify the mapping prob-
lem. The problem is to generate a map in the form of
a graph G = (V,E), where V are the nodes (or ver-
tices) and E and the edges, of an unknown environment
which is also represented by a graph G′ = (V ′, E′). At
the completion of the algorithm, the graphs G and G′

must be isomorphic to one another.
At any time the robot is located in some node of

the graph. It can sense a local non-unique signature
of its current node, for example the degree of the node
(since the signature is non-unique, we do not require
it in the current algorithm and it will not be discussed
further). It can also detect the identity of a labelled
marked in a room that it enters. It can also implicitly
detect the edge by which it entered the current vertex
and it can enumerate the (other) edges incident upon
the vertex: that is, it can establish a local ordering of
the edges with respect to the one it entered by. Note
that the robot cannot sense the actual (absolute) label
associated with either a vertex or an edge.

The robot moves from one vertex to another by se-
lecting an edge incident upon the current vertex and
moving along it. This can be expressed by a transition
function δ(vj , Ei,j , s) = vk where the robot is in vertex
vj , having entered via edge Ei,j and s is the index of
the edge it chooses to leave by, numbered with respect
to Ei,j . (e.g. “it is in the living room, having entered
by the door behind it, and it now leaves by the 3rd door
counted clockwise from it’s left.”) If it finds a marker
in its current room, it can elect to pick up the marker
and carry it. At any time, it can drop any marker.

4 Approach

In this section we present an algorithm for exploring
a planar graph with typically linear cost. The algo-



rithm is incremental and depends on the maintenance
of an explored subgraph (subject to verification) upon
which newly explored parts of the graph are merged.
In contrast to the technique proposed by Dudek et
al [DJMW91] where a single vertex is added at a time,
here a closed path (an ear 1) is added each time. A sin-
gle marker is used in order to mark the starting node
of the explored ear.

Before we continue with a description of the algo-
rithm, we will outline some useful definitions. A vertex
in our subgraph is called fully explored if every incident
edge to it is fully explored. An edge of the graph is
considered fully explored if the robot has traversed it in
both directions. The edge that the robot is following
on the way out of a vertex is called outgoing edge, the
edge by which the robot arrives to a vertex is called
incoming edge.

The basis of the algorithm is a recursive depth first
exploration. From each vertex, the robot first explores
all incident edges and then proceeds to explore all
neighboring vertices, as follows:

While Unexplored Edges Exist

For Every Unexplored Vertex Do

For Every Unexplored Edge Do

Drop Marker

Explore Ear

Merge Ear to Existing Subgraph

Explore Every Adjacent Vertex

4.1 Exploring an Ear

The main component of the exploration algorithm
is the exploration of a closed path called an ear. Any
planar graph can be decomposed into a union of ears.
At every vertex where there is an unexplored edge the
robot drops the marker in order to mark the starting
vertex and then starts the exploration by making only
“right turns” until it returns to the marked vertex.
Upon arrival at a new vertex, the robot has an ori-
entation set (e.g. clockwise) which determines the next
edge to be traversed. For every new vertex visited, a
node is instantiated and added to the new ear. When
the robot arrives at the marked vertex it knows the
number of edges traversed p, and the incoming edge,
but it has no method of knowing the outgoing edge
by which it started the exploration. In order to con-
nect the newly explored ear to the explored subgraph
the robot methodically traverses the ear in the oppo-
site direction. 2 More specifically, first the robot picks

1Any connected planar graph can be decomposed into a set
of cycles which are called ears (Maon et al [MSV88]).

2The following step could be eliminated by adding a second
marker. The second marker is dropped after following the first

up the marker and backtracks to the previous vertex
visited where it drops the marker, then the robot con-
tinues backtracking until it either reaches the marked
vertex or it has performed p edge traversals. There are
three different cases depending on the topology of the
explored graph:

Empty Ear: After p+1 traversals the robot found the
marker. In that case the robot has explored an empty
ear and the incoming edge is adjacent to the outgoing
edge (see Figure 1a). There are no nodes inside such
an ear as at every node the immediate neighbor was
selected.

Non Empty Ear: After p + 1 traversals the robot
has not found the marker. In that case the robot has
explored an non empty ear and there is a number of
edges between the outgoing edge and the incoming edge.
A sequential one-step search of every edge adjacent to
the vertex would reveal the number of edges between
the outgoing edge and the incoming edge (see Figure
1b). There are nodes inside an non empty ear but these
nodes are completely enclosed by the explored ear, e.g.
there are no edges between the vertices inside and any
other vertices in the graph except edges to vertex V0.
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Figure 1: (a) Exploring an empty ear, (b)Exploring a
non empty ear. In both case from Vertex V0, outgoing
edge V1, incoming edge Vn. The order of traversal is
clockwise.

Isthmus: The Marker is found after p − 1 steps. In
that case the incoming edge is identical to the outgo-
ing edge (see Figure 2). The explored path encloses a
subgraph that has a single connection to the rest of the
graph via the vertex V0.

outgoing edge thus marking the outgoing edge that started the
ear.
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Figure 2: Exploring an Isthmus. Returning through
the same edge it exited, incoming and outgoing edges
are the same.

4.2 Merging an Ear

After a new ear is constructed and the incoming and
outgoing edges are known the explored subgraph has to
be updated with the new information. A recursive pro-
cedure is applied in order to merge the newly explored
vertices with the existing ones. When two vertices are
merged then their neighbors are also merged according
to the following rules:

• If the neighbors along a corresponding edge for
node vi and vj are different, it means that the
neighboring nodes represent the same physical
node. Thus we need to merge them.

• If the neighbor along a corresponding edge is un-
known for vi then the neighboring node of vj be-
comes the neighbor of vi.

Figure 3 illustrates this idea in a small graph.

4.3 Non Planar Graphs

The efficiency of this approach derives from the fact
that it is specific to planar graphs. This is illustrated in
Figure 4. After following a non-planar edge the robot
duplicates the map and continues to make copies ad
infinitum.

5 Results

Experiments were carried out on random planar
graphs in order to obtain a statistical evaluation on
the typical cost of our algorithm. In addition the ex-
ample used by Dudek et al [DJMW91] was used for
comparisons.
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Figure 3: (a) The model world. (b) The first ear is
explored from vertex V1 starting from the edge e1 =
(v1, v2). (c) The second ear is explored starting from
the edge e2 = (v1, v3). (d) The second ear is merged
with the explored subgraph.

5.1 Building Random Planar Graphs

The first task in the experimental work was the ro-
bust construction of random planar graphs. In order
to build a random but connected planar graph the fol-
lowing process is followed. A set of random points is
created in 2D, and the Delaunay triangulation of them
is constructed [PS85, For87] (see Figure 5). The Delau-
nay triangulation leads to a dense planar graph out of
which random edges could be deleted in order to create
a random graph. In order to eliminate edges randomly,
weights are assigned on every edge, the minimal span-
ning tree (MST) is constructed, and every edge of MST
is marked as undeletable. Finally, from a dense graph
of V (number of vertices), and E (number of edges)
(Figure 5) a random graph could be constructed with
the same number of vertices (V ), and any number of
edges from V −1 (keeping just the spanning tree), up to
E (the dense Delaunay triangulation). The above pro-
cedure ensures that the graph stays planar, and that
an ordering of the edges could be obtained for every
vertex by radially ordering the edges clockwise. For
example typical values for the generated graphs are:
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Figure 4: (a) The model world (non-planar graph). (b)
The map after traversing edges 1− 2 and 1− 7 (c) The
map after traversing edges 2 − 4, 2 − 3 and 2 − 7 (d)
The map after traversing edges 7́ - 6́ and 7́ - 1́.

starting with one thousand random points the minimal
spanning tree would have 999 edges and the Delau-
nay triangulation had 2980 edges (for a random sam-
ple). Random graphs (V,E) could be constructed with
V = 1000 and E ∈ [999, 2980] by following the above
procedure.

5.2 Statistical Analysis

Using the above method multiple edge arrangements
can be randomly created from a set number of ver-
tices. Consequently, experiments could be performed
with different graphs for a set number of vertices (V )
and varied number of edges (E), the ratio of the number
of edges over the number of vertices (n = E/V ) repre-
sents the density of the graph. In certain instances of
sparse graphs the robot traverses almost the complete
graph before making a merge, thus creating duplicate
images of the whole graph during the exploration pro-
cess thus increasing the cost.

The mechanical complexity of the exploration al-
gorithm is measured with the number of moves (edge
traversals) In the Figures 7, 8, 9, the results for 100, 500
and 1000 node graphs are displayed, the edge density
varies from one to three, and for each pair of (V,E) ten
different graphs were created and explored. For every

Figure 5: The Delaunay triangulation of a set of ran-
dom points.

(a) (b)

Figure 6: (a) The graph of Figure 5 with an arbitrary
spanning tree highlighted. (b) The same graph with
five edges (not in the spanning tree) deleted.



edge density value, minimum, maximum and average
values are presented.
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Figure 7: Complexity of the exploration of 100 vertices
graphs.
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Figure 8: Complexity of the exploration of 500 vertices
graphs.

On average the number of translations is linear in
the number of edges, this is more evident when for an
average edge density of two, random graphs where cre-
ated starting with 100 nodes up to 1000 nodes. As
can be seen in Figure 10 the minimum , maximum and
average values all increase linearly to the number of
vertices/edges.

5.3 Comparative results

Dudek et al. demonstrated their algorithm in a
graph representing the Toronto underground complex,
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Figure 9: Complexity of the exploration of 1000 vertices
graphs.
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Figure 10: For edge density n = 2 and graph sizes
from 100 to 1000, the number of translations increases
linearly.



(see Figure 11) extending under much of the down-
town core of the city [DJMW91]. In their experiments
the robot was placed in the upper left vertex and was
equipped with a single marker. In their experiments
the robot needed 5134 steps to fully explore the graph.
Using the method presented here, we conducted the
same experiment and the resulting number of steps was
reduced to 433.

Figure 11: Graph of the Toronto underground complex.

6 Conclusions

In this paper we proposed a new strategy for explor-
ing unknown planar graph-like environments with help
of a single marker. Though applicable only to planar
graphs, it is a significant improvement over previous
methods. Thousand of experiments were carried on
random environments verifying a linear average cost of
the exploration, based on the number of edges.

This approach can also be extended to environments
that include both metric and topological data. We are
currently exploring this using vision-based sensing.
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