
DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998 1

SPOTT: A Predictable and Scalable Architecture

for Autonomous Mobile Robot Control

John S. Zelek and Martin D. Levine

Abstract|A robot control architecture called SPOTT1 is
proposed and implemented as a soft real-time system of con-
currently executing and co-operating modules. What dis-
tinguishes SPOTT from other architectures with a behav-
ioral control component is that (1) it is able to guarantee
task completion in certain scenarios; and (2) it is scalable to
di�erent tasks, control laws, computational resources, and
robot platforms. The dynamic path planning module's op-
timality properties give SPOTT its task completion guar-
antees. Scalability claims are make possible because of the
(1) modularity of the behavioral control programs; and (2)
SPOTT's software architecture.
SPOTT consists of various components with both delib-

erative and reactive properties: a behavioral controller, a
local dynamic path planner, and a global path planner. In
addition other components include a map database and a
graphical user interface. The behavioral control formalism
is called TR+ and is based on an adaptation and extension of
the Teleo-Reactive (TR) formalism. TR+ control rules (i.e.,
condition-action pairs) are structured as modular software
components. TR+ conditions are based on sensed and in-
ternal model states and TR+ actions either a�ect actuator
control or perform map database maintenance. The local
dynamic path planner is based on a potential �eld method
using harmonic functions, which are guaranteed to have no
spurious local minima. The global planning module advises
the local planning module on the local e�ect of the global
goal. A real-time and parallel implementation of SPOTT
using a message passing software package called PVM has
been developed and tested across a collection of interchange-
able heterogeneous workstations. Navigational experiments
have consisted of moving two di�erent robot platforms in
a structured o�ce and an unstructured laboratory environ-
ment to known spatial locations with no or a partial a priori
map.

Keywords| autonomous mobile robot, navigation, dy-
namic path planning, software architecture, soft real-time,
distributed processing

I. Introduction

There is a variety of potential applications for mobile
robots in such diverse areas as forestry, space, nuclear reac-
tors, environmental disasters, industry, and o�ces. Tasks
in these environments are often hazardous to humans, re-
motely located, or tedious. Potential tasks for autonomous
mobile robots include maintenance, delivery, and security
surveillance, which all require some form of intelligent nav-
igational capabilities. A mobile robot will be a useful ad-
dition to these domains only when it is capable of (1) func-
tioning robustly under a wide variety of environmental con-
ditions, (2) operating without human intervention for long

John S. Zelek is with the Engineering Systems & Computing Pro-
gram, School of Engineering, University of Guelph, Guelph, ON, N1G
2W1, Canada
Martin D. Levine is at the Centre for Intelligent Machines (CIM),

Department of Electrical Engineering, McGill University, Montreal,
QC, H3A 2A7 Canada.
1A System which integrates Potential �elds for planning On-line

with TR+ program control in order to successfully execute a general
suite of Task commands.

periods of time, and (3) providing some guarantee of task
performance. The environments in which mobile robots
must function are dynamic, unpredictable and not com-
pletely speci�able by a map beforehand. In order for the
robot to successfully complete a set of tasks, it must dy-
namically adapt to changing environmental circumstances.

Biological creatures apparently execute many tasks in
the world by using a combination of routine skills without
doing any extensive reasoning. In recent years researchers
have used this as a guide to formulate behavioral archi-
tectures for robot control [1]. A behavior is the result of
executing a collection of situation-action rules (i.e., control
law's). Researchers have tried to extend this approach by
studying problems such as how the rule resultants are com-
bined, what rules to encode, and how a behavioral program
is integrated with goal-directed planners [2].

The proposed architecture - SPOTT - does not con�ne
itself to expressing all control laws in the form of logic
(i.e., as in behavioral architectures) but in addition con-
currently executes a representational-based approach (i.e.,
potential �eld) for providing goal-directed navigation. The
path planner can respond instantaneously giving it reactive
properties but with some deliberation it is able to produce
optimal paths. The behavioral programs are structured
around the various aspects of the navigation problem as
opposed to an arbitrary collection of rules. These programs
are typically reactive but some of the conditions can require
some deliberation.

SPOTT's architecture emphasizes the issues of pre-
dictability and scalability. Predictability refers to the abil-
ity to guarantee successful operation and task completion
for various tasks. SPOTT's goal-directed planner encodes
all possible paths, one of which is selected by performing
gradient descent on the computed function. The steepest-
gradient-descent trajectory is optimal in the sense of min-
imizing the distance to the goal subject to minimizing the
probability of hitting obstacles [3]. This helps to mini-
mize the e�ect of uncertainties associated with the position
and size of obstacles, and the robot's position. Scalability
refers to how easily the system can adapt when (1) one or
more of the components in the system are changed; and (2)
there is a change in the functionality of some or all of the
sub-tasks in the system [4]. Tactical2, strategic3 and re-
active4 control laws are programmed as separate programs
in the behavioral control language which easily accommo-
dates future modi�cations and additions. SPOTT has been
implemented using the message-passing PVM [5] package

2What to do at the next instance?
3Constrains and mediates tactical behaviors.
4Instantaneous response to environmental or internal stimuli.

2 DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998

which makes transparent the load balancing (i.e,. real-
time scheduling) of processes on a heterogeneous collection
of computational resources. The SPOTT system has been
tested with two di�erent robot platforms, each with di�er-
ent sensor con�gurations. All potential navigational tasks
can be composed from a formal speci�cation based on a
minimal spanning basis set of navigational tasks [6], [7] as
found in the English language.

II. Background

There has been a recent trend to talk about software
design at the level of the organization of the overall system
(i.e., architecture) [8] as opposed to the algorithms and
data structures of the computation. An atypical problem
within this class of research is the architecture of a mobile
robot control system.

The basic requirements for a mobile robot architecture
are (1) accommodation of deliberative and reactive behav-
ior, (2) allowance for uncertainty in control and sensing,
(3) accounting for dangers inherent in the robot's opera-
tion and environment, and (4) providing the designer with

exibility, allowing for modi�cation and recon�guration af-
ter experimentations and technological upgrades [8]. The
four main architectural styles are (1) closed-loop [9], (2) a
layered approach [10], (3) implicit invocation [11], and (4)
a blackboard approach [12].

The simplest architecture is a closed-loop (albeit an
open-loop architecture would be simpler): the controller
initiates robot actions and monitors their consequences,
and adjusts future controls accordingly [8], [9]. All archi-
tectures are in essence closed-loop control with an elabo-
ration of the controller element. A layered approach nicely
organizes the components required to coordinate a robot's
operation into the following components in ascending or-
der: robot control, sensor interpretation, sensor integra-
tion, real-world modeling, navigation, control, global plan-
ning, and supervisor, with the robot control layer directly
communicating with the sensors and actuators [10]. Two
problems come to mind when examining this architecture:
(1) when fast reaction is required to incoming data, the lay-
ers may need to be circumvented; and (2) the model does
not separate the data and control hierarchies. Thus they
may overlap each other; for example, raw sensor input is
in level 1, interpreted and integrated results are in levels 2
and 3, and the world model is in level 4, while motor con-
trol is` level 1, navigation is level 5, scheduling is level 6,
planning is level 7, and user-level control is level 8. While
the model is precise about the roles of the di�erent layers,
it breaks down when taken to the greater level of detail
demanded by a real-time implementation [8].

The implicit invocation is embodied in the Task-Control
Architecture (TCA) [11] and ORCCAD [13]. TCA is a
high-level operating system supporting distributed commu-
nications, task decomposition, resource management, ex-
ecution monitoring, as well as error recovery. The task
decomposition is expressed as a deliberative hierarchy of
action plans. It is interesting to note that subsequent uses

of this architecture have evolved into a layered architec-
ture approach [14]. TCA is still used but primarily as
an interprocess communication and synchronization tool
(i.e., similar to PVM [5]). The layers in ascending order of
abstraction are hardware, obstacle avoidance, navigation,
path planning and task scheduling. ORCCAD is also a
programming methodology for robot controllers from spec-
i�cation to implementation.

The blackboard architecture [12] is structured around a
blackboard database which is driven by various processes
continually operating on the data (i.e., object-oriented). Its
one drawback is that there is no control over how quickly
the robot will react to sensed changes in the environment.

There is a general consensus that some kind of layer-
ing should constitute an aspect of a robot control archi-
tecture. One of the simplest layering strategies was the
subsumption architecture (also referred to as behavioral)
introduced by Rodney Brooks [1] at MIT. This technique
was in sharp contrast to the traditional robot architecture
approach in which complex models of the environment were
built before planning and executing actions. Originally, the
behavioral approach de-emphasized model building to the
extreme by having no internal model of the environment
at all. However, recent behavioral architectures do have
internal models [15], [16]. Behavioral architectures possess
many sensor-action streams which are executed in parallel
while the traditional approach has only a single processing
stream. Interesting behaviors result by executing many
sensor-action rules which are usually re
exive. The biggest
advantage of behavioral architectures is that they are read-
ily responsive to environmental changes. However, they
have not scaled well to more complex problems involving
deliberation and cannot o�er any performance guarantees.

A small community of robotics researchers is moving to-
wards a three layered, functionally-organized hierarchical
robot control architecture [17]. The lowest layer is a behav-
ioral control system, such as the subsumption architecture
[1], which is readily responsive to di�erent sensed stimuli.
The top layer is a traditional symbolic planning and mod-
eling system, referred to as a deliberative layer. The middle
layer, which bridges the reactive and symbolic layers, has
not yet been clearly speci�ed. Time scale is one way of dif-
ferentiating the reactive and symbolic layers. The behav-
ioral layer is in a real-time feedback control loop, while the
symbolic layer is engaged with events that occur at slower
intervals. An analogous method for characterizing the con-
trol layers [18] is as follows: a strategic rule-based layer
for de�ning mission logic (i.e., symbolic), a tactical layer
(i.e., middle) activating behaviors, and an execution layer
(i.e., behavioral). Others [19], [20], [21] have also suggested
similar layerings. There are two ways in which current re-
search has categorized the role of the crucial middle layer.
In the �rst approach, it is de�ned as a sequencing layer [22],
[23], [24], [11], [25]. The sequencing transforms a procedu-
ral list of task commands into an executable set of reactive
skills. The latter react to environmental changes, but are
not goal-driven. Thus, there is no guarantee that the goal

ZELEK AND LEVINE: SPOTT: A PREDICTABLE AND SCALABLE ROBOT CONTROL ARCHITECTURE 3

will be achieved. In the second approach, the middle layer
is de�ned as a planner [26], [23]. A robot path, consist-
ing of a set of linear segments, is planned from the start
to goal position. The linear segments are then executed
under behavioral control. Reactive behaviors can override
the execution of this plan, but it is not clear how control
is subsequently resumed by and sequenced with the path
executioner. A collection of condition-action rules (i.e., as
presented in a behavioral controller) cannot fully capture
all possible environmental situations and contexts and thus
cannot solely be used to execute a plan.

III. SPOTT Mobile Robot Control Architecture

The SPOTT architecture is a layered architecture but
the layers are not tied directly to increasing levels of spatial
and temporal data abstraction [14], [25], or are necessar-
ily separated into distinct deliberative and reactive compo-
nents [22], [23], [27], but rather revolve around around a be-
havioral control module and a collection of planning mod-
ules [28]. Synchronization amongst modules is achieved
via a shared map database in conjunction with appropri-
ate control laws. In addition to being layered, aspects of
SPOTT also incorporate architectural styles of closed-loop,
implicit invocation (e.g., module processes communicate
using PVM), and blackboard (e.g., communication via a
shared map). The typical division of layers (e.g., sym-
bolic, tactical, execution) in a three-layered hierarchical
architecture [18], [19] with both deliberative and reactive
properties can all be encoded in the situation-action hier-
archical rule set of SPOTT's behavioral controller. Either
the controller5 or planning module controls the actuator
(i.e., movement of the robot) at any particular time. The
planner is structured as an anytime iterative re�nement al-
gorithm [29] and can react to environmental stimuli almost
immediately or produce an optimal response after some
deliberation. In addition to the behavioral controller and
the planning modules, SPOTT's other major components
include a human-machine interface (hmi), a world model
database, and perceptual processing and action primitives
which interface directly with the control unit (see Figure
1).
SPOTT was designed to control a mobile robot equipped

with sensors in an unmodi�able environment with the pos-
sibility - but not necessarily - of having an a priori \partial
map" of the environment: a map of the permanent �xed
structures in the environment, as would be presented by an
architectural CAD drawing6. The assumption is made that
there is an available abstract graph representation consis-
tent with the architectural CAD map7. The abstract graph
consists of nodes and edges, where nodes represent rooms

5Even though SPOTT's behavioral controller actually executes
plans of situation-action rules, it will not be referred to as being
a planner.
6Architectural drawings are readily available in computer readable

CAD formats. Note, however, that these are often not kept up-to-
date and may even be inaccurate because of changes in the original
plans.
7For the experiments, the abstract graph was created manually by

visually inspecting the CAD map.

USER

Global
 Planner

Local Planner

(Potential Field:
Real−Time &

Dynamic)

BEHAVIORAL
CONTROLLER

TR+ TREES

abstract
graph

CAD sensed

MAPS

G
U
I

actuators

sensors

ENVIRONMENT

CONTROL

DATABASE

LOCAL PLANNING

GLOBAL PLANNING

Fig. 1. SPOTT Overview. The main independent components
of SPOTT are illustrated. Sensor-based map and robot position
updates are input as TR+ conditions. Subsequently, this information
is made available to the local planner. A typical operational scenario
is for the local planner to control the motion of the robot and for the
controller to override when necessary. The global planner provides
global goal information to the local planner. Control
ow is indicated
by the solid thick arrow while data
ow is shown by the dotted arrows.

or portions of hallway and the edges represent access ways
(i.e., doors) between the nodes. SPOTT has been tested in
an o�ce and laboratory environment with and without an
available a priori CAD map of the permanent structures
(e.g., walls). The environment would typically be classi�ed
as structured but certain areas such as the laboratory (i.e.,
large open space with many to-be-discovered obstacles) can
be considered unstructured.

From a system's point of view, the SPOTT robot ar-
chitecture was designed to speci�cally address the mobile
robot navigational problem [30]: solving the problems of
mapping, localization, path planning and execution concur-
rently. The behavioral controller is responsible for monitor-
ing sensor information, updating the map database, setting
goals and if necessary controlling the motion of the robot.
This is accomplished in the form of reactive rules, behav-
ioral sequencing, and simple strategic goal setting. Rather
than having an arbitrary sequence of behavioral rules, the
collection and organization of rules is guided by the break-
down of the mobile robot navigation problem. The normal
mode of operation is for the local path planner to determine
the robot's trajectory. The role of the local path planner
is to provide path predictability. Reactive rules (e.g., for
safety) will override motion control from the local path
planner (e.g., and move the robot away from the danger).
The controller is responsible for initiating the actuator con-
trol switch and synchronization is maintained via a shared
common map. Some of the conditions of behavioral control

4 DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998

rules are responsible for executing the sensor-based local-
ization and perceptual mapping routines. The global path
planner's role is to provide global information to the local
path planner by projecting a goal - if necessary - onto the
border of the extent of the local planner. The global path
planner performs its computations on an abstract represen-
tation of space: in the case examined, a graphical represen-
tation of the topological relationships of rooms and access
ways. It is also responsible for replanning a global path if
a door (e.g., edge, initially assumed to be open) is closed
or the path from one access way to another (e.g., door) is
blocked by a newly discovered obstacle.

A. Map Database

The modeling of an object (i.e., obstacles and goals) is
subject to the 2D geometric model8 (i.e., points, lines, el-
lipses, rectangles) representations used for 2D path plan-
ning. Parametric geons [31] are chosen as a qualitative
description of 3D object components (i.e., for qualitative
object recognition) for future use when the perceptual mod-
ules used by SPOTT have signi�cantly matured. All the
primitives (e.g., 2D, 3D) are stored as a set of vectors with
associated attributes (i.e., primitive type, dimensions, spa-
tial location in absolute coordinates, label corresponding
to its real world equivalent).

The world map (i.e., database) consists of a collection of
primitives (i.e., mostly line segments), the equivalent ab-
stract graph representation in terms of nodes (e.g., rooms,
hallway portions) and edges (i.e., door and their state:
open or closed), the position of the robot, and the task
speci�ed by the operator. If a CAD map is available a pri-
ori, all the line segments are labeled as walls and entered
into the world map.

The world map is further divided into local and global
components which may be equated with short and long-
term memories. The local map is a �xed-sized window
(determined by the local path planner) into the global map.
The spatial location of the local map within the global map
changes when the robot's position is about to escape the
local map's bounds. The local map is encoded in both
vector and raster formats, whereas the global data is solely
stored in vector format. The raster representation is an
occupancy grid [10], whose free space is where the potential
�eld is computed.

Sensor data may label existing map features (e.g., with
wall or door labels) and is only included into the map if
it is already not there. An occupancy grid representation
simpli�es the sensor fusion problem [10] at the expense of
limiting accuracy to the grid's resolution. The equivalent
vector representation is not subject to the occupancy grid
quantization. It is included with the foresight of potentially
including the capability of building an accurate map on-
the-
y. Currently the issue of sensor fusion is not dealt
with within SPOTT's framework and the map database is

8These 2D geometric models may be the result of a projection onto
the 2D navigational plane of a corresponding 3D model representing
an object (e.g., door, chair, wall).

treated as a depository of a priori map information as well
as sensed features.

SPOTT's implementation has each module contain its
own copy of the local map. This approach minimizes access
times (but increases module communication during map
updates, which was found to be negligible) when compared
to having one copy of the map in a central depository. Since
all sensor information is input to the controller, the con-
troller is responsible for updating all other map copies.

B. Task Command

SPOTT's language lexicon for specifying the task com-
mand is a minimal spanning subset for human 2D navi-
gational tasks [6], [7]. The syntax for the task command
given in BNF format is as follows:

<TASK> ::= <VERB><DESTINATION>
<DIRECTION> <SPEED>

<VERB> ::= go j �nd

<DESTINATION> ::= <TARGET> j <PREPOSITION>
<TARGET> j <>

<DIRECTION> ::= <ORIENTATION> j
<PATH><TARGET> j <>

<SPEED> ::= slowly j quickly j normal

<PREPOSITION> ::= across j against j along j alongside
j around j at j behind j beside
j beyond j by j far j in j
inside j in-back-of j in-front-of j
in-line-with j near j out j outside
j to-the-left-of j to-the-right-of j
to-the-side-of

<ORIENTATION> ::= forward j backward j left j right j
north j south j east j west

<PATH> ::= along j around j via j to j toward j
from j away-from

<TARGET> ::= (<PLACES> j <MOVEABLE-OBJ>
j <2D-MODELS> j <GEONS>)
<ATTRIBUTES>

<PLACES> ::= door j hallway j room j wall

<MOVEABLE-OBJ> ::= chair j desk

<2D-MODELS> ::= ellipse j line j point j rectangle

<GEONS> ::= cuboid j cylinder j ellipse

The verb \go" assumes that the goal is a known spatial
location in an absolute coordinate reference frame, whereas
\�nd" assumes that a description of the object is known
but not its spatial location. The <ATTRIBUTES> ter-
minal de�nes the necessary 2D (or 3D) parameters and
coordinates in a globally-referenced Cartesian coordinate
space. The target is chosen based on what the robot (i.e.,
SPOTT) can perceptually recognize (e.g., door, wall), what
the robot knows about (e.g., rooms, hallways in the CAD
map), or 2D and 3D models. Spatial prepositions act as
modi�ers of the target location. Only 2D spatial preposi-
tions are chosen because 2D mobile robot navigation has
been investigated. The role of specifying the direction is
to bias the local path planning execution. The path is de-
termined by performing gradient descent in the speci�ed
direction (or as close as possible to). The lexical set of
speed variables is small but a more discriminating set can
be easily accommodated (e.g., very fast, very slow).

ZELEK AND LEVINE: SPOTT: A PREDICTABLE AND SCALABLE ROBOT CONTROL ARCHITECTURE 5

C. Teleo-Reactive Behavioral Control

The control module is an event-driven interpreter with
a collection of sensor-action rules written in a hierarchi-
cal standard programming fashion (i.e., like a C program
with collection of subroutines) and a relaxed regression
style9, with the permissibility of concurrent actions. Ac-
tions of the control module not only control the actuators,
but also update and maintain the map database. Condi-
tions are based on evaluating sensor information or world
model information and are typically computed as separate
processes. The control module is based on a behavioral
programming language called TR+ which extends the TR
(Teleo-Reactive) programming language [32], [33]. Either
the planner (i.e., local) or the control unit will drive the
actuator (e.g., wheels) at any particular time. If the con-
troller is not controlling the navigation of the robot, then it
is supplying the necessary information to the planner (i.e.,
localization estimates, mapping information). Both delib-
erative and reactive programs are encoded in the control
module. There is no constraint that the conditional parts
of the rules are at one particular level of abstraction. There
can be reactive rules (e.g., see Figures 7 and 8) or complex
behavioral rules based on slowly changing states (e.g., see
Figure 10), or even rules based on deliberative scheduling
(e.g., see the room �nding condition in Figure 13).

C.1 Teleo-Reactive Programs

TR programs bear some resemblance to a watered-down
version of STRIPS planning [34]. A TR program is a list
of hierarchically-ordered condition-action rules (i.e., like a
production system). An action - ai - either updates inter-
nal models, drives actuators, or invokes another TR sub-
routine. A condition - Ki - is an executable process which
returns a logical value (TRUE or FALSE) derived from a
state computed on sensory inputs and world models. In
addition, the process can also return other (i.e., logical or
non-logical) values through variables attached to the condi-
tion. Conditions are based on the K-B model proposed by
Kaebling and Rosenchein [35]. In this model, the percep-
tion module monitors the environment so that the agent
(i.e., robot) can establish certain beliefs of the world. Con-
ditional predicates based on these beliefs are the inspiration
for the conditions Ki in TR programs.
The collection of TR condition-action rules are ordered

by subgoal relations (i.e., a plan). TR programs have a
graphical representation - called a TR tree - where a con-
dition is speci�ed by a node and an action by an arc (see
Figure 2). A hierarchical order (i.e., represented as a TR
sequence, see Figure 2) on the list of condition-action rules
is imposed by the designer. A TR program is constructed
so that for each rule, Ki ! ai, condition Ki is the re-
gression, through action ai, of some particular condition
higher in the list. Ki is the weakest condition such that
the execution of action ai (under the most probable op-

9The property of regression is used to formulate the rules, however,
the property of regression does not need to be strictly followed at
execution time.

erating circumstances) achieves some particular condition
Kj which is higher in the list (j < i). The condition K1

is the goal condition the program is designed to achieve.
The execution of the actions in a TR program ultimately
achieves the goal. Should an action have an unexpected
e�ect, the program will nevertheless continue working to-
wards the goal. The TR sequence is complete if and only
if K1 _ ::: _Ki _ ::: _Km is a tautology, which is a clause
containing complementary literals. A TR sequence is uni-
versal if it satis�es the regression property and is complete.
A universal TR sequence will achieve its goal condition,
K1, provided that the perceptual processing of sensor data
detects the necessary events that conditions monitor and
the robot's execution is actually performed10. The regres-
sion property should be strictly adhered to when designing
and planning the ordering of the events (conditions) and
their associated actions. It is easier to ensure the tautology
property if the number of conditions in any program (i.e.,
subroutine) is small. This simpli�es the process of vali-
dating that all conditions are complimentary literals. The
TR+ subroutines designed for robot control using SPOTT
are typically concise and thus can be easily checked for
completeness (see Section III-C.3).

TR programs also bear some resemblance to discrete
event systems [36], [13] in their formulation and graphical
representation. One di�erence is that inputs are implicit in
the TR conditions while TR arcs explicitly represent just
outputs (rather than both input and output, as in the arcs
of Petri nets [37]). In addition, TR conditions (i.e., nodes)
monitor environmental events in order to trigger actions
(arcs) (as opposed to representing places and transitions
as in the nodes of Petri nets). All active TR conditions are
also monitored simultaneously, permitting the system to
be more reactive and adaptable to environmental stimuli
than discrete-event systems, where only certain events are
monitored at any given instance. In addition, a TR pro-
gram's close relationship to an AI planning system (such
as STRIPS) gives it some goal guarantees, albeit they are
weak and dependent on the formulation of the actual pro-
gram.

TR programs are interpreted in a manner comparable
to a production system's interpretation: the list of rules is
scanned from the top for the �rst rule whose condition is
satis�ed, and then the corresponding action is executed. A
TR program di�ers from a production system in that all
the active11 conditions are continuously evaluated and the
action associated with the current highest TRUE condition
at any particular time instance is always the one executed.

10The robot will always have errors in its actual movements and
these are corrected by localizing the robot at regular intervals.
11Not all conditions are continuously evaluated. A TR program is

usually modular in organization, consisting of a main program and
a collection of subroutines, similar to the organization of a computer
program. Only the conditions in the main program (i.e., invoked by
the user) and the conditions in the currently called set of subroutines
are active.

6 DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998

K1

K2 K3

K4 K5

Kn

Kn-1

a1=nil

a2 a3

a4 a5

an

K1

K2

K3

K4

Kn-1

Kn

K5

a1=nil

a2

a3

a4

a5

an

a) TR Tree b) TR Sequence

c) Corresponding
TR Rules

K1 -> nil

K2 -> a2
K3 -> a3
K4 -> a4
K5 -> a5

...
Kn-1 -> an-1
Kn -> an

Fig. 2. A TR Tree. A TR tree is shown in (a). Conditions
K4,Kn�1, and Kn are presented as being TRUE (i.e., indicated by
the shading), resulting in action a4 being �red. The TR tree in (a)
can be equivalently represented as a TR sequence as revealed in (b).
The TR sequence explicitly shows the precedence ordering of the
conditions' evaluations. The corresponding list of rules are displayed
in (c).

The actions can be energized12 or ballistic13, whereas pro-
duction system actions are only ballistic.

C.2 Teleo-Reactive+ Programs

A TR+ program extends a TR program by permitting
concurrent actions. The additional operators were inspired
by the operations used in procedural action plans [38]. The
concurrent operator is speci�ed by k, and the sequential
operator is symbolized by �. The concurrency operator
forces the left and right side operands (i.e., actions) to be
executed concurrently, while the sequential operator orders
the execution of the actions from left to right. The sequen-
tial operator is similar to a TR-sequence without actions
being condition-triggered and the sub-goal relation order-
ing.
Condition operators (e.g., AND (^) and OR (_), and

their extensions) were also added for more expressibility
in the condition state and to permit the programmer to
specify how and when the expression is actually evaluated.
If the condition expression is evaluated from left to right,
then when its logical value is known, no further conditions
are processed in the expression. For example, consider the
expression A~̂B, which means perform A^B and compute
the expression from left to right. If A is false, B is not
evaluated. If A is true, B is evaluated. This provides the
capability of turning o� the computation of certain con-
dition processes subject to event states, and also can save

12An action is energized when it is sustained continually as long as
its triggering condition remains TRUE.
13An action is ballistic if it executes to completion after the logical

transition of its triggering condition from FALSE to TRUE.

computation time. If the expression is rewritten as A^B,
then A and B are evaluated concurrently. Enforcement
of real-time validation to only currently changing events is
achieved by a timeout speci�cation (e.g., ^t, ~̂ t, _t, and
~_t) for expressions: if timed out, the value of the expres-
sion is FALSE, regardless of the computed logical values of
the operands.
The execution time of some conditions may be slower

than the time required for a the TR+ interpreter to scan
once through the list of active conditions. A condition
process is computed at a certain frequency which depends
on its processing complexity. The original TR formalism
assumed that the logical value of a condition was always
updated at each interpreter cycle. In reality, this is not
always possible. In the TR+ formalism, the logical value
associated with a condition process during its computation
can either be set to its last computed value or to FALSE.
The latter is referred to as a ballistic condition, while the
former is called an energized condition. A TR+ condi-
tion's computation frequency can also be speci�ed by the
programmer. Enforcing the availability of a result from a
condition to be available after t time requires the condi-
tions to be formulated as iterative-re�nement anytime al-
gorithms [29], in addition to having an underlying real-time
operating system.

C.3 TR+ Programs for Navigation

SPOTT's TR+ programs are designed to solve the mo-
bile robot navigation problem: mapping, localization, goal
search, path planning and execution. This is contrary to
most mechatronic (i.e., robotic) systems, where the decom-
position of engineering speci�cations into tasks and states
is highly subjective [39]. A sample TR+ program consist-
ing of a main routine (see Figure 3) and twelve subrou-
tines14 is illustrated using the Dotty software package [40]
in Figures 3 to 13. This TR+ program is an example of
mobile robot control using SPOTT's framework. For the
task of navigation, writing a TR+ program is relatively
simple because all of the mentioned TR+ subroutine's in-
puts and outputs are independent of each other and may
be executed concurrently. If the robot were out�tted with
a manipulator, manipulation programs could be easily ac-
commodated by being triggered by a condition indicating
that the proximity of the robot is adequate for manipulat-
ing the object of interest.
One underlying assumption in the collection of TR+ pro-

grams developed is that the path planning module (i.e.,
local) is almost solely responsible for moving the robot.
The outputs of the TR+ programs update the world model
(e.g., obstacles and robot position). The exceptions to the

14Only ten subroutines are shown. See [28] for the omitted search
subroutines (i.e., DIRECTION SEARCH, RANDOM SEARCH).
The DIRECTION SEARCH program searches for the sought-
after object while heading in a particular direction. The RAN-
DOM SEARCH program searches while heading in a particular direc-
tion (i.e., deduced randomly) until an obstacle is encountered, and at
that time a new direction is randomly decided upon and the search
continues. Both programs succeed when the sought-after object is
found.

ZELEK AND LEVINE: SPOTT: A PREDICTABLE AND SCALABLE ROBOT CONTROL ARCHITECTURE 7

rule are the two programs that specify a reaction when col-
lision has been detected via the bumper or infrared sensors
(i.e., see Figures 7 and 8). In both of these situations, the
TR+ program takes over actuator control from the path
planning module (i.e., via the SET ROBOT POSITION

TO program, the details are not shown). Control is re-
turned to the path planner after moving the robot away
from the source of collision. When control of the actua-
tors is switched to/from a TR+ program, this is always
initiated from within a TR+ subroutine.
Another assumption is that all incoming sensor informa-

tion is treated as being valid for updating the map. This is
reasonable considering that the main purpose of the map
is for navigation rather than being an accurate re
ection
of the environment. As an aside, it should be noted that
the sensor information has been already �ltered somewhat
before being added to the map. For instance, sonar data
points are fused into line segments with outliers removed
[41]. If one of SPOTT's roles is to provide an accurate
map, then the con�rming, refuting, and re�ning of existing
map features with newly sensed multi-sensor data (i.e., to
create an accurate map) will require an appropriate sensor
fusion strategy and framework as well as an uncertainty
representation scheme.

is task target reached()
 V

 is the variable false(STATUS)

moving the robot failed()

set variable to false(STATUS)

TRUE

LOCALIZE_THE_ROBOT() ||
MAP_OBJECTS_WITH_SONAR() ||

MAP_OBJECTS_WITH_QUADRIS() ||
INTERPRET_TASK(STATUS) ||

BUMPER_CHECK() ||
INFRARED_CHECK() ||
CONTROL_THE_PTU()

Fig. 3. The Main TR+ Program. Most of the subroutines called
from this program are in Figures 4 through to 13. Capitalized
actions are calls to subroutines. All of the TR+ trees (main and
subroutines) were illustrated using the Dotty software package [40].

current robot position is(ROBOT_POSITION)

*set robot position to(ROBOT_POSITION)

nil

Fig. 4. LOCALIZE THE ROBOT() subroutine. The condi-
tion (i.e., node) collects sensor (i.e., sonar) data and correlates it
with the existing map to determine pose [41]. The action (i.e., arc)
updates the world model. All the subroutines (Figures 4 through to
13) have a bottom and top node (i.e., shown colored) that are not
used and act as placeholders for attachment to the calling routine.

D. Planning

A path planner is used in conjunction with the TR+
controller because it is impossible to completely express
all instances of potential obstacle avoidance as a collection
of TR+ rules. Many obstacle avoidance contextual rules

new object positions are(OBJECT_POSITIONS)

*set object positions to(OBJECT_POSITIONS)

nil

Fig. 5. MAP OBJECTS WITH SONAR() subroutine. The
condition (i.e., node) collects and processes (i.e., removes outliers,
fuses into line segments) sonar data [41] and the action (i.e., arc)
updates the world model.

object labels are(LABEL)

*set label positions to(LABEL)

nil

Fig. 6. MAP OBJECTS WITH QUADRIS() subroutine.
The condition (i.e., node) collects range data [42] (i.e., as range line
segments) and the action (i.e., arc) updates the world model.

bumper has collided(OBJECT_POSITIONS,ROBOT_POSITION)

*(set object positions to(OBJECT_POSITIONS) ||
SET ROBOT POSITION TO(ROBOT_POSITION))

nil

Fig. 7. BUMPER CHECK() subroutine. A reactive rule which
states that if the bumper senses an obstacle, then update the map
and move away from the source of collision (e.g., move away a
distance of ROBOT POSITION).

infrared shows objects very close(OBJECT_POSITIONS,ROBOT_POSITION)

*(set object positions to(OBJECT_POSITIONS) ||
SET ROBOT POSITION TO(ROBOT_POSITION))

nil

Fig. 8. INFRARED CHECK() subroutine. A reactive rule
which states that if the infrared senses an impending obstacle, then
update the map and move away from the source of collision (e.g.,
move away a distance of ROBOT POSITION).

partial map available()

APRIORI_MAP_TASK(STATUS)

 NOT (partial map available())

NO_APRIORI_MAP_TASK(STATUS)

nil

Fig. 9. INTERPRET TASK(STATUS) subroutine. The goal
is selected based on the availability of a priori map.

8 DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998

in room

set ptu to room mode()

in hallway

set ptu to hallway mode()

nil

Fig. 10. CONTROL THE PTU(). Set the scanning pattern of
the range sensors pan-tilt head to the appropriate pattern depending
on whether the robot is in a room or hallway.

task has
 no destination
 no direction()

RANDOM_SEARCH
(STATUS)

task has
 no destination
 just direction()

DIRECTION_SEARCH
(STATUS)

is task target
 location known()

nil

 NOT (is task target
 location known())

SEARCH_THE_MAP_ENVIRONMENT
(STATUS)

nil

Fig. 11. APRIORI MAP TASK(STATUS) subroutine. A
di�erent goal selection strategy (i.e., subroutine) is chosen depend-
ing on a parse of the task command and the availability of an a
priori map.

task has
 no destination
 no direction()

RANDOM_SEARCH
(STATUS)

task has
 no destination
 just direction()

DIRECTION_SEARCH
(STATUS)

is task target
 location known()

nil

 ~ (is task target
 location known())

RANDOM_SEARCH
(STATUS)

nil

Fig. 12. NO APRIORI MAP TASK(STATUS) subroutine.
A di�erent goal selection strategy (i.e., subroutine) is chosen de-
pending on a parse of the task command and given that no a priori
map exists.

door not open
(INTERMEDIATE_TARGET)

set variable to false
(STATUS)

all room targets explored
(INTERMEDIATE_TARGET)

set variable to false
(STATUS)

is intermediate target reached
(INTERMEDIATE_TARGET)

remove intermediate target
(INTERMEDIATE_TARGET)

(is intermediate target set
(INTERMEDIATE_TARGET)

 V(->)
find a new room

 target(INTERMEDIATE_TARGET))

set intermediate target to
(INTERMEDIATE_TARGET)

nil

Fig. 13. SEARCH THE MAP ENVIRONMENT(STATUS)
subroutine. The subroutine used in the FIND task se-
lects a goal for searching, given that an a priori map exists.
The subroutines RANDOM SEARCH(STATUS) and DIREC-
TION SEARCH(STATUS) are similar in style to this subroutine.
The '�nd a new room' condition can be formulated as a scheduling
algorithm of rooms to visit given the object to '�nd'.

could actually be encoded as TR+ behavioral rules, but
there is no guarantee that all environmental contexts would
be captured.

SPOTT utilizes two concurrently executing planning
modules. Planning is de�ned along a natural division: (1)
local, high resolution, quick response, versus (2) global,
low resolution, slower response. The local path planner ex-
ecutes a path based on the currently stored map encoded
as an occupancy grid [10] and is based on a potential �eld
method using harmonic functions, which are guaranteed
to have no spurious local minima [43]. A global planning
module uses a search algorithm (i.e., Dijkstra's algorithm)
on a graph structure representation of the map. The role
of the global planning module is to provide global informa-
tion to the local path planner. This is necessary because
the spatial extent of the local path planner is limited due
to its computational requirements increasing linearly, pro-
portional to the number of grid elements [44].

D.1 Local Dynamic Path Planning

The problem addressed by the local planning module
is discovery and on-line planning [45] (i.e., dynamic path
planning). In this situation, the workspace is initially un-
known or partially known. As the robot moves about, it
acquires new partial information via its sensors. The mo-
tion plan is generated using available partial information
and is updated as new information is acquired. Typically
this requires an initial planning sequence and subsequent
re-planning as new information is acquired.

Planning is typically computationally expensive, espe-
cially with a complete algorithm (i.e., also referred to as
exact algorithm): guaranteed to �nd a path between two
con�gurations if it exists. A complete algorithm requires
exponential time in the number of degrees-of-freedom [45].
A type of heuristic algorithm for performing dynamic path
planning is the potential �eld technique [46]. This tech-
nique o�ers speedup in performance but cannot provide
any performance guarantee. In addition these algorithms
typically get stuck at local minima. Techniques have been
devised for escaping local minima, such as the randomized
path planner [47] which executes random walks, but the
revised technique is no longer computationally e�cient. A
complete algorithm for performing dynamic path planning
is the D� algorithm [48]. D� (i.e., dynamic A�) performs
the A� algorithm initially on the entire workspace. As new
information is discovered, the algorithm incrementally re-
pairs the necessary components of the path. This algorithm
computes the shortest distance path to the goal with the
information available at any particular time. One prob-
lem with the D� algorithm is that no allowances are made
for uncertainty in the sensed obstacles and position of the
robot.

SPOTT's local dynamic path planner is based on a po-
tential �eld method using harmonic functions, which are
guaranteed to have no spurious local minima [43], [49]. The
obstacles form boundary conditions (i.e., Dirichlet bound-
ary conditions are used) and in the free space the harmonic

ZELEK AND LEVINE: SPOTT: A PREDICTABLE AND SCALABLE ROBOT CONTROL ARCHITECTURE 9

function is computed using an iteration kernel [50]. The
path - determined by performing steepest gradient descent
- is also optimal in the sense that it embodies the mini-
mum probability of hitting obstacles while minimizing the
traversed distance to a goal location [3]. This optimality
condition permits modeling uncertainty with an error tol-
erance (i.e., obstacle's position and size, robot's position)
provided that the robot is frequently localized using sensor
data. The robot is modeled as a point but all obstacles
are compensated for the size of the robot in addition to an
uncertainty tolerance15. The computation of the harmonic
function is performed over an occupancy grid representa-
tion of the local map and is executed as a separate process
from the path executioner. In order to make the number of
iterations linear in the the number of grid points, \Methods-

of-Relaxation" [44] techniques such as Gauss-Seidel itera-
tion with Successive Over-Relaxation, combined with the
\Alternating Direction" (ADI) method were employed. A
local window is used for computing the potential �eld for
two reasons: (1) the computation time will linearly increase
with the number of grid points; and (2) in long narrow cor-
ridors (e.g., hallway regions), the values of some neighbor-
ing discrete points can be undistinquishable16. A global
path planner (discussed later) provides information about
goals outside the local bounds. The process computing the
iteration kernels, ingesting sensor updates, and servicing
requests from the path executor uses the following algo-
rithm:
1. Loop 1: Load initial map if available.
2. If the goal is outside the bounds of the potential �eld, project the
goal onto the border.
3. Loop 2:
(a) Compute an averaging iteration kernel over the entire grid

space.
(b) Poll to see if a new robot position estimate is available. If so,

correct the accumulated error.
(c) Poll to see if any newly sensed data is available. If so, update

the map.
(d) Update the robot's position based on the odometer sensor.
(e) Poll to see if the execution process module requests a new steer-

ing direction for the robot. If so, compute it by calculating the steep-
est descent gradient vector at the current estimate of the robot's
position.
(f) If the robot is near the edge of the border of the potential �eld

window, move the window so that the robot is at the center and go
to Loop 1; else go to Loop 2.

This computation has the desirable property of concur-
rent path computation and execution, dynamic map updat-
ing (i.e., as features are sensed), as well as robot position
correction.
Another approach for speeding up performance is to pro-

vide an initial guess to the solution, namely the heuris-
tic potential �eld [46]. This makes the local path planner
an iterative-re�nement anytime approach [29] where after
a short period after a map change, response is reactive
but not optimal or guaranteed; and after convergence is

15This may appear to be heuristic, but it is based on not permitting
the robot's position error to grow beyond a certain �xed limit (i.e.,
by re-localizing).
16On a sixty-four bit (i.e., thirty-two bit, double precision) com-

puter, the harmonic function can only be accurately represented when
the length-to-width ratio for a narrow corridor is less than 7.1 to 1
[28]

achieved, response is optimal. Achieving fast convergence
will not necessarily be possible or realistic if the path plan-
ning is done in more dimensions than two.

D.2 Interaction with Global Path Planning

The global planning module performs search (i.e., delib-
eration) using Dijkstra's algorithm [51] through a graph
structure of nodes and arcs. A graph abstraction of the
CAD map is obtained by assigning nodes to rooms and
hallway portions and edges to the access ways (i.e., doors)
between nodes. The global graph planner determines a
path based on start and stop nodes de�ned by the current
location and desired destination of the robot. If the current
goal is outside the extent of the local path planner, then
the global path planner projects the goal onto the local
map's border as follows:

Let pg = (xg; yg) de�ne the position of the goal in an anchored
x-y spatial coordinate system (i.e., SPOTT's experiments used cm.
as a unit of measure). Let pr = (xr; yr) de�ne the current posi-
tion of the robot. The local map is a collection of grids (i.e., nodes)
but the references into this grid are always continuous rather than
discrete. For example, the gradient at a particular position is calcu-
lated by interpolating amongst the neighboring grid elements. Let
nr be the node in the global map where the robot is located (i.e.,
pr) and ng be the node where the goal is located (i.e., pg). Let
bpf = ((x1; y1); (x2; y2)) de�ne the top-left and bottom-right points
designating the spatial extent of the potential �eld. By de�nition,
initially pr is in the center of the region de�ned by bpf . The path
produced by the global path planner is given as a sequence of nodes
nj and edges ei: < nr; ei; nj ; :::; nm�1; el�1; nm; el; ng >. The fol-
lowing is the algorithm (see Figure 14) for projecting the global goal
onto the border of the potential �eld:

1. If pg is within bpf , and ng is the same as nr then do nothing.
2. If pg is within nr and pg is not within bpf , then the goal is pro-
jected onto the portion of the side of bpf that is entirely contained
within nr.
3. Let ek be the �rst edge within the global path (i.e., moving from
nr towards ng) that is not completely within bpf . Let pk be the
intersection of bpf with the line connecting the center of the edge ek
with the center of the node (i.e., nk) last traversed before reaching
that edge. The goal is projected onto the portion of the side of bpf
that contains both the node nk and the point pk.

In each of the three cases there are situations where the
goal will not be reachable. In the third case, the goal will
not be reachable if a doorway is closed or a node is blocked
by an obstacle. In this case, the global path planner must
replan the global path. In the �rst two cases, the goal may
not be reachable within the spatial extent of the potential
�eld due to newly discovered obstacles, but the goal may
actually be physically reachable. The easiest way to deal
with this situation is to make the size of the potential �eld
such that the node is completely within the potential �eld's
spatial extent.

IV. Implementation

SPOTT has been implemented as a collection of concur-
rently executing message-passing processes for purposes of
(1) modularity, (2) maintaining a correspondence between
processes and conceptual modules (i.e., see �gure 1), (3)
facilitating concurrent execution of modules, and (4) pro-
viding both synchronous and asynchronous communication
amongst modules, as well as (5) a possible way of trying
to meet performance speci�cations (i.e., by increasing the

10 DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998

n4

n5

n6

n3
n2

n1

pg

pr

pg

pg

pr

pr

nr=n1, ng=n2
global path = n1,n3,n4,n5,n2

(1)

(2)

(3)

nr=ng

nr=ng

Fig. 14. Projecting Global Goal onto Local Limits. The three
cases as presented by the algorithm in the text are presented. The
shaded area corresponds to the extent of the local path planner: bpf .
The thick line corresponds to the projection of the goal onto the
local path planner's borders. The thin lines represent wall features.
In (1), the goal and robot are in the same node and bpf . In (2),
the robot and goal are in the same node but not the same bpf . (3)
is the most general case.

number of processes17). If only a single processor was avail-
able, an alternative computational framework would be to
use threads as the modular component. In the con�gu-
ration tested, the autonomous robot communicates via a
radio link to SPOTT which runs on a heterogeneous com-
puter network (e.g., SUN, SGI workstations).
The software tool PVM18 (Parallel Virtual Machine) [52]

was used to distribute the control, planning, and graphical
user interface across a collection of existing processor re-
sources. PVM is a message passing library which permits
the harnessing of a collection of heterogeneous processors
into a single transparent, cohesive and uni�ed framework
for the development of parallel programs. The PVM system
transparently handles resource allocation, message rout-
ing, data conversion for incompatible architectures, and
other tasks that are necessary for operation in a hetero-
geneous network environment. PVM o�ers excellent price-
performance characteristics compared to massively parallel
processors [53]. One limitation of PVM is its simpli�ed pro-
cess allocation scheme (i.e., processes are evenly distributed
across the processors in the order of their initiation) which
does not take into account the dynamic changes in proces-
sor and memory usage (i.e., load balancing). In addition,
PVM has not been implemented to execute on a real-time
operating system (i.e., only UNIX and Windows implemen-
tations currently exist).
One way to represent TR+ programs is in a tree graph

format. The Dotty [40] toolkit has been used to create
software for visually programming TR+ programs as trees,

17It should be noted that it is not always possible to just add proces-
sors to increase performance. In addition, system performance may
not improve by adding processors because of the underlying commu-
nication overhead.
18This is an ongoing project carried out by a consortium headed by

the Oak Ridge National Laboratory.

and for monitoring the execution of TR+ programs.

During execution, there is a wealth of on-line graph-
ical information displayed, namely, the current state of:
the TR+ control programs; the equi-potential contours of
the potential function used by the local path planner; the
global path in the abstract map; the planar map of the
robot and its environment; as well as the graphical user
interface for control. The software package PVaniM [54]
is also used to provide online visualization (i.e., of proces-
sor and memory usage) of SPOTT's distributed execution
with PVM. In addition, the robot vocalizes key actions it
initiates such as acquisition and recognition of sensor data.
This wealth of information was found essential for debug-
ging, monitoring and verifying proper robot execution.

V. Experiments

SPOTT has been tested in the CIM laboratory and of-
�ce environment with a limited set of general navigational
tasks. Experimentation was conducted with both a No-
mad 200 mobile robot as well as a RWI B-12 robot. The
RWI B-12 was equipped with a ring of 12 sonar transducers
around its circumference. The sensors on the Nomad 200
include a ring of 16 ultrasonic sensors (i.e., sonar), a ring of
16 infrared proximity, a ring of 20 tactile sensors (i.e., pres-
sure sensitive, bumper), and two controllable range sensors
(i.e., BIRIS) mounted on pan-tilt heads (QUADRIS) [55],
[56]. Sonar and QUADRIS are used for mapping. Further-
more, QUADRIS is specialized for object recognition. In
addition, sonar was used for localization (i.e., estimating
the position of the robot) [41]. The bumper and infrared
sensors are primarily used for safety and accomplish this
by mapping very close objects which may be missed by the
other two sensors. In addition, the data from these sensors
is readily available and requires minimal analysis.

The TR+ interpreter was found to take on average
25�sec/cycle to evaluate a single condition. The time taken
to converge to a solution by the local path planner, using
a 35 by 35 grid on a collection of 5 SGI workstations for
3 obstacles and a goal, is approximately 2 seconds. In
addition to �ve processors being allocated for local path
planning computation, one processor was dedicated to the
TR+ interpreter and the additional processors were used
for the various range and sonar perceptual processing al-
gorithms. Ideally, all of the processes should be able to
execute on a single processor (i.e., if threaded) if the com-
putational requirements of the local path planner can be
reduced. Reducing the computation time by using irregular
grid sampling is under current investigation. In addition,
it was found that in highly structured environments (e.g.,
narrow hallways) it is computationally advantageous to use
just TR+ rules for navigation (e.g., move forward and stay
centered in the hallway) as opposed to requiring the full
computational power of the local path planner. Typically
if an obstacle is discovered in a narrow hallway, the hall-
way is blocked from passage and a new global path needs
to be recomputed, thus negating the need for the local path
planner.

ZELEK AND LEVINE: SPOTT: A PREDICTABLE AND SCALABLE ROBOT CONTROL ARCHITECTURE 11

Experimentation has been conducted for a variety of
tasks under two di�erent scenarios: (1) no map is available
a priori; and (2) a partial map of the permanent structures
(i.e., walls) is available a priori. An edited AUTOCAD ar-
chitectural drawing of the CIM o�ce and laboratory space
was used as a partial map of the permanent structures. It
was found that a CAD map typically contains redundant
data (e.g., more than two lines to represent the same wall)
and large map databases tend to slow down access time.
Therefore, the CAD map was manually edited to remove
redundant data.
One experiment was performed assuming that the spatial

location of the goal was known with no a priori map. The
robot moved at 10 cm/sec and updated its map of the
environment from sonar data every 5 seconds. Bumper and
infrared data were monitored every 2 seconds. The robot
was localized every 10 seconds19. The map built up during
the execution of the task is given in Figure 15. Figure 16
shows selected frames during the execution of the task.

Fig. 15. Dynamic Mapping and Trajectory Determination.
As the robot moves towards a pre-de�ned spatial location, sonar
data update the map and alter the trajectory.

TIME

Fig. 16. Autonomous Navigation with No A Priori Map. The
robot successfully navigated around various obstacles as it traversed
towards a pre-de�ned spatial location.

A second experiment, shown in Figure 17, illustrates
the robot navigating to a prede�ned location. In this ex-
periment, the robot uses an available CAD map as a priori
knowledge. However, during task execution the robot dis-
covers features (e.g., the partition) that are not present in
the CAD map. The robot �rst localizes itself to the cor-
ner identi�ed in the original CAD map assuming that the
robot's location is known to be in that vicinity to begin

19This experiment was carried out when the localization frequency
could only be speci�ed with respect to time. Currently, the rate can
also be speci�ed with respect to distance traversed, as well as with
respect to pre-de�ned map locations that are typically uncluttered
and therefore good locations for performing sensor-to-map matching.

with. In this example, the robot moved at 50 cm/sec. In
addition to acquiring sonar data, range�nder data were also
acquired at 1 Hz.
The sonar range line features were produced by fusing

sonar data points and removing outliers [41] at a regular
frequency, a process which could take a few seconds and be
very time consuming. Localization (i.e., determining the
robot's pose) was performed by matching the sonar fea-
tures to the existing CAD map at pre-de�ned areas. These
areas were typically hallway corners that were highly un-
likely to be cluttered by yet-to-be-discovered obstacles. Lo-
calization was also slow due to the matching process (e.g.,
another few seconds). Sonar processing is typically slow
because a dense scan equivalent to a ring of 144 ultrasonic
sensors is taken and then processed (i.e., fused and outlier
removal) to achieve a map of line segments. Trading o� ac-
curacy against performance speed is a matter of future in-
vestigation. Acquiring and processing sonar data has been
a de�nite bottleneck in achieving faster robot speeds. This
is because actuator commands and sensor feedback share a
common communication link. Ideally, the goal is to move
the robot at an above-average human walking pace (i.e., 1
m/sec), which is feasible if the communication bottleneck
is removed.

Local Map
Shown are the
CAD map and
sensed features,
as well as the
robot and its
traced path.

c)

a)

Global Mapb)

destination
robot A priori, the robot only knows

about walls;
the partition
is discovered while
executing the task.

Fig. 17. Autonomous Navigation with a Partial A Priori
Map. A priori, the robot only knows of the walls in the CAD map.
(a) shows the initial con�guration and the desired destination. (b)
shows the location of the local map in the global map. (c) shows the
local map at task completion, along with the CAD (light lines) and
sensed features (darker lines), as well as the executed trajectory.
The padding of the features, to account for uncertainty and the
local path planner modeling of the robot as a point, is illustrated
by the grey regions surrounding the line (i.e., wall) features.

Acquisition of QUADRIS range data with embedded
simple object recognition algorithms executes at approx-
imately 1 Hz. Horizontal and vertical object range pro�les
are used to recognize features such as doors, chairs and
desks [42]. A limitation of the technique is that successful

12 DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998

recognition of an object (e.g., chair) also requires that the
robot be in a particular position and pose [42]. The con-
trol of the pan-tilt heads is a prede�ned scanning pattern
depending on the context20.
All of the TR+ programs tested [28] so far are based on

knowing the spatial location of the goal beforehand. This
implies that the condition \is task target location known"
in the TR+ subroutines shown in Figures 11 and 12 is
always TRUE. The task is completed successfully when the
robot arrives at the desired position, as is the case when the
task command is \GO". However, when the task command
is \FIND", a search needs to be initiated in the environ-
ment. For the \FIND" task, the types of objects which can
be found are limited by the recognition capabilities of pro-
cessing QUADRIS range data. Recognition with moderate
levels of success at this time is limited to chairs, doors,
walls, and wooden objects in the shape of geons [57].
Other experiments demonstrated, as suspected, that the

SPOTT system is highly dependent on the robustness and
reliability of the sensor data, namely sonar and QUADRIS.
An arti�cially created environment made up of partitions
connected with metallic tubes with notches proved prob-
lematic for sonar mapping. These notches produced mul-
tiple re
ections and caused doorway features to be entered
larger-than-life into the map database. Mapping door-
ways with sonar data is known to be problematic [58].
QUADRIS also experienced some problems by producing
features that were the result of lighting e�ects as opposed
to actual physical objects. The lights in the room had to be
dimmed and the curtains drawn for satisfactory behavior.
Moving obstacles are currently treated as static objects

and a single object can be repeatedly mapped as several ob-
jects at di�erent locations during a time interval. Future
plans include investigating perceptual routines for mapping
moving obstacles by employing a visual sensor. The occu-
pancy grid can accommodate moving obstacles by shifting
the occupied grids when necessary. Incorporating sensor fu-
sion techniques into SPOTT also needs to be investigated,
especially if a signi�cant number of additional sensors and
perceptual algorithms are added.

VI. Conclusions

A. Predictability

The ability of SPOTT to guarantee task completion de-
pends on the type of task - speci�ed by the task lexicon -
and the amount of a priori information. SPOTT's a pri-
ori knowledge can vary from none to a partial map of the
environment (e.g., an architectural CAD map). SPOTT
can guarantee task completion (see Figure 18) when the
task is GO and a CAD map is available a priori, or dur-
ing the tele-operation mode. The tele-operation mode is
based on frequent operator-speci�ed directional commands
(e.g., go forward). SPOTT responds by guiding the robot
in the speci�ed direction, avoiding any newly encountered
obstacles and typically stopping when a previously known

20For example, a di�erent scanning pattern is used for hallways and
rooms.

structure is present in the original path (e.g., wall) or when
told to stop by the operator.

Room 417
(node 15)

Room 416
(node 14)

Room 414
(node 13)

419
(17)

420
(18)

421
(19)

422
(20)

423
(21)

424
(22)

425
(23)

433
(31)

Room 434
(node 32)

Room 435
(node 33)

Room 436
(node 34)

432
(30)

431
(29)

430
(28)

429
(27)

428
(26)

427
(25)

426
(24)

hallway 8 (52)

hallway 6 (50)

h 7
(51)

h 9
(53)

h 15
(54)

hallway 5 (48)

419M
(16)

hallway 10 (49)

400
(0)

401
(1)

402
(2)

403
(3)

404
(4)

405
(5)

406
(6)

407
(7) 408

(8)
409
(9)

410
(10)

412
(12)

411
(11)

h1 (44)

h2
(45)

h3 (46)

h4
(47)

h 11
(55)

h12
(56)

Room 437
(node 35)

Room 444
(node 42)

438
(36)

439
(37)

440
(38)

441
(39)

442
(40)

h13 (57)

h14
(58)

443
(41)

447
(43)h16

(59)

A PRIORI MAP

NO
MAPARCHITECTURAL

CAD MAP

TASKS

A PRIORI
INFO

What reasoning module could
contribute.

Full check mark = task completion guaranteed without reasoning

Partial check mark = task completion requires reasoning

 ● goal reachability
 ● goal reachability
 ● abstract graph
 maintenance

 ● goal reachability
 ● abstract graph
 maintenance
 ● search strategies

 ● goal reachability
 ● search strategies

GO

spatial location
of goal known

FIND
spatial location

of goal unknown

Intelligent
Tele−

Operation
move in specified
direction until an

obstacle is
encountered

Fig. 18. What SPOTT Can and Cannot Do. A check mark in
a matrix entry indicates the situations where SPOTT can guaran-
tee task completion. A partial check mark indicates that SPOTT
cannot guarantee task completion in these situations and the as-
sociated caption indicates what role an external reasoning module
could ful�ll in this situation.

Guaranteeing task completion when issuing the \FIND"
command or when no a prior map is available is problem-
atic for SPOTT. In these situations, if the task can be
rephrased in the context of a \GO" command with a known
map, then it can also be guaranteed. \FIND" reduces to
a collection of \GO" tasks with a set of intermediate goal
locations (i.e., the places to visit). The goal object will be
found if all possible locations in the map are visited and
from those locations, all possible vantage points are ob-
served. This assumes that there is a map that takes care
of storing all the visitation sites and what part of the envi-
ronment is gazed upon. In addition, adequate perception is
a necessity. SPOTT uses the range sensor for recognition
and its current capabilities are limited to wooden geons
[57].
The other troublesome aspect of guaranteeing successful

task completion is in the case of no a priori map. SPOTT's
map database is a depository of all sensed information. If
the map database is to be also used for map building in ad-
dition to just navigational control (i.e., current only role),
then the issue of sensor fusion and the deduction of an ac-
curate CAD map and a companion abstract global map
from the sensed features needs to be addressed. If these is-
sues are dealt with, then the task could be treated as if an
a priori map existed. It is envisioned that a concurrently

ZELEK AND LEVINE: SPOTT: A PREDICTABLE AND SCALABLE ROBOT CONTROL ARCHITECTURE 13

executing reasoning module would perform map building
in addition to possibly monitoring controllability, observ-
ability and reachability issues.

Issues of predictability related to real-time performance
are delegated to proper scheduling and load balancing pro-
cedures at the level of distributed process allocation (i.e.,
PVM).

B. Scalability

The scalability of the SPOTT architecture has been
shown by (1) the accommodation of changing control laws
(programmable in the the TR+ language); (2) the inde-
pendence of robot platforms and sensors (i.e., SPOTT was
tested with two di�erent platforms and sensor con�gura-
tions); (3) and the independence of computing platforms
(i.e., PVM permits an interchangeable collection of hetero-
geneous processors). The previous section suggested using
another component - a reasoning module - for building an
accurate map while performing the navigation task. The
process of reasoning should not interfere or slow down the
real-time operation of the robot. Thus, it should be per-
formed on the area void of the current local map.

The inclusion of a manipulator into the robotic platform
would require minimal changes to the SPOTT architecture.
A separate collection of TR+ subroutines would be initi-
ated by a condition indicating that the robot is in close
proximity to engage in manipulation. A separate module
dedicated to manipulator path planning would also be re-
quired.

C. In Closing

The SPOTT architecture has been shown to have both
predictability and scalability properties. The TR+ formal-
ism was found useful for programming control laws at dif-
ferent levels of abstraction, for expressing hierarchies of
control through subroutines, and for monitoring execution
by a visualization provided by a graphical representation.
The major modi�cation to the TR formalism was the inclu-
sion of condition and action concurrency and the necessary
operators. The TR+ programs' structure was not arbitrary
but was guided by key facets of the mobile robot navi-
gation problem (i.e., mapping, localization, path planning
and execution). The local path planning module provides
the source of task guarantee but at a computational cost.
In highly structured areas such as hallways, it may prove
bene�cial to use a collection of TR+ rules, delegating the
use of the local path planner to highly unstructured areas
(e.g., large unknown open spaces). The SPOTT architec-
ture provides a principled and organized methodology for
programming and controlling a mobile robot. A proof of
concept was demonstrated with actual mobile robot plat-
forms. Some gaps remain to bring closure to the issue of
predictability, namely an accurate map building strategy,
and suitable sensor recognition strategies. Unfortunately,
a speci�cation of SPOTT's real-time necessities cannot be
handled at this time, but this is an issue for real-time com-
puting within the message-based distributed (or potentially

threaded) implementation (i.e., PVM).

Acknowledgments

This research is partially supported by the Natural Sciences and
Engineering Research Council and by the National Centres of Excel-
lence Program through IRIS (Institute for Robotics and Intelligent
Systems). This research is part of the Dynamic Reasoning, Naviga-
tion and Sensing for Mobile Robots project under the ISDE (Inte-
grated Systems in Dynamic Environments) theme.

The authors would also like to thank the following members of the

ISDE project for their technical and theoretical input: Marc Bolduc,

Thierry Baron, Don Bui, Paul MacKenzie, Gregory Dudek, Peter

Caines, Carlos Martinez-Mascarva, Tom Mackling, Nicholas Roy, and

Michael Daum.

References

[1] R. A. Brooks, \A robust layered control system for a mobile
robot," IEEE Transactions on Robotics and Automation, vol. 2,
pp. 14{23, March 1986.

[2] A. Sa�otti, K. Konolidge, and E. H. Ruspini, \A multivalued
logic approach to integrating planning and control," Arti�cial
Intelligence, vol. 76, no. 1-2, pp. 481{526, 1995.

[3] P. G. Doyle and J. L. Snell, Random Walks and Electric Net-
works. The Mathematical Association of America, 1984.

[4] R. Yerraballi and R. Mukkamalla, \Scalability in real-time sys-
tems with end-to-end requirements," Journal of Systems Archi-
tecture, vol. 42, pp. 409{429, December 1996.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jian, R. Manchek, and
V. Sunderam, PVM: Parallel Virtual Machine - A Users' Guide
and Tutorial for Networked Parallel Computing. MIT Press,
1994.

[6] B. Landau and R. Jackendo�, \What and where in spatial lan-
guage and spatial cognition," Behavioral and Brain Sciences,
vol. 16, pp. 217{265, 1993.

[7] G. A. Miller and P. N. Johnson-Laird, Language and Perception.
Harvard University Press, 1976.

[8] M. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline. Prentice-Hall, Inc., 1996.

[9] T. Lozano-Perez, Autonomous Robot Vehicles. Springer-Verlag,
1990.

[10] A. Elfes, \Sonar-based real-world mapping and navigation,"
IEEE Journal of Robotics and Automation, vol. 3, pp. 249{265,
1987.

[11] R. G. Simmons, \Structure control for autonomous robots,"
IEEE Transactions on Robotics and Automation, vol. 10,
pp. 34{43, February 1994.

[12] R. Liscano, R. Fayek, A. Manz, E. Stuck, and T. Tigli, \Using a
blackboard to integrate multiple activities and achieve strategic
reasoning for mobile robot navigation," IEEE Expert, pp. 24{36,
1995.

[13] D. Simon, B. Espiau, E. Castillo, and K. Kapellos, \Computer-
aided design of a generic robot controller handling reactivity
and real-time control issues," IEEE Transactions on Control
Systems Technology, vol. 1, pp. 213{229, December 1993.

[14] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and
J. O'Sullivan, \A layered architecture for o�ce delivery robots,"
in First International Conference on Autonomous Agents,
(Monterey, CA), Feb. 1997.

[15] E. Gat, R. Desia, R. Ivlev, J. Loch, and D. Miller, \Behav-
ior control for robotic exploration of planetary surfaces," IEEE
Transactions on Robotics and Automation, vol. 10, pp. 490{503,
August 1994.

[16] M. J. Mataric, \Integration of representation into goal-driven
behavior-based robots," IEEE Transactions on Robotics and
Automation, vol. 8, pp. 304{312, June 1992.

[17] H. Hexmoor and D. Kortenkamp, \Issues on building software
for hardware agents," Knowledge Engineering Review, vol. 10,
no. 3, pp. 301{304, 1995.

[18] R. Byrnes, \The rational behavior software architecture for in-
telligent ships," Naval Engineers Journal, March 1996.

[19] J. Bellingham and J. Leonard, \Task con�guration with layered
control," in Proceedings of the IARP 2nd Workshop on Mobile
Robots for Subsea Environments, (Monterey, CA), pp. 193{302,
May 1994.

14 DRAFT SUBMITTED TO IEEE TRANSACTIONS ROBOTICS & AUTOMATION, 1998

[20] F. R. Noreils and R. G. Chatila, \Plan execution monitoring and
control architecture for mobile robots," IEEE Transactions on
Robotics and Automation, vol. 11, pp. 255{266, April 1995.

[21] F. F. Ingrand, M. P. George�, and A. S. Rao, \An architec-
ture for real-time reasoning and system control," IEEE Expert,
pp. 34{44, December 1992.

[22] R. J. Firby, \An investigation into reactive planning in complex
domains," in Proceedings AAAI-87 Sixth National Conference
on Arti�cial Intelligence, pp. 202{206, AAAI, July 13-17 1987.

[23] E. Gat, \Integrating planning and reacting in a heteroge-
neous asynchronous architecture for controlling real-world mo-
bile robots," Proceedings of the AAAI92, 1992.

[24] M. P. George� and A. L. Lansky, \Reactive reasoning and plan-
ning," in Proceedings AAAI-87 Sixth National Conference on
Arti�cial Intelligence, pp. 677{682, AAAI, July 13-17 1987.

[25] R. P. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and
M. Slack, \Experiences with an architecture for intelligent reac-
tive agents," Journal of Experimental and Theoretical Arti�cial
Intelligence, vol. 9, no. 1, 1997.

[26] R. C. Arkin, \Integrating behavioral, perceptual, and world
knowledge in reactive navigation," Robotics and Autonomous
Systems, vol. 6, pp. 105{122, 1990.

[27] R. C. Arkin, \The impact of cybernetics on the design of a mo-
bile robot system: A case study," IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 20, pp. 1245{1257, Novem-
ber/December 1990.

[28] J. S. Zelek, SPOTT: A Real-time Distributed and Scalable Ar-
chitecture for Autonomous Mobile Robot Control. PhD thesis,
McGill University, Dept. of Electrical Engineering, 1996.

[29] S. Zilberstein, \Using anytime algorithms in intelligent systems,"
Arti�cial Intelligence Magazine, pp. 73{83, fall 1996.

[30] J. J. Leonard and H. F. Durrant-Whyte, \Mobile robot local-
ization by tracking geometric beacons," IEEE Transactions on
Robotics and Automation, vol. 7, pp. 376{382, June 1991.

[31] K. Wu, Computing Parametric Geon Descriptions of 3D Multi-
part Objects. PhD thesis, McGill University, Dept. of Electrical
Engineering, 1996.

[32] N. J. Nilsson, \Toward agent programs with circuit semantics,"
Tech. Rep. STAN-CS-92-1412, Department of Computer Sci-
ence, Stanford University, Stanford, California 94305, January
1992.

[33] N. J. Nilsson, \Teleo-reactive programs for agent control," Jour-
nal of Arti�cial Intelligence Research, vol. 1, pp. 139{158, 1994.

[34] R. Fikes and N. J. Nilsson, \Strips: A new approach to the
application of theorem proving to problem solving," Arti�cial
Intelligence, vol. 2, pp. 189{208, 1971.

[35] L. P. Kaebling and S. J. Rosenschein, \Action and planning in
embedded agents," Robotics and Autonomous Systems, vol. 6,
pp. 35{48, June 1990.

[36] J. Kosecka and R. Bajcsy, \Discrete event systems for au-
tonomous mobile agents," Robotics and Autonomous Systems,
vol. 12, pp. 187{198, 1994.

[37] N. Nissanke, Realtime Systems. Prentice Hall, 1997.
[38] D. M. Lyons, \Representing and analyzing action plans as net-

works of concurrent processes," IEEE Transactions on Robotics
and Automation, vol. 9, pp. 241{256, June 1993.

[39] D. M. Auslander, \What is mechatronics?," IEEE/ASME
Transactions on Mechatronics, vol. 1, no. 1, pp. 5{9, 1996.

[40] E. Koutso�os and S. C. North, \Applications of graph visual-
ization," in Proceedings of Graphics Interface 1994 Conference,
(Ban�, Canada), pp. 235{245, May 1994.

[41] P. Mackenzie and G. Dudek, \Precise positioning using model-
based maps," in IEEE International Conference on Robotics and
Automation, vol. 2, pp. 11615{1621, San Diego, CA: IEEE, May
1994.

[42] D. Bui, \Quadris: A range sensor for navigation and landmark
recognition," Master's thesis, McGill University, Dept. of Elec-
trical Engineering, in preparation.

[43] C. I. Connolly and R. A. Grupen, \On the applications of
harmonic functions to robotics," Journal of Robotic Systems,
vol. 10, no. 7, pp. 931{946, 1993.

[44] W. F. Ames, Numerical Methods for Partial Di�erential Equa-
tions. Academic Press Inc., 1992.

[45] D. Halperin, L. Kavraki, and J.-C. Latombe, \Robotics," ch. 41,
pp. 755{778, Boca Raton, FL: CRC Press, 1997.

[46] O. Khatib, \Real-time obstacle avoidance for manipulators and
mobile robots," The International Journal of Robotics Research,
vol. 5, pp. 90{98, Spring 1986.

[47] J. Barraquand and J.-C. Latombe, \Robot motion planning: A
distributed representation approach," International Journal of
Robotics Research, vol. 10, pp. 628{649, 1991.

[48] A. Stentz, \The focussed d* algorithm for real-time replanning,"
in Proceedings of the International Joint Conference on Arti�-
cial Intelligence, (Montreal, PQ), Aug. 1995.

[49] L. Tarassenko and A. Blake, \Analogue computation of collision-
free paths," in Proceedings of the 1991 IEEE International Con-
ference on Robotics and Automation, pp. 540{545, IEEE, April
1991.

[50] A. van de Vooren and A. Vliegenthart, \On the 9-point dif-
ference formula for laplace's equation," Journal of Engineering
Mathematics, vol. 1, no. 3, pp. 187{202, 1967.

[51] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures
and Algorithms. Addison-Wesley Publishing Co., 1983.

[52] A. Geist, A. Beguelin, J. Dongarra, W. Jian, R. Manchek, and
V. Sunderam, \Pvm 3 user's guide and reference manual," Tech.
Rep. ORNL-TM-12187, Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37831, USA, May 1993.

[53] V. Sunderam, G. Geist, J. Dongarra, and R. Manchek, \The
pvm concurrent computing system: Evolution, experiences, and
trends," Journal of Parallel Computing, vol. 20, no. 4, pp. 531{
546, 1993.

[54] B. Topol, J. T. Stasko, and V. Sunderam, \Integrating visual-
ization support into distributed computing systems," Tech. Rep.
Technical Report GIT-GVU-94/38, Graphics, Visualization, and
Usability Center, Georgia Institute of Technology, Atlanta, GA,
October 1994.

[55] F. Blais, M. Rioux, and J. Domey, \Optical range image acqui-
sition for the navigation of a mobile robot," in Proceedings 1991
IEEE International Conference on Robotics and Automation,
pp. 2574{2586, 1991.

[56] M. Bolduc, \The quadris sensor," Tech. Rep. CIM-TR-96-??,
McGill Research Centre for Intelligent Machines, McGill Uni-
versity, Montreal, PQ, Canada, July 1996.

[57] R. Ng, \Geon recognition using a mobile robot visual system,"
Master's thesis, McGill University, Dept. of Electrical Engineer-
ing, July 1998.

[58] J. Borenstein, D. Wehe, L. Feng, and Y. Koren, \Mobile robot
navigation in narrow aisles with ultrasonic sensors," in ANS 6th
Topical Meeting on Robotics and Remote Systems, (Monterey,
California), Feb. 5-10 1995.

John S. Zelek (M'86-S'91-M'97) received the
Ba.Sc. degree in Systems Design Engineer-
ing from the University of Waterloo in 1985,
and the Ma.Sc. degree in Electrical Engineer-
ing from the University of Ottawa in 1989 and
the Ph.D. degree in Electrical Engineering from
McGill University in 1996. He is currently an
Assistant Professor in the Engineering Systems
and Computer Program at the University of
Guelph. During 1996-97 he was a Visiting As-
sistant Professor in the Computer Engineering

department at Wright State University and during 1997-98 he was a
Visiting Assistant Professor in the Computer Science department at
Brock University. His research interests include autonomous mobile
robotics control and computer vision. Dr. Zelek received the Out-
standing paper award at the 1995 Conference on Systems, Man and
Cybernetics held in Vancouver.

Martin D. Levine(S'59-M'66-SM'74-F'88)
received the B.Eng. and M.Eng. degrees in
Electrical Engineering from McGill University,
Montreal, in 1960 and 1963, respectively, and
the Ph.D. degree in Electrical Engineering from
the Imperial College of Science and Technol-
ogy, University of London, London, England,
in 1965. He is currently a Professor in the
Department of Electrical Engineering, McGill
University and the Director of the McGill Cen-
ter for Intelligent Machines (CIM). During

ZELEK AND LEVINE: SPOTT: A PREDICTABLE AND SCALABLE ROBOT CONTROL ARCHITECTURE 15

1972-1973 he was a member of the Technical Sta� at the Image Pro-
cessing Laboratory of the Jet Propulsion Laboratory, Pasadena, CA.
During the 1979-1980 academic year, he was a Visiting Professor in
the Department of Computer Science, Hebrew University, Jerusalem,
Israel. His research interests encompass computer vision and robotics
and he has consulted for various government agencies and industrial
organisations in these areas. He has authored Vision in Man and
Machine and has coauthored Computer Assisted Analyses of Cell Lo-
comotion and Chemotaxis. Dr. Levine is on the Editorial Board of
Computer Vision and Understanding, having also served on the Edi-
torial Boards of the IEEE TRANSACTIONS ON PATTERN ANAL-
YSIS AND MACHINE INTELLIGENCE and Pattern Recognition.
He is also the Editor of the Plenum Book Series on Advances in Com-
puter Vision and Machine Intelligence. He was the General Chairman
of the Seventh International Conference on Pattern Recognition held
in Montreal during the summer of 1984 and served as President of the
International Association of Pattern Recognition during 1988-1990.
Dr. Levine is a Fellow of the IEEE and the International Association
of Pattern Recognition.

